test_dictionary.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. /**************************************************************************/
  2. /* test_dictionary.h */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #ifndef TEST_DICTIONARY_H
  31. #define TEST_DICTIONARY_H
  32. #include "core/variant/dictionary.h"
  33. #include "tests/test_macros.h"
  34. namespace TestDictionary {
  35. static inline Array build_array() {
  36. return Array();
  37. }
  38. template <typename... Targs>
  39. static inline Array build_array(Variant item, Targs... Fargs) {
  40. Array a = build_array(Fargs...);
  41. a.push_front(item);
  42. return a;
  43. }
  44. static inline Dictionary build_dictionary() {
  45. return Dictionary();
  46. }
  47. template <typename... Targs>
  48. static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) {
  49. Dictionary d = build_dictionary(Fargs...);
  50. d[key] = item;
  51. return d;
  52. }
  53. TEST_CASE("[Dictionary] Assignment using bracket notation ([])") {
  54. Dictionary map;
  55. map["Hello"] = 0;
  56. CHECK(int(map["Hello"]) == 0);
  57. map["Hello"] = 3;
  58. CHECK(int(map["Hello"]) == 3);
  59. map["World!"] = 4;
  60. CHECK(int(map["World!"]) == 4);
  61. map[StringName("HelloName")] = 6;
  62. CHECK(int(map[StringName("HelloName")]) == 6);
  63. // Check that StringName key is converted to String.
  64. CHECK(int(map.find_key(6).get_type()) == Variant::STRING);
  65. map[StringName("HelloName")] = 7;
  66. CHECK(int(map[StringName("HelloName")]) == 7);
  67. // Test String and StringName are equivalent.
  68. map[StringName("Hello")] = 8;
  69. CHECK(int(map["Hello"]) == 8);
  70. map["Hello"] = 9;
  71. CHECK(int(map[StringName("Hello")]) == 9);
  72. // Test non-string keys, since keys can be of any Variant type.
  73. map[12345] = -5;
  74. CHECK(int(map[12345]) == -5);
  75. map[false] = 128;
  76. CHECK(int(map[false]) == 128);
  77. map[Vector2(10, 20)] = 30;
  78. CHECK(int(map[Vector2(10, 20)]) == 30);
  79. map[0] = 400;
  80. CHECK(int(map[0]) == 400);
  81. // Check that assigning 0 doesn't overwrite the value for `false`.
  82. CHECK(int(map[false]) == 128);
  83. }
  84. TEST_CASE("[Dictionary] get_key_lists()") {
  85. Dictionary map;
  86. List<Variant> keys;
  87. List<Variant> *ptr = &keys;
  88. map.get_key_list(ptr);
  89. CHECK(keys.is_empty());
  90. map[1] = 3;
  91. map.get_key_list(ptr);
  92. CHECK(keys.size() == 1);
  93. CHECK(int(keys[0]) == 1);
  94. map[2] = 4;
  95. map.get_key_list(ptr);
  96. CHECK(keys.size() == 3);
  97. }
  98. TEST_CASE("[Dictionary] get_key_at_index()") {
  99. Dictionary map;
  100. map[4] = 3;
  101. Variant val = map.get_key_at_index(0);
  102. CHECK(int(val) == 4);
  103. map[3] = 1;
  104. val = map.get_key_at_index(0);
  105. CHECK(int(val) == 4);
  106. val = map.get_key_at_index(1);
  107. CHECK(int(val) == 3);
  108. }
  109. TEST_CASE("[Dictionary] getptr()") {
  110. Dictionary map;
  111. map[1] = 3;
  112. Variant *key = map.getptr(1);
  113. CHECK(int(*key) == 3);
  114. key = map.getptr(2);
  115. CHECK(key == nullptr);
  116. }
  117. TEST_CASE("[Dictionary] get_valid()") {
  118. Dictionary map;
  119. map[1] = 3;
  120. Variant val = map.get_valid(1);
  121. CHECK(int(val) == 3);
  122. }
  123. TEST_CASE("[Dictionary] get()") {
  124. Dictionary map;
  125. map[1] = 3;
  126. Variant val = map.get(1, -1);
  127. CHECK(int(val) == 3);
  128. }
  129. TEST_CASE("[Dictionary] size(), empty() and clear()") {
  130. Dictionary map;
  131. CHECK(map.size() == 0);
  132. CHECK(map.is_empty());
  133. map[1] = 3;
  134. CHECK(map.size() == 1);
  135. CHECK(!map.is_empty());
  136. map.clear();
  137. CHECK(map.size() == 0);
