1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351 |
- // SPDX-License-Identifier: Apache-2.0
- // ----------------------------------------------------------------------------
- // Copyright 2011-2022 Arm Limited
- //
- // Licensed under the Apache License, Version 2.0 (the "License"); you may not
- // use this file except in compliance with the License. You may obtain a copy
- // of the License at:
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
- // License for the specific language governing permissions and limitations
- // under the License.
- // ----------------------------------------------------------------------------
- #if !defined(ASTCENC_DECOMPRESS_ONLY)
- /**
- * @brief Functions for finding best endpoint format.
- *
- * We assume there are two independent sources of error in any given partition:
- *
- * - Encoding choice errors
- * - Quantization errors
- *
- * Encoding choice errors are caused by encoder decisions. For example:
- *
- * - Using luminance instead of separate RGB components.
- * - Using a constant 1.0 alpha instead of storing an alpha component.
- * - Using RGB+scale instead of storing two full RGB endpoints.
- *
- * Quantization errors occur due to the limited precision we use for storage. These errors generally
- * scale with quantization level, but are not actually independent of color encoding. In particular:
- *
- * - If we can use offset encoding then quantization error is halved.
- * - If we can use blue-contraction then quantization error for RG is halved.
- * - If we use HDR endpoints the quantization error is higher.
- *
- * Apart from these effects, we assume the error is proportional to the quantization step size.
- */
- #include "astcenc_internal.h"
- #include "astcenc_vecmathlib.h"
- #include <assert.h>
- /**
- * @brief Compute the errors of the endpoint line options for one partition.
- *
- * Uncorrelated data assumes storing completely independent RGBA channels for each endpoint. Same
- * chroma data assumes storing RGBA endpoints which pass though the origin (LDR only). RGBL data
- * assumes storing RGB + lumashift (HDR only). Luminance error assumes storing RGB channels as a
- * single value.
- *
- *
- * @param pi The partition info data.
- * @param partition_index The partition index to compule the error for.
- * @param blk The image block.
- * @param uncor_pline The endpoint line assuming uncorrelated endpoints.
- * @param[out] uncor_err The computed error for the uncorrelated endpoint line.
- * @param samec_pline The endpoint line assuming the same chroma for both endpoints.
- * @param[out] samec_err The computed error for the uncorrelated endpoint line.
- * @param rgbl_pline The endpoint line assuming RGB + lumashift data.
- * @param[out] rgbl_err The computed error for the RGB + lumashift endpoint line.
- * @param l_pline The endpoint line assuming luminance data.
- * @param[out] l_err The computed error for the luminance endpoint line.
- * @param[out] a_drop_err The computed error for dropping the alpha component.
- */
- static void compute_error_squared_rgb_single_partition(
- const partition_info& pi,
- int partition_index,
- const image_block& blk,
- const processed_line3& uncor_pline,
- float& uncor_err,
- const processed_line3& samec_pline,
- float& samec_err,
- const processed_line3& rgbl_pline,
- float& rgbl_err,
- const processed_line3& l_pline,
- float& l_err,
- float& a_drop_err
- ) {
- vfloat4 ews = blk.channel_weight;
- unsigned int texel_count = pi.partition_texel_count[partition_index];
- const uint8_t* texel_indexes = pi.texels_of_partition[partition_index];
- promise(texel_count > 0);
- vfloatacc a_drop_errv = vfloatacc::zero();
- vfloat default_a(blk.get_default_alpha());
- vfloatacc uncor_errv = vfloatacc::zero();
- vfloat uncor_bs0(uncor_pline.bs.lane<0>());
- vfloat uncor_bs1(uncor_pline.bs.lane<1>());
- vfloat uncor_bs2(uncor_pline.bs.lane<2>());
- vfloat uncor_amod0(uncor_pline.amod.lane<0>());
- vfloat uncor_amod1(uncor_pline.amod.lane<1>());
- vfloat uncor_amod2(uncor_pline.amod.lane<2>());
- vfloatacc samec_errv = vfloatacc::zero();
- vfloat samec_bs0(samec_pline.bs.lane<0>());
- vfloat samec_bs1(samec_pline.bs.lane<1>());
- vfloat samec_bs2(samec_pline.bs.lane<2>());
- vfloatacc rgbl_errv = vfloatacc::zero();
- vfloat rgbl_bs0(rgbl_pline.bs.lane<0>());
- vfloat rgbl_bs1(rgbl_pline.bs.lane<1>());
- vfloat rgbl_bs2(rgbl_pline.bs.lane<2>());
- vfloat rgbl_amod0(rgbl_pline.amod.lane<0>());
- vfloat rgbl_amod1(rgbl_pline.amod.lane<1>());
- vfloat rgbl_amod2(rgbl_pline.amod.lane<2>());
- vfloatacc l_errv = vfloatacc::zero();
- vfloat l_bs0(l_pline.bs.lane<0>());
- vfloat l_bs1(l_pline.bs.lane<1>());
- vfloat l_bs2(l_pline.bs.lane<2>());
- vint lane_ids = vint::lane_id();
- for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
- {
- vint tix(texel_indexes + i);
- vmask mask = lane_ids < vint(texel_count);
- lane_ids += vint(ASTCENC_SIMD_WIDTH);
- // Compute the error that arises from just ditching alpha
- vfloat data_a = gatherf(blk.data_a, tix);
- vfloat alpha_diff = data_a - default_a;
- alpha_diff = alpha_diff * alpha_diff;
- haccumulate(a_drop_errv, alpha_diff, mask);
- vfloat data_r = gatherf(blk.data_r, tix);
- vfloat data_g = gatherf(blk.data_g, tix);
- vfloat data_b = gatherf(blk.data_b, tix);
