123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756 |
- /**************************************************************************/
- /* nav_map.cpp */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #include "nav_map.h"
- #include "nav_region.h"
- #include "rvo_agent.h"
- #include <algorithm>
- #define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
- void NavMap::set_up(Vector3 p_up) {
- up = p_up;
- regenerate_polygons = true;
- }
- void NavMap::set_cell_size(float p_cell_size) {
- cell_size = p_cell_size;
- regenerate_polygons = true;
- }
- void NavMap::set_cell_height(float p_cell_height) {
- cell_height = p_cell_height;
- regenerate_polygons = true;
- }
- void NavMap::set_edge_connection_margin(float p_edge_connection_margin) {
- edge_connection_margin = p_edge_connection_margin;
- regenerate_links = true;
- }
- gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
- const int x = static_cast<int>(Math::round(p_pos.x / cell_size));
- const int y = static_cast<int>(Math::round(p_pos.y / cell_height));
- const int z = static_cast<int>(Math::round(p_pos.z / cell_size));
- gd::PointKey p;
- p.key = 0;
- p.x = x;
- p.y = y;
- p.z = z;
- return p;
- }
- Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers) const {
- // Find the start poly and the end poly on this map.
- const gd::Polygon *begin_poly = nullptr;
- const gd::Polygon *end_poly = nullptr;
- Vector3 begin_point;
- Vector3 end_point;
- float begin_d = 1e20;
- float end_d = 1e20;
- // Find the initial poly and the end poly on this map.
- for (size_t i(0); i < polygons.size(); i++) {
- const gd::Polygon &p = polygons[i];
- // Only consider the polygon if it in a region with compatible layers.
- if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) {
- continue;
- }
- // For each face check the distance between the origin/destination
- for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
- const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
- Vector3 point = face.get_closest_point_to(p_origin);
- float distance_to_point = point.distance_to(p_origin);
- if (distance_to_point < begin_d) {
- begin_d = distance_to_point;
- begin_poly = &p;
- begin_point = point;
- }
- point = face.get_closest_point_to(p_destination);
- distance_to_point = point.distance_to(p_destination);
- if (distance_to_point < end_d) {
- end_d = distance_to_point;
- end_poly = &p;
- end_point = point;
- }
- }
- }
- // Check for trivial cases
- if (!begin_poly || !end_poly) {
- return Vector<Vector3>();
- }
- if (begin_poly == end_poly) {
- Vector<Vector3> path;
- path.resize(2);
- path.write[0] = begin_point;
- path.write[1] = end_point;
- return path;
- }
- // List of all reachable navigation polys.
- LocalVector<gd::NavigationPoly> navigation_polys;
- navigation_polys.reserve(polygons.size() * 0.75);
- // Add the start polygon to the reachable navigation polygons.
- gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly);
- begin_navigation_poly.self_id = 0;
- begin_navigation_poly.entry = begin_point;
- begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
- begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
- navigation_polys.push_back(begin_navigation_poly);
- // List of polygon IDs to visit.
- List<uint32_t> to_visit;
- to_visit.push_back(0);
- // This is an implementation of the A* algorithm.
- int least_cost_id = 0;
- int prev_least_cost_id = -1;
- bool found_route = false;
- const gd::Polygon *reachable_end = nullptr;
- float reachable_d = 1e30;
- bool is_reachable = true;
- while (true) {
- // Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
- for (size_t i = 0; i < navigation_polys[least_cost_id].poly->edges.size(); i++) {
- const gd::Edge &edge = navigation_polys[least_cost_id].poly->edges[i];
- // Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
- for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
- const gd::Edge::Connection &connection = edge.connections[connection_index];
- // Only consider the connection to another polygon if this polygon is in a region with compatible layers.
- if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
- continue;
- }
- const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
- float region_enter_cost = 0.0;
- float region_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
- if (prev_least_cost_id != -1 && !(navigation_polys[prev_least_cost_id].poly->owner->get_self() == least_cost_poly.poly->owner->get_self())) {
- region_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
- }
- prev_least_cost_id = least_cost_id;
- Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
- const Vector3 new_entry = Geometry::get_closest_point_to_segment(least_cost_poly.entry, pathway);
- const float new_distance = (least_cost_poly.entry.distance_to(new_entry) * region_travel_cost) + region_enter_cost + least_cost_poly.traveled_distance;
- int64_t already_visited_polygon_index = navigation_polys.find(gd::NavigationPoly(connection.polygon));
- if (already_visited_polygon_index != -1) {
- // Polygon already visited, check if we can reduce the travel cost.