  138. CHECK(map.is_empty());
  139. }
  140. TEST_CASE("[Dictionary] has() and has_all()") {
  141. Dictionary map;
  142. CHECK(map.has(1) == false);
  143. map[1] = 3;
  144. CHECK(map.has(1));
  145. Array keys;
  146. keys.push_back(1);
  147. CHECK(map.has_all(keys));
  148. keys.push_back(2);
  149. CHECK(map.has_all(keys) == false);
  150. }
  151. TEST_CASE("[Dictionary] keys() and values()") {
  152. Dictionary map;
  153. Array keys = map.keys();
  154. Array values = map.values();
  155. CHECK(keys.is_empty());
  156. CHECK(values.is_empty());
  157. map[1] = 3;
  158. keys = map.keys();
  159. values = map.values();
  160. CHECK(int(keys[0]) == 1);
  161. CHECK(int(values[0]) == 3);
  162. }
  163. TEST_CASE("[Dictionary] Duplicate dictionary") {
  164. // d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
  165. Dictionary k2 = build_dictionary(2, 2);
  166. Array k3 = build_array(3);
  167. Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
  168. // Deep copy
  169. Dictionary deep_d = d.duplicate(true);
  170. CHECK_MESSAGE(deep_d.id() != d.id(), "Should create a new dictionary");
  171. CHECK_MESSAGE(Dictionary(deep_d[1]).id() != Dictionary(d[1]).id(), "Should clone nested dictionary");
  172. CHECK_MESSAGE(Array(deep_d[k2]).id() != Array(d[k2]).id(), "Should clone nested array");
  173. CHECK_EQ(deep_d, d);
  174. deep_d[0] = 0;
  175. CHECK_NE(deep_d, d);
  176. deep_d.erase(0);
  177. Dictionary(deep_d[1]).operator[](0) = 0;
  178. CHECK_NE(deep_d, d);
  179. Dictionary(deep_d[1]).erase(0);
  180. CHECK_EQ(deep_d, d);
  181. // Keys should also be copied
  182. k2[0] = 0;
  183. CHECK_NE(deep_d, d);
  184. k2.erase(0);
  185. CHECK_EQ(deep_d, d);
  186. k3.push_back(0);
  187. CHECK_NE(deep_d, d);
  188. k3.pop_back();
  189. CHECK_EQ(deep_d, d);
  190. // Shallow copy
  191. Dictionary shallow_d = d.duplicate(false);
  192. CHECK_MESSAGE(shallow_d.id() != d.id(), "Should create a new array");
  193. CHECK_MESSAGE(Dictionary(shallow_d[1]).id() == Dictionary(d[1]).id(), "Should keep nested dictionary");
  194. CHECK_MESSAGE(Array(shallow_d[k2]).id() == Array(d[k2]).id(), "Should keep nested array");
  195. CHECK_EQ(shallow_d, d);
  196. shallow_d[0] = 0;
  197. CHECK_NE(shallow_d, d);
  198. shallow_d.erase(0);
  199. #if 0 // TODO: recursion in dict key currently is buggy
  200. // Keys should also be shallowed
  201. k2[0] = 0;
  202. CHECK_EQ(shallow_d, d);
  203. k2.erase(0);
  204. k3.push_back(0);
  205. CHECK_EQ(shallow_d, d);
  206. #endif
  207. }
  208. TEST_CASE("[Dictionary] Duplicate recursive dictionary") {
  209. // Self recursive
  210. Dictionary d;
  211. d[1] = d;
  212. Dictionary d_shallow = d.duplicate(false);
  213. CHECK_EQ(d, d_shallow);
  214. // Deep copy of recursive dictionary endup with recursion limit and return
  215. // an invalid result (multiple nested dictionaries), the point is we should
  216. // not end up with a segfault and an error log should be printed
  217. ERR_PRINT_OFF;
  218. d.duplicate(true);
  219. ERR_PRINT_ON;
  220. // Nested recursive
  221. Dictionary d1;
  222. Dictionary d2;
  223. d1[2] = d2;
  224. d2[1] = d1;
  225. Dictionary d1_shallow = d1.duplicate(false);
  226. CHECK_EQ(d1, d1_shallow);
  227. // Same deep copy issue as above
  228. ERR_PRINT_OFF;
  229. d1.duplicate(true);
  230. ERR_PRINT_ON;
  231. // Break the recursivity otherwise Dictionary teardown will leak memory
  232. d.clear();
  233. d1.clear();
  234. d2.clear();
  235. }
  236. #if 0 // TODO: duplicate recursion in dict key is currently buggy
  237. TEST_CASE("[Dictionary] Duplicate recursive dictionary on keys") {
  238. // Self recursive
  239. Dictionary d;
  240. d[d] = d;
  241. Dictionary d_shallow = d.duplicate(false);