- // Compute uncorrelated error
- vfloat param = data_r * uncor_bs0
- + data_g * uncor_bs1
- + data_b * uncor_bs2;
- vfloat dist0 = (uncor_amod0 + param * uncor_bs0) - data_r;
- vfloat dist1 = (uncor_amod1 + param * uncor_bs1) - data_g;
- vfloat dist2 = (uncor_amod2 + param * uncor_bs2) - data_b;
- vfloat error = dist0 * dist0 * ews.lane<0>()
- + dist1 * dist1 * ews.lane<1>()
- + dist2 * dist2 * ews.lane<2>();
- haccumulate(uncor_errv, error, mask);
- // Compute same chroma error - no "amod", its always zero
- param = data_r * samec_bs0
- + data_g * samec_bs1
- + data_b * samec_bs2;
- dist0 = (param * samec_bs0) - data_r;
- dist1 = (param * samec_bs1) - data_g;
- dist2 = (param * samec_bs2) - data_b;
- error = dist0 * dist0 * ews.lane<0>()
- + dist1 * dist1 * ews.lane<1>()
- + dist2 * dist2 * ews.lane<2>();
- haccumulate(samec_errv, error, mask);
- // Compute rgbl error
- param = data_r * rgbl_bs0
- + data_g * rgbl_bs1
- + data_b * rgbl_bs2;
- dist0 = (rgbl_amod0 + param * rgbl_bs0) - data_r;
- dist1 = (rgbl_amod1 + param * rgbl_bs1) - data_g;
- dist2 = (rgbl_amod2 + param * rgbl_bs2) - data_b;
- error = dist0 * dist0 * ews.lane<0>()
- + dist1 * dist1 * ews.lane<1>()
- + dist2 * dist2 * ews.lane<2>();
- haccumulate(rgbl_errv, error, mask);
- // Compute luma error - no "amod", its always zero
- param = data_r * l_bs0
- + data_g * l_bs1
- + data_b * l_bs2;
- dist0 = (param * l_bs0) - data_r;
- dist1 = (param * l_bs1) - data_g;
- dist2 = (param * l_bs2) - data_b;
- error = dist0 * dist0 * ews.lane<0>()
- + dist1 * dist1 * ews.lane<1>()
- + dist2 * dist2 * ews.lane<2>();
- haccumulate(l_errv, error, mask);
- }
- a_drop_err = hadd_s(a_drop_errv) * ews.lane<3>();
- uncor_err = hadd_s(uncor_errv);
- samec_err = hadd_s(samec_errv);
- rgbl_err = hadd_s(rgbl_errv);
- l_err = hadd_s(l_errv);
- }
- /**
- * @brief For a given set of input colors and partitioning determine endpoint encode errors.
- *
- * This function determines the color error that results from RGB-scale encoding (LDR only),
- * RGB-lumashift encoding (HDR only), luminance-encoding, and alpha drop. Also determines whether
- * the endpoints are eligible for offset encoding or blue-contraction
- *
- * @param blk The image block.
- * @param pi The partition info data.
- * @param ep The idealized endpoints.
- * @param[out] eci The resulting encoding choice error metrics.
- */
- static void compute_encoding_choice_errors(
- const image_block& blk,
- const partition_info& pi,
- const endpoints& ep,
- encoding_choice_errors eci[BLOCK_MAX_PARTITIONS])
- {
- int partition_count = pi.partition_count;
- promise(partition_count > 0);
- partition_metrics pms[BLOCK_MAX_PARTITIONS];
- compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
- for (int i = 0; i < partition_count; i++)
- {
- partition_metrics& pm = pms[i];
- line3 uncor_rgb_lines;
- line3 samec_rgb_lines; // for LDR-RGB-scale
- line3 rgb_luma_lines; // for HDR-RGB-scale
- processed_line3 uncor_rgb_plines;
- processed_line3 samec_rgb_plines;
- processed_line3 rgb_luma_plines;
- processed_line3 luminance_plines;
- float uncorr_rgb_error;
- float samechroma_rgb_error;
- float rgb_luma_error;
- float luminance_rgb_error;
- float alpha_drop_error;
- uncor_rgb_lines.a = pm.avg;
- uncor_rgb_lines.b = normalize_safe(pm.dir, unit3());
- samec_rgb_lines.a = vfloat4::zero();
- samec_rgb_lines.b = normalize_safe(pm.avg, unit3());
- rgb_luma_lines.a = pm.avg;
- rgb_luma_lines.b = unit3();
- uncor_rgb_plines.amod = uncor_rgb_lines.a - uncor_rgb_lines.b * dot3(uncor_rgb_lines.a, uncor_rgb_lines.b);
- uncor_rgb_plines.bs = uncor_rgb_lines.b;
- // Same chroma always goes though zero, so this is simpler than the others
- samec_rgb_plines.amod = vfloat4::zero();
- samec_rgb_plines.bs = samec_rgb_lines.b;
- rgb_luma_plines.amod = rgb_luma_lines.a - rgb_luma_lines.b * dot3(rgb_luma_lines.a, rgb_luma_lines.b);
- rgb_luma_plines.bs = rgb_luma_lines.b;
- // Luminance always goes though zero, so this is simpler than the others
- luminance_plines.amod = vfloat4::zero();
- luminance_plines.bs = unit3();
- compute_error_squared_rgb_single_partition(
- pi, i, blk,
- uncor_rgb_plines, uncorr_rgb_error,
- samec_rgb_plines, samechroma_rgb_error,
- rgb_luma_plines, rgb_luma_error,
- luminance_plines, luminance_rgb_error,
- alpha_drop_error);
- // Determine if we can offset encode RGB lanes
- vfloat4 endpt0 = ep.endpt0[i];
- vfloat4 endpt1 = ep.endpt1[i];
- vfloat4 endpt_diff = abs(endpt1 - endpt0);
- vmask4 endpt_can_offset = endpt_diff < vfloat4(0.12f * 65535.0f);
- bool can_offset_encode = (mask(endpt_can_offset) & 0x7) == 0x7;
- // Store out the settings
- eci[i].rgb_scale_error = (samechroma_rgb_error - uncorr_rgb_error) * 0.7f; // empirical
- eci[i].rgb_luma_error = (rgb_luma_error - uncorr_rgb_error) * 1.5f; // wild guess
- eci[i].luminance_error = (luminance_rgb_error - uncorr_rgb_error) * 3.0f; // empirical
- eci[i].alpha_drop_error = alpha_drop_error * 3.0f;
- eci[i].can_offset_encode = can_offset_encode;
- eci[i].can_blue_contract = !blk.is_luminance();
- }
- }
- /**
- * @brief For a given partition compute the error for every endpoint integer count and quant level.
- *
- * @param encode_hdr_rgb @c true if using HDR for RGB, @c false for LDR.
- * @param encode_hdr_alpha @c true if using HDR for alpha, @c false for LDR.