- gd::NavigationPoly &avp = navigation_polys[already_visited_polygon_index];
- if (new_distance < avp.traveled_distance) {
- avp.back_navigation_poly_id = least_cost_id;
- avp.back_navigation_edge = connection.edge;
- avp.back_navigation_edge_pathway_start = connection.pathway_start;
- avp.back_navigation_edge_pathway_end = connection.pathway_end;
- avp.traveled_distance = new_distance;
- avp.entry = new_entry;
- }
- } else {
- // Add the neighbour polygon to the reachable ones.
- gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon);
- new_navigation_poly.self_id = navigation_polys.size();
- new_navigation_poly.back_navigation_poly_id = least_cost_id;
- new_navigation_poly.back_navigation_edge = connection.edge;
- new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start;
- new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end;
- new_navigation_poly.traveled_distance = new_distance;
- new_navigation_poly.entry = new_entry;
- navigation_polys.push_back(new_navigation_poly);
- // Add the neighbour polygon to the polygons to visit.
- to_visit.push_back(navigation_polys.size() - 1);
- }
- }
- }
- // Removes the least cost polygon from the list of polygons to visit so we can advance.
- to_visit.erase(least_cost_id);
- // When the list of polygons to visit is empty at this point it means the End Polygon is not reachable
- if (to_visit.size() == 0) {
- // Thus use the further reachable polygon
- ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
- is_reachable = false;
- if (reachable_end == nullptr) {
- // The path is not found and there is not a way out.
- break;
- }
- // Set as end point the furthest reachable point.
- end_poly = reachable_end;
- end_d = 1e20;
- for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
- Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
- Vector3 spoint = f.get_closest_point_to(p_destination);
- float dpoint = spoint.distance_to(p_destination);
- if (dpoint < end_d) {
- end_point = spoint;
- end_d = dpoint;
- }
- }
- // Reset open and navigation_polys
- gd::NavigationPoly np = navigation_polys[0];
- navigation_polys.clear();
- navigation_polys.push_back(np);
- to_visit.clear();
- to_visit.push_back(0);
- least_cost_id = 0;
- prev_least_cost_id = -1;
- reachable_end = nullptr;
- continue;
- }
- // Find the polygon with the minimum cost from the list of polygons to visit.
- least_cost_id = -1;
- float least_cost = 1e30;
- for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {
- gd::NavigationPoly *np = &navigation_polys[element->get()];
- float cost = np->traveled_distance;
- cost += (np->entry.distance_to(end_point) * np->poly->owner->get_travel_cost());
- if (cost < least_cost) {
- least_cost_id = np->self_id;
- least_cost = cost;
- }
- }
- ERR_BREAK(least_cost_id == -1);
- // Stores the further reachable end polygon, in case our goal is not reachable.
- if (is_reachable) {
- float d = navigation_polys[least_cost_id].entry.distance_to(p_destination) * navigation_polys[least_cost_id].poly->owner->get_travel_cost();
- if (reachable_d > d) {
- reachable_d = d;
- reachable_end = navigation_polys[least_cost_id].poly;
- }
- }
- // Check if we reached the end
- if (navigation_polys[least_cost_id].poly == end_poly) {
- found_route = true;
- break;
- }
- }
- // If we did not find a route, return an empty path.
- if (!found_route) {
- return Vector<Vector3>();
- }
- Vector<Vector3> path;
- // Optimize the path.
- if (p_optimize) {
- // Set the apex poly/point to the end point
- gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
- Vector3 apex_point = end_point;
- gd::NavigationPoly *left_poly = apex_poly;
- Vector3 left_portal = apex_point;
- gd::NavigationPoly *right_poly = apex_poly;
- Vector3 right_portal = apex_point;
- gd::NavigationPoly *p = apex_poly;
- path.push_back(end_point);
- while (p) {
- // Set left and right points of the pathway between polygons.
- Vector3 left = p->back_navigation_edge_pathway_start;
- Vector3 right = p->back_navigation_edge_pathway_end;
- if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) {
- SWAP(left, right);
- }
- bool skip = false;
- if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) {
- //process
- if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) {
- left_poly = p;
- left_portal = left;
- } else {
- clip_path(navigation_polys, path, apex_poly, right_portal, right_poly);
- apex_point = right_portal;
- p = right_poly;
- left_poly = p;
- apex_poly = p;
- left_portal = apex_point;
- right_portal = apex_point;
- path.push_back(apex_point);
- skip = true;
- }
- }
- if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) {
- //process
- if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) {
- right_poly = p;
- right_portal = right;
- } else {
- clip_path(navigation_polys, path, apex_poly, left_portal, left_poly);
- apex_point = left_portal;
- p = left_poly;
- right_poly = p;
- apex_poly = p;
- right_portal = apex_point;
- left_portal = apex_point;
- path.push_back(apex_point);
- }
- }
- // Go to the previous polygon.