  242. CHECK_EQ(d, d_shallow);
  243. // Deep copy of recursive dictionary endup with recursion limit and return
  244. // an invalid result (multiple nested dictionaries), the point is we should
  245. // not end up with a segfault and an error log should be printed
  246. ERR_PRINT_OFF;
  247. d.duplicate(true);
  248. ERR_PRINT_ON;
  249. // Nested recursive
  250. Dictionary d1;
  251. Dictionary d2;
  252. d1[d2] = d2;
  253. d2[d1] = d1;
  254. Dictionary d1_shallow = d1.duplicate(false);
  255. CHECK_EQ(d1, d1_shallow);
  256. // Same deep copy issue as above
  257. ERR_PRINT_OFF;
  258. d1.duplicate(true);
  259. ERR_PRINT_ON;
  260. // Break the recursivity otherwise Dictionary teardown will leak memory
  261. d.clear();
  262. d1.clear();
  263. d2.clear();
  264. }
  265. #endif
  266. TEST_CASE("[Dictionary] Hash dictionary") {
  267. // d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
  268. Dictionary k2 = build_dictionary(2, 2);
  269. Array k3 = build_array(3);
  270. Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
  271. uint32_t original_hash = d.hash();
  272. // Modify dict change the hash
  273. d[0] = 0;
  274. CHECK_NE(d.hash(), original_hash);
  275. d.erase(0);
  276. CHECK_EQ(d.hash(), original_hash);
  277. // Modify nested item change the hash
  278. Dictionary(d[1]).operator[](0) = 0;
  279. CHECK_NE(d.hash(), original_hash);
  280. Dictionary(d[1]).erase(0);
  281. Array(d[k2]).push_back(0);
  282. CHECK_NE(d.hash(), original_hash);
  283. Array(d[k2]).pop_back();
  284. // Modify a key change the hash
  285. k2[0] = 0;
  286. CHECK_NE(d.hash(), original_hash);
  287. k2.erase(0);
  288. CHECK_EQ(d.hash(), original_hash);
  289. k3.push_back(0);
  290. CHECK_NE(d.hash(), original_hash);
  291. k3.pop_back();
  292. CHECK_EQ(d.hash(), original_hash);
  293. // Duplication doesn't change the hash
  294. Dictionary d2 = d.duplicate(true);
  295. CHECK_EQ(d2.hash(), original_hash);
  296. }
  297. TEST_CASE("[Dictionary] Hash recursive dictionary") {
  298. Dictionary d;
  299. d[1] = d;
  300. // Hash should reach recursion limit, we just make sure this doesn't blow up
  301. ERR_PRINT_OFF;
  302. d.hash();
  303. ERR_PRINT_ON;
  304. // Break the recursivity otherwise Dictionary teardown will leak memory
  305. d.clear();
  306. }
  307. #if 0 // TODO: recursion in dict key is currently buggy
  308. TEST_CASE("[Dictionary] Hash recursive dictionary on keys") {
  309. Dictionary d;
  310. d[d] = 1;
  311. // Hash should reach recursion limit, we just make sure this doesn't blow up
  312. ERR_PRINT_OFF;
  313. d.hash();
  314. ERR_PRINT_ON;
  315. // Break the recursivity otherwise Dictionary teardown will leak memory
  316. d.clear();
  317. }
  318. #endif
  319. TEST_CASE("[Dictionary] Empty comparison") {
  320. Dictionary d1;
  321. Dictionary d2;
  322. // test both operator== and operator!=
  323. CHECK_EQ(d1, d2);
  324. CHECK_FALSE(d1 != d2);
  325. }
  326. TEST_CASE("[Dictionary] Flat comparison") {
  327. Dictionary d1 = build_dictionary(1, 1);
  328. Dictionary d2 = build_dictionary(1, 1);
  329. Dictionary other_d = build_dictionary(2, 1);
  330. // test both operator== and operator!=
  331. CHECK_EQ(d1, d1); // compare self
  332. CHECK_FALSE(d1 != d1);
  333. CHECK_EQ(d1, d2); // different equivalent arrays
  334. CHECK_FALSE(d1 != d2);
  335. CHECK_NE(d1, other_d); // different arrays with different content
  336. CHECK_FALSE(d1 == other_d);
  337. }
  338. TEST_CASE("[Dictionary] Nested dictionary comparison") {
  339. // d1 = {1: {2: {3: 4}}}
  340. Dictionary d1 = build_dictionary(1, build_dictionary(2, build_dictionary(3, 4)));
  341. Dictionary d2 = d1.duplicate(true);