- * @param partition_index The partition index.
- * @param pi The partition info.
- * @param eci The encoding choice error metrics.
- * @param ep The idealized endpoints.
- * @param error_weight The resulting encoding choice error metrics.
- * @param[out] best_error The best error for each integer count and quant level.
- * @param[out] format_of_choice The preferred endpoint format for each integer count and quant level.
- */
- static void compute_color_error_for_every_integer_count_and_quant_level(
- bool encode_hdr_rgb,
- bool encode_hdr_alpha,
- int partition_index,
- const partition_info& pi,
- const encoding_choice_errors& eci,
- const endpoints& ep,
- vfloat4 error_weight,
- float best_error[21][4],
- uint8_t format_of_choice[21][4]
- ) {
- int partition_size = pi.partition_texel_count[partition_index];
- static const float baseline_quant_error[21 - QUANT_6] {
- (65536.0f * 65536.0f / 18.0f) / (5 * 5),
- (65536.0f * 65536.0f / 18.0f) / (7 * 7),
- (65536.0f * 65536.0f / 18.0f) / (9 * 9),
- (65536.0f * 65536.0f / 18.0f) / (11 * 11),
- (65536.0f * 65536.0f / 18.0f) / (15 * 15),
- (65536.0f * 65536.0f / 18.0f) / (19 * 19),
- (65536.0f * 65536.0f / 18.0f) / (23 * 23),
- (65536.0f * 65536.0f / 18.0f) / (31 * 31),
- (65536.0f * 65536.0f / 18.0f) / (39 * 39),
- (65536.0f * 65536.0f / 18.0f) / (47 * 47),
- (65536.0f * 65536.0f / 18.0f) / (63 * 63),
- (65536.0f * 65536.0f / 18.0f) / (79 * 79),
- (65536.0f * 65536.0f / 18.0f) / (95 * 95),
- (65536.0f * 65536.0f / 18.0f) / (127 * 127),
- (65536.0f * 65536.0f / 18.0f) / (159 * 159),
- (65536.0f * 65536.0f / 18.0f) / (191 * 191),
- (65536.0f * 65536.0f / 18.0f) / (255 * 255)
- };
- vfloat4 ep0 = ep.endpt0[partition_index];
- vfloat4 ep1 = ep.endpt1[partition_index];
- float ep1_min = hmin_rgb_s(ep1);
- ep1_min = astc::max(ep1_min, 0.0f);
- float error_weight_rgbsum = hadd_rgb_s(error_weight);
- float range_upper_limit_rgb = encode_hdr_rgb ? 61440.0f : 65535.0f;
- float range_upper_limit_alpha = encode_hdr_alpha ? 61440.0f : 65535.0f;
- // It is possible to get endpoint colors significantly outside [0,upper-limit] even if the
- // input data are safely contained in [0,upper-limit]; we need to add an error term for this
- vfloat4 offset(range_upper_limit_rgb, range_upper_limit_rgb, range_upper_limit_rgb, range_upper_limit_alpha);
- vfloat4 ep0_range_error_high = max(ep0 - offset, 0.0f);
- vfloat4 ep1_range_error_high = max(ep1 - offset, 0.0f);
- vfloat4 ep0_range_error_low = min(ep0, 0.0f);
- vfloat4 ep1_range_error_low = min(ep1, 0.0f);
- vfloat4 sum_range_error =
- (ep0_range_error_low * ep0_range_error_low) +
- (ep1_range_error_low * ep1_range_error_low) +
- (ep0_range_error_high * ep0_range_error_high) +
- (ep1_range_error_high * ep1_range_error_high);
- float rgb_range_error = dot3_s(sum_range_error, error_weight)
- * 0.5f * static_cast<float>(partition_size);
- float alpha_range_error = sum_range_error.lane<3>() * error_weight.lane<3>()
- * 0.5f * static_cast<float>(partition_size);
- if (encode_hdr_rgb)
- {
- // Collect some statistics
- float af, cf;
- if (ep1.lane<0>() > ep1.lane<1>() && ep1.lane<0>() > ep1.lane<2>())
- {
- af = ep1.lane<0>();
- cf = ep1.lane<0>() - ep0.lane<0>();
- }
- else if (ep1.lane<1>() > ep1.lane<2>())
- {
- af = ep1.lane<1>();
- cf = ep1.lane<1>() - ep0.lane<1>();
- }
- else
- {
- af = ep1.lane<2>();
- cf = ep1.lane<2>() - ep0.lane<2>();
- }
- // Estimate of color-component spread in high endpoint color
- float bf = af - ep1_min;
- vfloat4 prd = (ep1 - vfloat4(cf)).swz<0, 1, 2>();
- vfloat4 pdif = prd - ep0.swz<0, 1, 2>();
- // Estimate of color-component spread in low endpoint color
- float df = hmax_s(abs(pdif));
- int b = static_cast<int>(bf);
- int c = static_cast<int>(cf);
- int d = static_cast<int>(df);
- // Determine which one of the 6 submodes is likely to be used in case of an RGBO-mode
- int rgbo_mode = 5; // 7 bits per component
- // mode 4: 8 7 6
- if (b < 32768 && c < 16384)
- {
- rgbo_mode = 4;
- }
- // mode 3: 9 6 7
- if (b < 8192 && c < 16384)
- {
- rgbo_mode = 3;
- }
- // mode 2: 10 5 8
- if (b < 2048 && c < 16384)
- {
- rgbo_mode = 2;
- }
- // mode 1: 11 6 5
- if (b < 2048 && c < 1024)
- {
- rgbo_mode = 1;
- }
- // mode 0: 11 5 7
- if (b < 1024 && c < 4096)
- {
- rgbo_mode = 0;
- }
- // Determine which one of the 9 submodes is likely to be used in case of an RGB-mode.
