123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- /*
- Bullet Continuous Collision Detection and Physics Library
- Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- #ifndef B3_JACOBIAN_ENTRY_H
- #define B3_JACOBIAN_ENTRY_H
- #include "Bullet3Common/b3Matrix3x3.h"
- //notes:
- // Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
- // which makes the b3JacobianEntry memory layout 16 bytes
- // if you only are interested in angular part, just feed massInvA and massInvB zero
- /// Jacobian entry is an abstraction that allows to describe constraints
- /// it can be used in combination with a constraint solver
- /// Can be used to relate the effect of an impulse to the constraint error
- B3_ATTRIBUTE_ALIGNED16(class) b3JacobianEntry
- {
- public:
- b3JacobianEntry() {};
- //constraint between two different rigidbodies
- b3JacobianEntry(
- const b3Matrix3x3& world2A,
- const b3Matrix3x3& world2B,
- const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,
- const b3Vector3& jointAxis,
- const b3Vector3& inertiaInvA,
- const b3Scalar massInvA,
- const b3Vector3& inertiaInvB,
- const b3Scalar massInvB)
- :m_linearJointAxis(jointAxis)
- {
- m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
- m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
- m_0MinvJt = inertiaInvA * m_aJ;
- m_1MinvJt = inertiaInvB * m_bJ;
- m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
- b3Assert(m_Adiag > b3Scalar(0.0));
- }
- //angular constraint between two different rigidbodies
- b3JacobianEntry(const b3Vector3& jointAxis,
- const b3Matrix3x3& world2A,
- const b3Matrix3x3& world2B,
- const b3Vector3& inertiaInvA,
- const b3Vector3& inertiaInvB)
- :m_linearJointAxis(b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)))
- {
- m_aJ= world2A*jointAxis;
- m_bJ = world2B*-jointAxis;
- m_0MinvJt = inertiaInvA * m_aJ;
- m_1MinvJt = inertiaInvB * m_bJ;
- m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
- b3Assert(m_Adiag > b3Scalar(0.0));
- }
- //angular constraint between two different rigidbodies
- b3JacobianEntry(const b3Vector3& axisInA,
- const b3Vector3& axisInB,
- const b3Vector3& inertiaInvA,
- const b3Vector3& inertiaInvB)
- : m_linearJointAxis(b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)))
- , m_aJ(axisInA)
- , m_bJ(-axisInB)
- {
- m_0MinvJt = inertiaInvA * m_aJ;
- m_1MinvJt = inertiaInvB * m_bJ;
- m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
- b3Assert(m_Adiag > b3Scalar(0.0));
- }
- //constraint on one rigidbody
- b3JacobianEntry(
- const b3Matrix3x3& world2A,
- const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,
- const b3Vector3& jointAxis,
- const b3Vector3& inertiaInvA,
- const b3Scalar massInvA)
- :m_linearJointAxis(jointAxis)
- {
- m_aJ= world2A*(rel_pos1.cross(jointAxis));
- m_bJ = world2A*(rel_pos2.cross(-jointAxis));
- m_0MinvJt = inertiaInvA * m_aJ;
- m_1MinvJt = b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
- m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
- b3Assert(m_Adiag > b3Scalar(0.0));
- }
- b3Scalar getDiagonal() const { return m_Adiag; }
- // for two constraints on the same rigidbody (for example vehicle friction)
- b3Scalar getNonDiagonal(const b3JacobianEntry& jacB, const b3Scalar massInvA) const
- {
- const b3JacobianEntry& jacA = *this;
- b3Scalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
- b3Scalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
- return lin + ang;
- }
-
- // for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
- b3Scalar getNonDiagonal(const b3JacobianEntry& jacB,const b3Scalar massInvA,const b3Scalar massInvB) const
- {
- const b3JacobianEntry& jacA = *this;
- b3Vector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
- b3Vector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
- b3Vector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
- b3Vector3 lin0 = massInvA * lin ;
- b3Vector3 lin1 = massInvB * lin;
- b3Vector3 sum = ang0+ang1+lin0+lin1;
- return sum[0]+sum[1]+sum[2];
- }
- b3Scalar getRelativeVelocity(const b3Vector3& linvelA,const b3Vector3& angvelA,const b3Vector3& linvelB,const b3Vector3& angvelB)
- {
- b3Vector3 linrel = linvelA - linvelB;
- b3Vector3 angvela = angvelA * m_aJ;
- b3Vector3 angvelb = angvelB * m_bJ;
- linrel *= m_linearJointAxis;
- angvela += angvelb;
- angvela += linrel;
- b3Scalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
- return rel_vel2 + B3_EPSILON;
- }
- //private:
- b3Vector3 m_linearJointAxis;
- b3Vector3 m_aJ;
- b3Vector3 m_bJ;
- b3Vector3 m_0MinvJt;
- b3Vector3 m_1MinvJt;
- //Optimization: can be stored in the w/last component of one of the vectors
- b3Scalar m_Adiag;
- };
- #endif //B3_JACOBIAN_ENTRY_H
|