12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- #include "equation-solver.h"
- #define _USE_MATH_DEFINES
- #include <cmath>
- namespace msdfgen {
- int solveQuadratic(double x[2], double a, double b, double c) {
- // a == 0 -> linear equation
- if (a == 0 || fabs(b) > 1e12*fabs(a)) {
- // a == 0, b == 0 -> no solution
- if (b == 0) {
- if (c == 0)
- return -1; // 0 == 0
- return 0;
- }
- x[0] = -c/b;
- return 1;
- }
- double dscr = b*b-4*a*c;
- if (dscr > 0) {
- dscr = sqrt(dscr);
- x[0] = (-b+dscr)/(2*a);
- x[1] = (-b-dscr)/(2*a);
- return 2;
- } else if (dscr == 0) {
- x[0] = -b/(2*a);
- return 1;
- } else
- return 0;
- }
- static int solveCubicNormed(double x[3], double a, double b, double c) {
- double a2 = a*a;
- double q = 1/9.*(a2-3*b);
- double r = 1/54.*(a*(2*a2-9*b)+27*c);
- double r2 = r*r;
- double q3 = q*q*q;
- a *= 1/3.;
- if (r2 < q3) {
- double t = r/sqrt(q3);
- if (t < -1) t = -1;
- if (t > 1) t = 1;
- t = acos(t);
- q = -2*sqrt(q);
- x[0] = q*cos(1/3.*t)-a;
- x[1] = q*cos(1/3.*(t+2*M_PI))-a;
- x[2] = q*cos(1/3.*(t-2*M_PI))-a;
- return 3;
- } else {
- double u = (r < 0 ? 1 : -1)*pow(fabs(r)+sqrt(r2-q3), 1/3.);
- double v = u == 0 ? 0 : q/u;
- x[0] = (u+v)-a;
- if (u == v || fabs(u-v) < 1e-12*fabs(u+v)) {
- x[1] = -.5*(u+v)-a;
- return 2;
- }
- return 1;
- }
- }
- int solveCubic(double x[3], double a, double b, double c, double d) {
- if (a != 0) {
- double bn = b/a;
- if (fabs(bn) < 1e6) // Above this ratio, the numerical error gets larger than if we treated a as zero
- return solveCubicNormed(x, bn, c/a, d/a);
- }
- return solveQuadratic(x, b, c, d);
- }
- }
|