- int rgb_mode = 8; // 8 bits per component, except 7 bits for blue
- // mode 0: 9 7 6 7
- if (b < 16384 && c < 8192 && d < 8192)
- {
- rgb_mode = 0;
- }
- // mode 1: 9 8 6 6
- if (b < 32768 && c < 8192 && d < 4096)
- {
- rgb_mode = 1;
- }
- // mode 2: 10 6 7 7
- if (b < 4096 && c < 8192 && d < 4096)
- {
- rgb_mode = 2;
- }
- // mode 3: 10 7 7 6
- if (b < 8192 && c < 8192 && d < 2048)
- {
- rgb_mode = 3;
- }
- // mode 4: 11 8 6 5
- if (b < 8192 && c < 2048 && d < 512)
- {
- rgb_mode = 4;
- }
- // mode 5: 11 6 8 6
- if (b < 2048 && c < 8192 && d < 1024)
- {
- rgb_mode = 5;
- }
- // mode 6: 12 7 7 5
- if (b < 2048 && c < 2048 && d < 256)
- {
- rgb_mode = 6;
- }
- // mode 7: 12 6 7 6
- if (b < 1024 && c < 2048 && d < 512)
- {
- rgb_mode = 7;
- }
- static const float rgbo_error_scales[6] { 4.0f, 4.0f, 16.0f, 64.0f, 256.0f, 1024.0f };
- static const float rgb_error_scales[9] { 64.0f, 64.0f, 16.0f, 16.0f, 4.0f, 4.0f, 1.0f, 1.0f, 384.0f };
- float mode7mult = rgbo_error_scales[rgbo_mode] * 0.0015f; // Empirically determined ....
- float mode11mult = rgb_error_scales[rgb_mode] * 0.010f; // Empirically determined ....
- float lum_high = hadd_rgb_s(ep1) * (1.0f / 3.0f);
- float lum_low = hadd_rgb_s(ep0) * (1.0f / 3.0f);
- float lumdif = lum_high - lum_low;
- float mode23mult = lumdif < 960 ? 4.0f : lumdif < 3968 ? 16.0f : 128.0f;
- mode23mult *= 0.0005f; // Empirically determined ....
- // Pick among the available HDR endpoint modes
- for (int i = QUANT_2; i < QUANT_16; i++)
- {
- best_error[i][3] = ERROR_CALC_DEFAULT;
- best_error[i][2] = ERROR_CALC_DEFAULT;
- best_error[i][1] = ERROR_CALC_DEFAULT;
- best_error[i][0] = ERROR_CALC_DEFAULT;
- format_of_choice[i][3] = static_cast<uint8_t>(encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA);
- format_of_choice[i][2] = FMT_HDR_RGB;
- format_of_choice[i][1] = FMT_HDR_RGB_SCALE;
- format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE;
- }
- for (int i = QUANT_16; i <= QUANT_256; i++)
- {
- // The base_quant_error should depend on the scale-factor that would be used during
- // actual encode of the color value
- float base_quant_error = baseline_quant_error[i - QUANT_6] * static_cast<float>(partition_size);
- float rgb_quantization_error = error_weight_rgbsum * base_quant_error * 2.0f;
- float alpha_quantization_error = error_weight.lane<3>() * base_quant_error * 2.0f;
- float rgba_quantization_error = rgb_quantization_error + alpha_quantization_error;
- // For 8 integers, we have two encodings: one with HDR A and another one with LDR A
- float full_hdr_rgba_error = rgba_quantization_error + rgb_range_error + alpha_range_error;
- best_error[i][3] = full_hdr_rgba_error;
- format_of_choice[i][3] = static_cast<uint8_t>(encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA);
- // For 6 integers, we have one HDR-RGB encoding
- float full_hdr_rgb_error = (rgb_quantization_error * mode11mult) + rgb_range_error + eci.alpha_drop_error;
- best_error[i][2] = full_hdr_rgb_error;
- format_of_choice[i][2] = FMT_HDR_RGB;
- // For 4 integers, we have one HDR-RGB-Scale encoding
- float hdr_rgb_scale_error = (rgb_quantization_error * mode7mult) + rgb_range_error + eci.alpha_drop_error + eci.rgb_luma_error;
- best_error[i][1] = hdr_rgb_scale_error;
- format_of_choice[i][1] = FMT_HDR_RGB_SCALE;
- // For 2 integers, we assume luminance-with-large-range
- float hdr_luminance_error = (rgb_quantization_error * mode23mult) + rgb_range_error + eci.alpha_drop_error + eci.luminance_error;
- best_error[i][0] = hdr_luminance_error;
- format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE;
- }
- }
- else
- {
- for (int i = QUANT_2; i < QUANT_6; i++)
- {
- best_error[i][3] = ERROR_CALC_DEFAULT;
- best_error[i][2] = ERROR_CALC_DEFAULT;
- best_error[i][1] = ERROR_CALC_DEFAULT;
- best_error[i][0] = ERROR_CALC_DEFAULT;
- format_of_choice[i][3] = FMT_RGBA;
- format_of_choice[i][2] = FMT_RGB;
- format_of_choice[i][1] = FMT_RGB_SCALE;
- format_of_choice[i][0] = FMT_LUMINANCE;
- }
- float base_quant_error_rgb = error_weight_rgbsum * static_cast<float>(partition_size);
- float base_quant_error_a = error_weight.lane<3>() * static_cast<float>(partition_size);
- float base_quant_error_rgba = base_quant_error_rgb + base_quant_error_a;
- float error_scale_bc_rgba = eci.can_blue_contract ? 0.625f : 1.0f;
- float error_scale_oe_rgba = eci.can_offset_encode ? 0.5f : 1.0f;
- float error_scale_bc_rgb = eci.can_blue_contract ? 0.5f : 1.0f;
- float error_scale_oe_rgb = eci.can_offset_encode ? 0.25f : 1.0f;
- // Pick among the available LDR endpoint modes
- for (int i = QUANT_6; i <= QUANT_256; i++)
- {
- // Offset encoding not possible at higher quant levels
- if (i >= QUANT_192)
- {
- error_scale_oe_rgba = 1.0f;
- error_scale_oe_rgb = 1.0f;
- }
- float base_quant_error = baseline_quant_error[i - QUANT_6];
- float quant_error_rgb = base_quant_error_rgb * base_quant_error;
- float quant_error_rgba = base_quant_error_rgba * base_quant_error;
- // 8 integers can encode as RGBA+RGBA
- float full_ldr_rgba_error = quant_error_rgba
- * error_scale_bc_rgba
- * error_scale_oe_rgba
- + rgb_range_error
- + alpha_range_error;
- best_error[i][3] = full_ldr_rgba_error;
- format_of_choice[i][3] = FMT_RGBA;
- // 6 integers can encode as RGB+RGB or RGBS+AA
- float full_ldr_rgb_error = quant_error_rgb
- * error_scale_bc_rgb
- * error_scale_oe_rgb
- + rgb_range_error
- + eci.alpha_drop_error;
- float rgbs_alpha_error = quant_error_rgba
- + eci.rgb_scale_error
- + rgb_range_error
- + alpha_range_error;
- if (rgbs_alpha_error < full_ldr_rgb_error)
- {
- best_error[i][2] = rgbs_alpha_error;
- format_of_choice[i][2] = FMT_RGB_SCALE_ALPHA;
- }
- else
- {
- best_error[i][2] = full_ldr_rgb_error;
- format_of_choice[i][2] = FMT_RGB;
- }
- // 4 integers can encode as RGBS or LA+LA
- float ldr_rgbs_error = quant_error_rgb
- + rgb_range_error
- + eci.alpha_drop_error
- + eci.rgb_scale_error;
- float lum_alpha_error = quant_error_rgba
- + rgb_range_error
- + alpha_range_error
- + eci.luminance_error;
- if (ldr_rgbs_error < lum_alpha_error)
- {
- best_error[i][1] = ldr_rgbs_error;
- format_of_choice[i][1] = FMT_RGB_SCALE;
- }
- else
- {
- best_error[i][1] = lum_alpha_error;
- format_of_choice[i][1] = FMT_LUMINANCE_ALPHA;
- }
- // 2 integers can encode as L+L
- float luminance_error = quant_error_rgb
- + rgb_range_error
- + eci.alpha_drop_error
- + eci.luminance_error;
- best_error[i][0] = luminance_error;
- format_of_choice[i][0] = FMT_LUMINANCE;
- }
- }
- }
- /**
- * @brief For one partition compute the best format and quantization for a given bit count.
