123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480 |
- // SPDX-License-Identifier: Apache-2.0
- // ----------------------------------------------------------------------------
- // Copyright 2011-2023 Arm Limited
- //
- // Licensed under the Apache License, Version 2.0 (the "License"); you may not
- // use this file except in compliance with the License. You may obtain a copy
- // of the License at:
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
- // License for the specific language governing permissions and limitations
- // under the License.
- // ----------------------------------------------------------------------------
- #if !defined(ASTCENC_DECOMPRESS_ONLY)
- /**
- * @brief Functions for angular-sum algorithm for weight alignment.
- *
- * This algorithm works as follows:
- * - we compute a complex number P as (cos s*i, sin s*i) for each weight,
- * where i is the input value and s is a scaling factor based on the spacing between the weights.
- * - we then add together complex numbers for all the weights.
- * - we then compute the length and angle of the resulting sum.
- *
- * This should produce the following results:
- * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs
- * - even distribution results in a vector of length 0.
- * - all samples identical results in perfect alignment for every scaling.
- *
- * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This
- * should then result in some scalings standing out as having particularly good alignment factors;
- * we can use this to produce a set of candidate scale/shift values for various quantization levels;
- * we should then actually try them and see what happens.
- */
- #include "astcenc_internal.h"
- #include "astcenc_vecmathlib.h"
- #include <stdio.h>
- #include <cassert>
- #include <cstring>
- static constexpr unsigned int ANGULAR_STEPS { 32 };
- static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0,
- "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH");
- static_assert(ANGULAR_STEPS >= 32,
- "ANGULAR_STEPS must be at least max(steps_for_quant_level)");
- // Store a reduced sin/cos table for 64 possible weight values; this causes
- // slight quality loss compared to using sin() and cos() directly. Must be 2^N.
- static constexpr unsigned int SINCOS_STEPS { 64 };
- static const uint8_t steps_for_quant_level[12] {
- 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32
- };
- alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
- alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];
- #if defined(ASTCENC_DIAGNOSTICS)
- static bool print_once { true };
- #endif
- /* See header for documentation. */
- void prepare_angular_tables()
- {
- for (unsigned int i = 0; i < ANGULAR_STEPS; i++)
- {
- float angle_step = static_cast<float>(i + 1);
- for (unsigned int j = 0; j < SINCOS_STEPS; j++)
- {
- sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
- cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
- }
- }
- }
- /**
- * @brief Compute the angular alignment factors and offsets.
- *
- * @param weight_count The number of (decimated) weights.
- * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
- * @param max_angular_steps The maximum number of steps to be tested.
- * @param[out] offsets The output angular offsets array.
- */
- static void compute_angular_offsets(
- unsigned int weight_count,
- const float* dec_weight_ideal_value,
- unsigned int max_angular_steps,
- float* offsets
- ) {
- promise(weight_count > 0);
- promise(max_angular_steps > 0);
- alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS];
- // Precompute isample; arrays are always allocated 64 elements long
- for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
- {
- // Add 2^23 and interpreting bits extracts round-to-nearest int
- vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f);
- vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1));
- storea(isample, isamplev + i);
- }
- // Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
- vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
- for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH)
- {
- vfloat anglesum_x = vfloat::zero();
- vfloat anglesum_y = vfloat::zero();
- for (unsigned int j = 0; j < weight_count; j++)
- {
- int isample = isamplev[j];
- anglesum_x += loada(cos_table[isample] + i);
- anglesum_y += loada(sin_table[isample] + i);
- }
- vfloat angle = atan2(anglesum_y, anglesum_x);
- vfloat ofs = angle * mult;
- storea(ofs, offsets + i);
- }
- }
- /**
- * @brief For a given step size compute the lowest and highest weight.
- *
- * Compute the lowest and highest weight that results from quantizing using the given stepsize and
- * offset, and then compute the resulting error. The cut errors indicate the error that results from
- * forcing samples that should have had one weight value one step up or down.
- *
- * @param weight_count The number of (decimated) weights.
- * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
- * @param max_angular_steps The maximum number of steps to be tested.
- * @param max_quant_steps The maximum quantization level to be tested.
- * @param offsets The angular offsets array.
- * @param[out] lowest_weight Per angular step, the lowest weight.
- * @param[out] weight_span Per angular step, the span between lowest and highest weight.
- * @param[out] error Per angular step, the error.
- * @param[out] cut_low_weight_error Per angular step, the low weight cut error.
- * @param[out] cut_high_weight_error Per angular step, the high weight cut error.