  342. // other_d = {1: {2: {3: 0}}}
  343. Dictionary other_d = build_dictionary(1, build_dictionary(2, build_dictionary(3, 0)));
  344. // test both operator== and operator!=
  345. CHECK_EQ(d1, d1); // compare self
  346. CHECK_FALSE(d1 != d1);
  347. CHECK_EQ(d1, d2); // different equivalent arrays
  348. CHECK_FALSE(d1 != d2);
  349. CHECK_NE(d1, other_d); // different arrays with different content
  350. CHECK_FALSE(d1 == other_d);
  351. }
  352. TEST_CASE("[Dictionary] Nested array comparison") {
  353. // d1 = {1: [2, 3]}
  354. Dictionary d1 = build_dictionary(1, build_array(2, 3));
  355. Dictionary d2 = d1.duplicate(true);
  356. // other_d = {1: [2, 0]}
  357. Dictionary other_d = build_dictionary(1, build_array(2, 0));
  358. // test both operator== and operator!=
  359. CHECK_EQ(d1, d1); // compare self
  360. CHECK_FALSE(d1 != d1);
  361. CHECK_EQ(d1, d2); // different equivalent arrays
  362. CHECK_FALSE(d1 != d2);
  363. CHECK_NE(d1, other_d); // different arrays with different content
  364. CHECK_FALSE(d1 == other_d);
  365. }
  366. TEST_CASE("[Dictionary] Recursive comparison") {
  367. Dictionary d1;
  368. d1[1] = d1;
  369. Dictionary d2;
  370. d2[1] = d2;
  371. // Comparison should reach recursion limit
  372. ERR_PRINT_OFF;
  373. CHECK_EQ(d1, d2);
  374. CHECK_FALSE(d1 != d2);
  375. ERR_PRINT_ON;
  376. d1[2] = 2;
  377. d2[2] = 2;
  378. // Comparison should reach recursion limit
  379. ERR_PRINT_OFF;
  380. CHECK_EQ(d1, d2);
  381. CHECK_FALSE(d1 != d2);
  382. ERR_PRINT_ON;
  383. d1[3] = 3;
  384. d2[3] = 0;
  385. // Comparison should reach recursion limit
  386. ERR_PRINT_OFF;
  387. CHECK_NE(d1, d2);
  388. CHECK_FALSE(d1 == d2);
  389. ERR_PRINT_ON;
  390. // Break the recursivity otherwise Dictionary teardown will leak memory
  391. d1.clear();
  392. d2.clear();
  393. }
  394. #if 0 // TODO: recursion in dict key is currently buggy
  395. TEST_CASE("[Dictionary] Recursive comparison on keys") {
  396. Dictionary d1;
  397. // Hash computation should reach recursion limit
  398. ERR_PRINT_OFF;
  399. d1[d1] = 1;
  400. ERR_PRINT_ON;
  401. Dictionary d2;
  402. // Hash computation should reach recursion limit
  403. ERR_PRINT_OFF;
  404. d2[d2] = 1;
  405. ERR_PRINT_ON;
  406. // Comparison should reach recursion limit
  407. ERR_PRINT_OFF;
  408. CHECK_EQ(d1, d2);
  409. CHECK_FALSE(d1 != d2);
  410. ERR_PRINT_ON;
  411. d1[2] = 2;
  412. d2[2] = 2;
  413. // Comparison should reach recursion limit
  414. ERR_PRINT_OFF;
  415. CHECK_EQ(d1, d2);
  416. CHECK_FALSE(d1 != d2);
  417. ERR_PRINT_ON;
  418. d1[3] = 3;
  419. d2[3] = 0;
  420. // Comparison should reach recursion limit
  421. ERR_PRINT_OFF;
  422. CHECK_NE(d1, d2);
  423. CHECK_FALSE(d1 == d2);
  424. ERR_PRINT_ON;
  425. // Break the recursivity otherwise Dictionary teardown will leak memory
  426. d1.clear();
  427. d2.clear();
  428. }
  429. #endif
  430. TEST_CASE("[Dictionary] Recursive self comparison") {
  431. Dictionary d1;
  432. Dictionary d2;
  433. d1[1] = d2;
  434. d2[1] = d1;
  435. CHECK_EQ(d1, d1);
  436. CHECK_FALSE(d1 != d1);
  437. // Break the recursivity otherwise Dictionary teardown will leak memory
  438. d1.clear();
  439. d2.clear();
  440. }
  441. TEST_CASE("[Dictionary] Order and find") {
  442. Dictionary d;
  443. d[4] = "four";
  444. d[8] = "eight";
  445. d[12] = "twelve";
  446. d["4"] = "four";
  447. Array keys;
  448. keys.append(4);
  449. keys.append(8);
  450. keys.append(12);
  451. keys.append("4");
  452. CHECK_EQ(d.keys(), keys);
  453. CHECK_EQ(d.find_key("four"), Variant(4));
  454. CHECK_EQ(d.find_key("does not exist"), Variant());
  455. }
  456. } // namespace TestDictionary
  457. #endif // TEST_DICTIONARY_H