- *
- * @param best_combined_error The best error for each quant level and integer count.
- * @param best_combined_format The best format for each quant level and integer count.
- * @param bits_available The number of bits available for encoding.
- * @param[out] best_quant_level The output best color quant level.
- * @param[out] best_format The output best color format.
- *
- * @return The output error for the best pairing.
- */
- static float one_partition_find_best_combination_for_bitcount(
- const float best_combined_error[21][4],
- const uint8_t best_combined_format[21][4],
- int bits_available,
- uint8_t& best_quant_level,
- uint8_t& best_format
- ) {
- int best_integer_count = 0;
- float best_integer_count_error = ERROR_CALC_DEFAULT;
- for (int integer_count = 1; integer_count <= 4; integer_count++)
- {
- // Compute the quantization level for a given number of integers and a given number of bits
- int quant_level = quant_mode_table[integer_count][bits_available];
- // Don't have enough bits to represent a given endpoint format at all!
- if (quant_level < QUANT_6)
- {
- continue;
- }
- float integer_count_error = best_combined_error[quant_level][integer_count - 1];
- if (integer_count_error < best_integer_count_error)
- {
- best_integer_count_error = integer_count_error;
- best_integer_count = integer_count - 1;
- }
- }
- int ql = quant_mode_table[best_integer_count + 1][bits_available];
- best_quant_level = static_cast<uint8_t>(ql);
- best_format = FMT_LUMINANCE;
- if (ql >= QUANT_6)
- {
- best_format = best_combined_format[ql][best_integer_count];
- }
- return best_integer_count_error;
- }
- /**
- * @brief For 2 partitions compute the best format combinations for every pair of quant mode and integer count.
- *
- * @param best_error The best error for a single endpoint quant level and integer count.
- * @param best_format The best format for a single endpoint quant level and integer count.
- * @param[out] best_combined_error The best combined error pairings for the 2 partitions.
- * @param[out] best_combined_format The best combined format pairings for the 2 partitions.
- */
- static void two_partitions_find_best_combination_for_every_quantization_and_integer_count(
- const float best_error[2][21][4], // indexed by (partition, quant-level, integer-pair-count-minus-1)
- const uint8_t best_format[2][21][4],
- float best_combined_error[21][7], // indexed by (quant-level, integer-pair-count-minus-2)
- uint8_t best_combined_format[21][7][2]
- ) {
- for (int i = QUANT_2; i <= QUANT_256; i++)
- {
- for (int j = 0; j < 7; j++)
- {
- best_combined_error[i][j] = ERROR_CALC_DEFAULT;
- }
- }
- for (int quant = QUANT_6; quant <= QUANT_256; quant++)
- {
- for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair
- {
- for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair
- {
- int low2 = astc::min(i, j);
- int high2 = astc::max(i, j);
- if ((high2 - low2) > 1)
- {
- continue;
- }
- int intcnt = i + j;
- float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j], 1e10f);
- if (errorterm <= best_combined_error[quant][intcnt])
- {
- best_combined_error[quant][intcnt] = errorterm;
- best_combined_format[quant][intcnt][0] = best_format[0][quant][i];
- best_combined_format[quant][intcnt][1] = best_format[1][quant][j];
- }
- }
- }
- }
- }
- /**
- * @brief For 2 partitions compute the best format and quantization for a given bit count.
- *
- * @param best_combined_error The best error for each quant level and integer count.
- * @param best_combined_format The best format for each quant level and integer count.
- * @param bits_available The number of bits available for encoding.
- * @param[out] best_quant_level The output best color quant level.
- * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available.
- * @param[out] best_formats The output best color formats.
- *
- * @return The output error for the best pairing.
- */
- static float two_partitions_find_best_combination_for_bitcount(
- float best_combined_error[21][7],
- uint8_t best_combined_format[21][7][2],
- int bits_available,
- uint8_t& best_quant_level,
- uint8_t& best_quant_level_mod,
- uint8_t* best_formats
- ) {
- int best_integer_count = 0;
- float best_integer_count_error = ERROR_CALC_DEFAULT;
- for (int integer_count = 2; integer_count <= 8; integer_count++)
- {
- // Compute the quantization level for a given number of integers and a given number of bits
- int quant_level = quant_mode_table[integer_count][bits_available];
- // Don't have enough bits to represent a given endpoint format at all!