- */
- static void compute_lowest_and_highest_weight(
- unsigned int weight_count,
- const float* dec_weight_ideal_value,
- unsigned int max_angular_steps,
- unsigned int max_quant_steps,
- const float* offsets,
- float* lowest_weight,
- int* weight_span,
- float* error,
- float* cut_low_weight_error,
- float* cut_high_weight_error
- ) {
- promise(weight_count > 0);
- promise(max_angular_steps > 0);
- vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
- // Arrays are ANGULAR_STEPS long, so always safe to run full vectors
- for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
- {
- vfloat minidx(128.0f);
- vfloat maxidx(-128.0f);
- vfloat errval = vfloat::zero();
- vfloat cut_low_weight_err = vfloat::zero();
- vfloat cut_high_weight_err = vfloat::zero();
- vfloat offset = loada(offsets + sp);
- for (unsigned int j = 0; j < weight_count; j++)
- {
- vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset;
- vfloat svalrte = round(sval);
- vfloat diff = sval - svalrte;
- errval += diff * diff;
- // Reset tracker on min hit
- vmask mask = svalrte < minidx;
- minidx = select(minidx, svalrte, mask);
- cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);
- // Accumulate on min hit
- mask = svalrte == minidx;
- vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
- cut_low_weight_err = select(cut_low_weight_err, accum, mask);
- // Reset tracker on max hit
- mask = svalrte > maxidx;
- maxidx = select(maxidx, svalrte, mask);
- cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);
- // Accumulate on max hit
- mask = svalrte == maxidx;
- accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
- cut_high_weight_err = select(cut_high_weight_err, accum, mask);
- }
- // Write out min weight and weight span; clamp span to a usable range
- vint span = float_to_int(maxidx - minidx + vfloat(1));
- span = min(span, vint(max_quant_steps + 3));
- span = max(span, vint(2));
- storea(minidx, lowest_weight + sp);
- storea(span, weight_span + sp);
- // The cut_(lowest/highest)_weight_error indicate the error that results from forcing
- // samples that should have had the weight value one step (up/down).
- vfloat ssize = 1.0f / rcp_stepsize;
- vfloat errscale = ssize * ssize;
- storea(errval * errscale, error + sp);
- storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
- storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
- rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
- }
- }
- /**
- * @brief The main function for the angular algorithm.
- *
- * @param weight_count The number of (decimated) weights.
- * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
- * @param max_quant_level The maximum quantization level to be tested.
- * @param[out] low_value Per angular step, the lowest weight value.
- * @param[out] high_value Per angular step, the highest weight value.
- */
- static void compute_angular_endpoints_for_quant_levels(
- unsigned int weight_count,
- const float* dec_weight_ideal_value,
- unsigned int max_quant_level,
- float low_value[TUNE_MAX_ANGULAR_QUANT + 1],
- float high_value[TUNE_MAX_ANGULAR_QUANT + 1]
- ) {
- unsigned int max_quant_steps = steps_for_quant_level[max_quant_level];
- unsigned int max_angular_steps = steps_for_quant_level[max_quant_level];
- alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS];
- compute_angular_offsets(weight_count, dec_weight_ideal_value,
- max_angular_steps, angular_offsets);
- alignas(ASTCENC_VECALIGN) float lowest_weight[ANGULAR_STEPS];
- alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS];
- alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS];
- alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS];
- alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS];
- compute_lowest_and_highest_weight(weight_count, dec_weight_ideal_value,
- max_angular_steps, max_quant_steps,
- angular_offsets, lowest_weight, weight_span, error,
- cut_low_weight_error, cut_high_weight_error);
- // For each quantization level, find the best error terms. Use packed vectors so data-dependent
- // branches can become selects. This involves some integer to float casts, but the values are
- // small enough so they never round the wrong way.
- vfloat4 best_results[36];
- // Initialize the array to some safe defaults
- promise(max_quant_steps > 0);
- for (unsigned int i = 0; i < (max_quant_steps + 4); i++)
- {
- // Lane<0> = Best error
- // Lane<1> = Best scale; -1 indicates no solution found
- // Lane<2> = Cut low weight
- best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f);
- }
- promise(max_angular_steps > 0);
- for (unsigned int i = 0; i < max_angular_steps; i++)
- {
- float i_flt = static_cast<float>(i);
- int idx_span = weight_span[i];
- float error_cut_low = error[i] + cut_low_weight_error[i];
- float error_cut_high = error[i] + cut_high_weight_error[i];
- float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];
- // Check best error against record N
- vfloat4 best_result = best_results[idx_span];
- vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f);
- vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]);
- best_results[idx_span] = select(best_result, new_result, mask);
- // Check best error against record N-1 with either cut low or cut high
- best_result = best_results[idx_span - 1];
- new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f);
- mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low);
- best_result = select(best_result, new_result, mask);
- new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f);
- mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high);
- best_results[idx_span - 1] = select(best_result, new_result, mask);
- // Check best error against record N-2 with both cut low and high
- best_result = best_results[idx_span - 2];
- new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f);
- mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high);
- best_results[idx_span - 2] = select(best_result, new_result, mask);
- }
- for (unsigned int i = 0; i <= max_quant_level; i++)
- {
- unsigned int q = steps_for_quant_level[i];
- int bsi = static_cast<int>(best_results[q].lane<1>());
- // Did we find anything?
