123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- /********************************************************************
- * *
- * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
- * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
- * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
- * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
- * *
- * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 *
- * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
- * *
- ********************************************************************
- function:
- last mod: $Id$
- ********************************************************************/
- /*Some common macros for potential platform-specific optimization.*/
- #include <math.h>
- #if !defined(_ocintrin_H)
- # define _ocintrin_H (1)
- /*Some specific platforms may have optimized intrinsic or inline assembly
- versions of these functions which can substantially improve performance.
- We define macros for them to allow easy incorporation of these non-ANSI
- features.*/
- /*Note that we do not provide a macro for abs(), because it is provided as a
- library function, which we assume is translated into an intrinsic to avoid
- the function call overhead and then implemented in the smartest way for the
- target platform.
- With modern gcc (4.x), this is true: it uses cmov instructions if the
- architecture supports it and branchless bit-twiddling if it does not (the
- speed difference between the two approaches is not measurable).
- Interestingly, the bit-twiddling method was patented in 2000 (US 6,073,150)
- by Sun Microsystems, despite prior art dating back to at least 1996:
- http://web.archive.org/web/19961201174141/www.x86.org/ftp/articles/pentopt/PENTOPT.TXT
- On gcc 3.x, however, our assumption is not true, as abs() is translated to a
- conditional jump, which is horrible on deeply piplined architectures (e.g.,
- all consumer architectures for the past decade or more).
- Also be warned that -C*abs(x) where C is a constant is mis-optimized as
- abs(C*x) on every gcc release before 4.2.3.
- See bug http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34130 */
- /*Modern gcc (4.x) can compile the naive versions of min and max with cmov if
- given an appropriate architecture, but the branchless bit-twiddling versions
- are just as fast, and do not require any special target architecture.
- Earlier gcc versions (3.x) compiled both code to the same assembly
- instructions, because of the way they represented ((_b)>(_a)) internally.*/
- #define OC_MAXI(_a,_b) ((_a)-((_a)-(_b)&-((_b)>(_a))))
- #define OC_MINI(_a,_b) ((_a)+((_b)-(_a)&-((_b)<(_a))))
- /*Clamps an integer into the given range.
- If _a>_c, then the lower bound _a is respected over the upper bound _c (this
- behavior is required to meet our documented API behavior).
- _a: The lower bound.
- _b: The value to clamp.
- _c: The upper boud.*/
- #define OC_CLAMPI(_a,_b,_c) (OC_MAXI(_a,OC_MINI(_b,_c)))
- #define OC_CLAMP255(_x) ((unsigned char)((((_x)<0)-1)&((_x)|-((_x)>255))))
- /*This has a chance of compiling branchless, and is just as fast as the
- bit-twiddling method, which is slightly less portable, since it relies on a
- sign-extended rightshift, which is not guaranteed by ANSI (but present on
- every relevant platform).*/
- #define OC_SIGNI(_a) (((_a)>0)-((_a)<0))
- /*Slightly more portable than relying on a sign-extended right-shift (which is
- not guaranteed by ANSI), and just as fast, since gcc (3.x and 4.x both)
- compile it into the right-shift anyway.*/
- #define OC_SIGNMASK(_a) (-((_a)<0))
- /*Divides an integer by a power of two, truncating towards 0.
- _dividend: The integer to divide.
- _shift: The non-negative power of two to divide by.
- _rmask: (1<<_shift)-1*/
- #define OC_DIV_POW2(_dividend,_shift,_rmask)\
- ((_dividend)+(OC_SIGNMASK(_dividend)&(_rmask))>>(_shift))
- /*Divides _x by 65536, truncating towards 0.*/
- #define OC_DIV2_16(_x) OC_DIV_POW2(_x,16,0xFFFF)
- /*Divides _x by 2, truncating towards 0.*/
- #define OC_DIV2(_x) OC_DIV_POW2(_x,1,0x1)
- /*Divides _x by 8, truncating towards 0.*/
- #define OC_DIV8(_x) OC_DIV_POW2(_x,3,0x7)
- /*Divides _x by 16, truncating towards 0.*/
- #define OC_DIV16(_x) OC_DIV_POW2(_x,4,0xF)
- /*Right shifts _dividend by _shift, adding _rval, and subtracting one for
- negative dividends first.
- When _rval is (1<<_shift-1), this is equivalent to division with rounding
- ties away from zero.*/
- #define OC_DIV_ROUND_POW2(_dividend,_shift,_rval)\
- ((_dividend)+OC_SIGNMASK(_dividend)+(_rval)>>(_shift))
- /*Divides a _x by 2, rounding towards even numbers.*/
- #define OC_DIV2_RE(_x) ((_x)+((_x)>>1&1)>>1)
- /*Divides a _x by (1<<(_shift)), rounding towards even numbers.*/
- #define OC_DIV_POW2_RE(_x,_shift) \
- ((_x)+((_x)>>(_shift)&1)+((1<<(_shift))-1>>1)>>(_shift))
- /*Swaps two integers _a and _b if _a>_b.*/
- #define OC_SORT2I(_a,_b) \
- do{ \
- int t__; \
- t__=((_a)^(_b))&-((_b)<(_a)); \
- (_a)^=t__; \
- (_b)^=t__; \
- } \
- while(0)
- /*Accesses one of four (signed) bytes given an index.
- This can be used to avoid small lookup tables.*/
- #define OC_BYTE_TABLE32(_a,_b,_c,_d,_i) \
- ((signed char) \
- (((_a)&0xFF|((_b)&0xFF)<<8|((_c)&0xFF)<<16|((_d)&0xFF)<<24)>>(_i)*8))
- /*Accesses one of eight (unsigned) nibbles given an index.
- This can be used to avoid small lookup tables.*/
- #define OC_UNIBBLE_TABLE32(_a,_b,_c,_d,_e,_f,_g,_h,_i) \
- ((((_a)&0xF|((_b)&0xF)<<4|((_c)&0xF)<<8|((_d)&0xF)<<12| \
- ((_e)&0xF)<<16|((_f)&0xF)<<20|((_g)&0xF)<<24|((_h)&0xF)<<28)>>(_i)*4)&0xF)
- /*All of these macros should expect floats as arguments.*/
- #define OC_MAXF(_a,_b) ((_a)<(_b)?(_b):(_a))
- #define OC_MINF(_a,_b) ((_a)>(_b)?(_b):(_a))
- #define OC_CLAMPF(_a,_b,_c) (OC_MINF(_a,OC_MAXF(_b,_c)))
- #define OC_FABSF(_f) ((float)fabs(_f))
- #define OC_SQRTF(_f) ((float)sqrt(_f))
- #define OC_POWF(_b,_e) ((float)pow(_b,_e))
- #define OC_LOGF(_f) ((float)log(_f))
- #define OC_IFLOORF(_f) ((int)floor(_f))
- #define OC_ICEILF(_f) ((int)ceil(_f))
- #endif
|