- if (quant_level < QUANT_6)
- {
- break;
- }
- float integer_count_error = best_combined_error[quant_level][integer_count - 2];
- if (integer_count_error < best_integer_count_error)
- {
- best_integer_count_error = integer_count_error;
- best_integer_count = integer_count;
- }
- }
- int ql = quant_mode_table[best_integer_count][bits_available];
- int ql_mod = quant_mode_table[best_integer_count][bits_available + 2];
- best_quant_level = static_cast<uint8_t>(ql);
- best_quant_level_mod = static_cast<uint8_t>(ql_mod);
- if (ql >= QUANT_6)
- {
- for (int i = 0; i < 2; i++)
- {
- best_formats[i] = best_combined_format[ql][best_integer_count - 2][i];
- }
- }
- else
- {
- for (int i = 0; i < 2; i++)
- {
- best_formats[i] = FMT_LUMINANCE;
- }
- }
- return best_integer_count_error;
- }
- /**
- * @brief For 3 partitions compute the best format combinations for every pair of quant mode and integer count.
- *
- * @param best_error The best error for a single endpoint quant level and integer count.
- * @param best_format The best format for a single endpoint quant level and integer count.
- * @param[out] best_combined_error The best combined error pairings for the 3 partitions.
- * @param[out] best_combined_format The best combined format pairings for the 3 partitions.
- */
- static void three_partitions_find_best_combination_for_every_quantization_and_integer_count(
- const float best_error[3][21][4], // indexed by (partition, quant-level, integer-count)
- const uint8_t best_format[3][21][4],
- float best_combined_error[21][10],
- uint8_t best_combined_format[21][10][3]
- ) {
- for (int i = QUANT_2; i <= QUANT_256; i++)
- {
- for (int j = 0; j < 10; j++)
- {
- best_combined_error[i][j] = ERROR_CALC_DEFAULT;
- }
- }
- for (int quant = QUANT_6; quant <= QUANT_256; quant++)
- {
- for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair
- {
- for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair
- {
- int low2 = astc::min(i, j);
- int high2 = astc::max(i, j);
- if ((high2 - low2) > 1)
- {
- continue;
- }
- for (int k = 0; k < 4; k++) // integer-count for third endpoint-pair
- {
- int low3 = astc::min(k, low2);
- int high3 = astc::max(k, high2);
- if ((high3 - low3) > 1)
- {
- continue;
- }
- int intcnt = i + j + k;
- float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k], 1e10f);
- if (errorterm <= best_combined_error[quant][intcnt])
- {
- best_combined_error[quant][intcnt] = errorterm;
- best_combined_format[quant][intcnt][0] = best_format[0][quant][i];
- best_combined_format[quant][intcnt][1] = best_format[1][quant][j];
- best_combined_format[quant][intcnt][2] = best_format[2][quant][k];
- }
- }
- }
- }
- }
- }
- /**
- * @brief For 3 partitions compute the best format and quantization for a given bit count.
- *
- * @param best_combined_error The best error for each quant level and integer count.
- * @param best_combined_format The best format for each quant level and integer count.
- * @param bits_available The number of bits available for encoding.
- * @param[out] best_quant_level The output best color quant level.
- * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available.
- * @param[out] best_formats The output best color formats.
- *
- * @return The output error for the best pairing.
- */
- static float three_partitions_find_best_combination_for_bitcount(
- const float best_combined_error[21][10],
- const uint8_t best_combined_format[21][10][3],
- int bits_available,
- uint8_t& best_quant_level,
- uint8_t& best_quant_level_mod,
- uint8_t* best_formats
- ) {
- int best_integer_count = 0;
- float best_integer_count_error = ERROR_CALC_DEFAULT;
- for (int integer_count = 3; integer_count <= 9; integer_count++)
- {
- // Compute the quantization level for a given number of integers and a given number of bits
- int quant_level = quant_mode_table[integer_count][bits_available];
- // Don't have enough bits to represent a given endpoint format at all!
- if (quant_level < QUANT_6)
- {
- break;
- }
- float integer_count_error = best_combined_error[quant_level][integer_count - 3];
- if (integer_count_error < best_integer_count_error)
- {
- best_integer_count_error = integer_count_error;
- best_integer_count = integer_count;
- }
- }
- int ql = quant_mode_table[best_integer_count][bits_available];
- int ql_mod = quant_mode_table[best_integer_count][bits_available + 5];
- best_quant_level = static_cast<uint8_t>(ql);
- best_quant_level_mod = static_cast<uint8_t>(ql_mod);
- if (ql >= QUANT_6)
- {
- for (int i = 0; i < 3; i++)
- {
- best_formats[i] = best_combined_format[ql][best_integer_count - 3][i];
- }
- }
- else
- {
- for (int i = 0; i < 3; i++)
- {
- best_formats[i] = FMT_LUMINANCE;
- }
- }
- return best_integer_count_error;
- }
- /**
- * @brief For 4 partitions compute the best format combinations for every pair of quant mode and integer count.
- *
- * @param best_error The best error for a single endpoint quant level and integer count.
- * @param best_format The best format for a single endpoint quant level and integer count.
- * @param[out] best_combined_error The best combined error pairings for the 4 partitions.
- * @param[out] best_combined_format The best combined format pairings for the 4 partitions.
- */
- static void four_partitions_find_best_combination_for_every_quantization_and_integer_count(
- const float best_error[4][21][4], // indexed by (partition, quant-level, integer-count)
- const uint8_t best_format[4][21][4],
- float best_combined_error[21][13],
- uint8_t best_combined_format[21][13][4]
- ) {
- for (int i = QUANT_2; i <= QUANT_256; i++)
- {
- for (int j = 0; j < 13; j++)
- {
- best_combined_error[i][j] = ERROR_CALC_DEFAULT;
- }
- }
- for (int quant = QUANT_6; quant <= QUANT_256; quant++)
- {
- for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair
- {
- for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair
- {
- int low2 = astc::min(i, j);
- int high2 = astc::max(i, j);
- if ((high2 - low2) > 1)
- {
- continue;
- }
- for (int k = 0; k < 4; k++) // integer-count for third endpoint-pair
- {
- int low3 = astc::min(k, low2);
- int high3 = astc::max(k, high2);
- if ((high3 - low3) > 1)
- {
- continue;
- }
- for (int l = 0; l < 4; l++) // integer-count for fourth endpoint-pair
- {
- int low4 = astc::min(l, low3);
- int high4 = astc::max(l, high3);
- if ((high4 - low4) > 1)
- {
- continue;
- }
- int intcnt = i + j + k + l;
- float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k] + best_error[3][quant][l], 1e10f);
- if (errorterm <= best_combined_error[quant][intcnt])
- {
- best_combined_error[quant][intcnt] = errorterm;
- best_combined_format[quant][intcnt][0] = best_format[0][quant][i];
- best_combined_format[quant][intcnt][1] = best_format[1][quant][j];
- best_combined_format[quant][intcnt][2] = best_format[2][quant][k];
- best_combined_format[quant][intcnt][3] = best_format[3][quant][l];
- }
- }
- }
- }
- }
- }
- }
- /**
- * @brief For 4 partitions compute the best format and quantization for a given bit count.