- #if defined(ASTCENC_DIAGNOSTICS)
- if ((bsi < 0) && print_once)
- {
- print_once = false;
- printf("INFO: Unable to find full encoding within search error limit.\n\n");
- }
- #endif
- bsi = astc::max(0, bsi);
- float lwi = lowest_weight[bsi] + best_results[q].lane<2>();
- float hwi = lwi + static_cast<float>(q) - 1.0f;
- float stepsize = 1.0f / (1.0f + static_cast<float>(bsi));
- low_value[i] = (angular_offsets[bsi] + lwi) * stepsize;
- high_value[i] = (angular_offsets[bsi] + hwi) * stepsize;
- }
- }
- /* See header for documentation. */
- void compute_angular_endpoints_1plane(
- bool only_always,
- const block_size_descriptor& bsd,
- const float* dec_weight_ideal_value,
- unsigned int max_weight_quant,
- compression_working_buffers& tmpbuf
- ) {
- float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
- float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
- float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
- float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
- unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always
- : bsd.decimation_mode_count_selected;
- promise(max_decimation_modes > 0);
- for (unsigned int i = 0; i < max_decimation_modes; i++)
- {
- const decimation_mode& dm = bsd.decimation_modes[i];
- if (!dm.is_ref_1plane(static_cast<quant_method>(max_weight_quant)))
- {
- continue;
- }
- unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
- unsigned int max_precision = dm.maxprec_1plane;
- if (max_precision > TUNE_MAX_ANGULAR_QUANT)
- {
- max_precision = TUNE_MAX_ANGULAR_QUANT;
- }
- if (max_precision > max_weight_quant)
- {
- max_precision = max_weight_quant;
- }
- compute_angular_endpoints_for_quant_levels(
- weight_count,
- dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
- max_precision, low_values[i], high_values[i]);
- }
- unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always
- : bsd.block_mode_count_1plane_selected;
- promise(max_block_modes > 0);
- for (unsigned int i = 0; i < max_block_modes; i++)
- {
- const block_mode& bm = bsd.block_modes[i];
- assert(!bm.is_dual_plane);
- unsigned int quant_mode = bm.quant_mode;
- unsigned int decim_mode = bm.decimation_mode;
- if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
- {
- low_value[i] = low_values[decim_mode][quant_mode];
- high_value[i] = high_values[decim_mode][quant_mode];
- }
- else
- {
- low_value[i] = 0.0f;
- high_value[i] = 1.0f;
- }
- }
- }
- /* See header for documentation. */
- void compute_angular_endpoints_2planes(
- const block_size_descriptor& bsd,
- const float* dec_weight_ideal_value,
- unsigned int max_weight_quant,
- compression_working_buffers& tmpbuf
- ) {
- float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
- float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
- float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2;
- float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2;
- float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
- float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
- float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2;
- float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2;
- promise(bsd.decimation_mode_count_selected > 0);
- for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++)
- {
- const decimation_mode& dm = bsd.decimation_modes[i];
- if (!dm.is_ref_2plane(static_cast<quant_method>(max_weight_quant)))
- {
- continue;
- }
- unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
- unsigned int max_precision = dm.maxprec_2planes;
- if (max_precision > TUNE_MAX_ANGULAR_QUANT)
- {
- max_precision = TUNE_MAX_ANGULAR_QUANT;
- }
- if (max_precision > max_weight_quant)
- {
- max_precision = max_weight_quant;
- }
- compute_angular_endpoints_for_quant_levels(
- weight_count,
- dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
- max_precision, low_values1[i], high_values1[i]);
- compute_angular_endpoints_for_quant_levels(
- weight_count,
- dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET,
- max_precision, low_values2[i], high_values2[i]);
- }
- unsigned int start = bsd.block_mode_count_1plane_selected;
- unsigned int end = bsd.block_mode_count_1plane_2plane_selected;
- for (unsigned int i = start; i < end; i++)
- {
- const block_mode& bm = bsd.block_modes[i];
- unsigned int quant_mode = bm.quant_mode;
- unsigned int decim_mode = bm.decimation_mode;
- if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
- {
- low_value1[i] = low_values1[decim_mode][quant_mode];
- high_value1[i] = high_values1[decim_mode][quant_mode];
- low_value2[i] = low_values2[decim_mode][quant_mode];
- high_value2[i] = high_values2[decim_mode][quant_mode];
- }
- else
- {
- low_value1[i] = 0.0f;
- high_value1[i] = 1.0f;
- low_value2[i] = 0.0f;
- high_value2[i] = 1.0f;
- }
- }
- }
- #endif
|