- *
- * @param best_combined_error The best error for each quant level and integer count.
- * @param best_combined_format The best format for each quant level and integer count.
- * @param bits_available The number of bits available for encoding.
- * @param[out] best_quant_level The output best color quant level.
- * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available.
- * @param[out] best_formats The output best color formats.
- *
- * @return best_error The output error for the best pairing.
- */
- static float four_partitions_find_best_combination_for_bitcount(
- const float best_combined_error[21][13],
- const uint8_t best_combined_format[21][13][4],
- int bits_available,
- uint8_t& best_quant_level,
- uint8_t& best_quant_level_mod,
- uint8_t* best_formats
- ) {
- int best_integer_count = 0;
- float best_integer_count_error = ERROR_CALC_DEFAULT;
- for (int integer_count = 4; integer_count <= 9; integer_count++)
- {
- // Compute the quantization level for a given number of integers and a given number of bits
- int quant_level = quant_mode_table[integer_count][bits_available];
- // Don't have enough bits to represent a given endpoint format at all!
- if (quant_level < QUANT_6)
- {
- break;
- }
- float integer_count_error = best_combined_error[quant_level][integer_count - 4];
- if (integer_count_error < best_integer_count_error)
- {
- best_integer_count_error = integer_count_error;
- best_integer_count = integer_count;
- }
- }
- int ql = quant_mode_table[best_integer_count][bits_available];
- int ql_mod = quant_mode_table[best_integer_count][bits_available + 8];
- best_quant_level = static_cast<uint8_t>(ql);
- best_quant_level_mod = static_cast<uint8_t>(ql_mod);
- if (ql >= QUANT_6)
- {
- for (int i = 0; i < 4; i++)
- {
- best_formats[i] = best_combined_format[ql][best_integer_count - 4][i];
- }
- }
- else
- {
- for (int i = 0; i < 4; i++)
- {
- best_formats[i] = FMT_LUMINANCE;
- }
- }
- return best_integer_count_error;
- }
- /* See header for documentation. */
- unsigned int compute_ideal_endpoint_formats(
- const partition_info& pi,
- const image_block& blk,
- const endpoints& ep,
- // bitcounts and errors computed for the various quantization methods
- const int8_t* qwt_bitcounts,
- const float* qwt_errors,
- unsigned int tune_candidate_limit,
- unsigned int start_block_mode,
- unsigned int end_block_mode,
- // output data
- uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS],
- int block_mode[TUNE_MAX_TRIAL_CANDIDATES],
- quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES],
- quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES],
- compression_working_buffers& tmpbuf
- ) {
- int partition_count = pi.partition_count;
- promise(partition_count > 0);
- bool encode_hdr_rgb = static_cast<bool>(blk.rgb_lns[0]);
- bool encode_hdr_alpha = static_cast<bool>(blk.alpha_lns[0]);
- // Compute the errors that result from various encoding choices (such as using luminance instead
- // of RGB, discarding Alpha, using RGB-scale in place of two separate RGB endpoints and so on)
- encoding_choice_errors eci[BLOCK_MAX_PARTITIONS];
- compute_encoding_choice_errors(blk, pi, ep, eci);
- float best_error[BLOCK_MAX_PARTITIONS][21][4];
- uint8_t format_of_choice[BLOCK_MAX_PARTITIONS][21][4];
- for (int i = 0; i < partition_count; i++)
- {
- compute_color_error_for_every_integer_count_and_quant_level(
- encode_hdr_rgb, encode_hdr_alpha, i,
- pi, eci[i], ep, blk.channel_weight, best_error[i],
- format_of_choice[i]);
- }
- float* errors_of_best_combination = tmpbuf.errors_of_best_combination;
- uint8_t* best_quant_levels = tmpbuf.best_quant_levels;
- uint8_t* best_quant_levels_mod = tmpbuf.best_quant_levels_mod;
- uint8_t (&best_ep_formats)[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS] = tmpbuf.best_ep_formats;
- // Ensure that the first iteration understep contains data that will never be picked
- vfloat clear_error(ERROR_CALC_DEFAULT);
- vint clear_quant(0);
- unsigned int packed_start_block_mode = round_down_to_simd_multiple_vla(start_block_mode);
- storea(clear_error, errors_of_best_combination + packed_start_block_mode);
- store_nbytes(clear_quant, best_quant_levels + packed_start_block_mode);
- store_nbytes(clear_quant, best_quant_levels_mod + packed_start_block_mode);
- // Ensure that last iteration overstep contains data that will never be picked
- unsigned int packed_end_block_mode = round_down_to_simd_multiple_vla(end_block_mode - 1);
- storea(clear_error, errors_of_best_combination + packed_end_block_mode);
- store_nbytes(clear_quant, best_quant_levels + packed_end_block_mode);
- store_nbytes(clear_quant, best_quant_levels_mod + packed_end_block_mode);
- // Track a scalar best to avoid expensive search at least once ...
- float error_of_best_combination = ERROR_CALC_DEFAULT;
- int index_of_best_combination = -1;
- // The block contains 1 partition
- if (partition_count == 1)
- {
- for (unsigned int i = start_block_mode; i < end_block_mode; i++)
- {
- if (qwt_errors[i] >= ERROR_CALC_DEFAULT)
- {
- errors_of_best_combination[i] = ERROR_CALC_DEFAULT;
- continue;
- }
- float error_of_best = one_partition_find_best_combination_for_bitcount(
- best_error[0], format_of_choice[0], qwt_bitcounts[i],
- best_quant_levels[i], best_ep_formats[i][0]);
- float total_error = error_of_best + qwt_errors[i];
- errors_of_best_combination[i] = total_error;
- best_quant_levels_mod[i] = best_quant_levels[i];
- if (total_error < error_of_best_combination)
- {
- error_of_best_combination = total_error;
- index_of_best_combination = i;
- }
- }
- }
- // The block contains 2 partitions
- else if (partition_count == 2)
- {
- float combined_best_error[21][7];
- uint8_t formats_of_choice[21][7][2];
- two_partitions_find_best_combination_for_every_quantization_and_integer_count(
- best_error, format_of_choice, combined_best_error, formats_of_choice);
- assert(start_block_mode == 0);
- for (unsigned int i = 0; i < end_block_mode; i++)
- {
- if (qwt_errors[i] >= ERROR_CALC_DEFAULT)
- {
- errors_of_best_combination[i] = ERROR_CALC_DEFAULT;
- continue;
- }
- float error_of_best = two_partitions_find_best_combination_for_bitcount(
- combined_best_error, formats_of_choice, qwt_bitcounts[i],
- best_quant_levels[i], best_quant_levels_mod[i],
- best_ep_formats[i]);
- float total_error = error_of_best + qwt_errors[i];
- errors_of_best_combination[i] = total_error;
- if (total_error < error_of_best_combination)
- {
- error_of_best_combination = total_error;
- index_of_best_combination = i;
- }
- }
- }
- // The block contains 3 partitions
- else if (partition_count == 3)
- {
- float combined_best_error[21][10];
- uint8_t formats_of_choice[21][10][3];
- three_partitions_find_best_combination_for_every_quantization_and_integer_count(
- best_error, format_of_choice, combined_best_error, formats_of_choice);
- assert(start_block_mode == 0);
- for (unsigned int i = 0; i < end_block_mode; i++)
- {
- if (qwt_errors[i] >= ERROR_CALC_DEFAULT)
- {
- errors_of_best_combination[i] = ERROR_CALC_DEFAULT;
- continue;
- }
- float error_of_best = three_partitions_find_best_combination_for_bitcount(
- combined_best_error, formats_of_choice, qwt_bitcounts[i],
- best_quant_levels[i], best_quant_levels_mod[i],
- best_ep_formats[i]);
- float total_error = error_of_best + qwt_errors[i];
- errors_of_best_combination[i] = total_error;
- if (total_error < error_of_best_combination)
- {
- error_of_best_combination = total_error;
- index_of_best_combination = i;
- }
- }
- }
- // The block contains 4 partitions
- else // if (partition_count == 4)
- {
- assert(partition_count == 4);
- float combined_best_error[21][13];
- uint8_t formats_of_choice[21][13][4];
- four_partitions_find_best_combination_for_every_quantization_and_integer_count(
- best_error, format_of_choice, combined_best_error, formats_of_choice);
- assert(start_block_mode == 0);
- for (unsigned int i = 0; i < end_block_mode; i++)
- {
- if (qwt_errors[i] >= ERROR_CALC_DEFAULT)
- {
- errors_of_best_combination[i] = ERROR_CALC_DEFAULT;
- continue;
- }
- float error_of_best = four_partitions_find_best_combination_for_bitcount(
- combined_best_error, formats_of_choice, qwt_bitcounts[i],
- best_quant_levels[i], best_quant_levels_mod[i],
- best_ep_formats[i]);
- float total_error = error_of_best + qwt_errors[i];
- errors_of_best_combination[i] = total_error;
- if (total_error < error_of_best_combination)
- {
- error_of_best_combination = total_error;
- index_of_best_combination = i;
- }
- }
- }
- int best_error_weights[TUNE_MAX_TRIAL_CANDIDATES];
- // Fast path the first result and avoid the list search for trial 0
- best_error_weights[0] = index_of_best_combination;
- if (index_of_best_combination >= 0)
- {
- errors_of_best_combination[index_of_best_combination] = ERROR_CALC_DEFAULT;
- }
- // Search the remaining results and pick the best candidate modes for trial 1+
- for (unsigned int i = 1; i < tune_candidate_limit; i++)
- {
- vint vbest_error_index(-1);
- vfloat vbest_ep_error(ERROR_CALC_DEFAULT);
- start_block_mode = round_down_to_simd_multiple_vla(start_block_mode);
- vint lane_ids = vint::lane_id() + vint(start_block_mode);
- for (unsigned int j = start_block_mode; j < end_block_mode; j += ASTCENC_SIMD_WIDTH)
- {
- vfloat err = vfloat(errors_of_best_combination + j);
- vmask mask = err < vbest_ep_error;
- vbest_ep_error = select(vbest_ep_error, err, mask);
- vbest_error_index = select(vbest_error_index, lane_ids, mask);
- lane_ids += vint(ASTCENC_SIMD_WIDTH);
- }
- // Pick best mode from the SIMD result, using lowest matching index to ensure invariance
- vmask lanes_min_error = vbest_ep_error == hmin(vbest_ep_error);
- vbest_error_index = select(vint(0x7FFFFFFF), vbest_error_index, lanes_min_error);
- vbest_error_index = hmin(vbest_error_index);
- int best_error_index = vbest_error_index.lane<0>();
- best_error_weights[i] = best_error_index;
- // Max the error for this candidate so we don't pick it again
- if (best_error_index >= 0)
- {
- errors_of_best_combination[best_error_index] = ERROR_CALC_DEFAULT;
- }
- // Early-out if no more candidates are valid
- else
- {
- break;
- }
- }
- for (unsigned int i = 0; i < tune_candidate_limit; i++)
- {
- if (best_error_weights[i] < 0)
- {
- return i;
- }
- block_mode[i] = best_error_weights[i];
- quant_level[i] = static_cast<quant_method>(best_quant_levels[best_error_weights[i]]);
- quant_level_mod[i] = static_cast<quant_method>(best_quant_levels_mod[best_error_weights[i]]);
- assert(quant_level[i] >= QUANT_6 && quant_level[i] <= QUANT_256);
- assert(quant_level_mod[i] >= QUANT_6 && quant_level_mod[i] <= QUANT_256);
- for (int j = 0; j < partition_count; j++)
- {
- partition_format_specifiers[i][j] = best_ep_formats[best_error_weights[i]][j];
- }
- }
- return tune_candidate_limit;
- }
- #endif
|