- if (p->back_navigation_poly_id != -1) {
- p = &navigation_polys[p->back_navigation_poly_id];
- } else {
- // The end
- p = nullptr;
- }
- }
- // If the last point is not the begin point, add it to the list.
- if (path[path.size() - 1] != begin_point) {
- path.push_back(begin_point);
- }
- path.invert();
- } else {
- path.push_back(end_point);
- // Add mid points
- int np_id = least_cost_id;
- while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
- int prev = navigation_polys[np_id].back_navigation_edge;
- int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
- Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
- path.push_back(point);
- np_id = navigation_polys[np_id].back_navigation_poly_id;
- }
- path.push_back(begin_point);
- path.invert();
- }
- return path;
- }
- Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
- bool use_collision = p_use_collision;
- Vector3 closest_point;
- real_t closest_point_d = 1e20;
- for (size_t i(0); i < polygons.size(); i++) {
- const gd::Polygon &p = polygons[i];
- // For each face check the distance to the segment
- for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
- const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
- Vector3 inters;
- if (f.intersects_segment(p_from, p_to, &inters)) {
- const real_t d = closest_point_d = p_from.distance_to(inters);
- if (use_collision == false) {
- closest_point = inters;
- use_collision = true;
- closest_point_d = d;
- } else if (closest_point_d > d) {
- closest_point = inters;
- closest_point_d = d;
- }
- }
- }
- if (use_collision == false) {
- for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) {
- Vector3 a, b;
- Geometry::get_closest_points_between_segments(
- p_from,
- p_to,
- p.points[point_id].pos,
- p.points[(point_id + 1) % p.points.size()].pos,
- a,
- b);
- const real_t d = a.distance_to(b);
- if (d < closest_point_d) {
- closest_point_d = d;
- closest_point = b;
- }
- }
- }
- }
- return closest_point;
- }
- Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
- gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
- return cp.point;
- }
- Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
- gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
- return cp.normal;
- }
- RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
- gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
- return cp.owner;
- }
- gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const {
- gd::ClosestPointQueryResult result;
- real_t closest_point_ds = 1e20;
- for (size_t i(0); i < polygons.size(); i++) {
- const gd::Polygon &p = polygons[i];
- // For each face check the distance to the point
- for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
- const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
- const Vector3 inters = f.get_closest_point_to(p_point);
- const real_t ds = inters.distance_squared_to(p_point);
- if (ds < closest_point_ds) {
- result.point = inters;
- result.normal = f.get_plane().normal;
- result.owner = p.owner->get_self();
- closest_point_ds = ds;
- }
- }
- }
- return result;
- }
- void NavMap::add_region(NavRegion *p_region) {
- regions.push_back(p_region);
- regenerate_links = true;
- }
- void NavMap::remove_region(NavRegion *p_region) {
- int64_t region_index = regions.find(p_region);
- if (region_index != -1) {
- regions.remove_unordered(region_index);
- regenerate_links = true;
- }
- }
- bool NavMap::has_agent(RvoAgent *agent) const {
- return (agents.find(agent) != -1);
- }
- void NavMap::add_agent(RvoAgent *agent) {
- if (!has_agent(agent)) {
- agents.push_back(agent);
- agents_dirty = true;
- }
- }
- void NavMap::remove_agent(RvoAgent *agent) {
- remove_agent_as_controlled(agent);
- int64_t agent_index = agents.find(agent);
- if (agent_index != -1) {
- agents.remove_unordered(agent_index);
- agents_dirty = true;
- }
- }
- void NavMap::set_agent_as_controlled(RvoAgent *agent) {
- const bool exist = (controlled_agents.find(agent) != -1);
- if (!exist) {
- ERR_FAIL_COND(!has_agent(agent));
- controlled_agents.push_back(agent);
- }
- }
- void NavMap::remove_agent_as_controlled(RvoAgent *agent) {
- int64_t active_avoidance_agent_index = controlled_agents.find(agent);
- if (active_avoidance_agent_index != -1) {
- controlled_agents.remove_unordered(active_avoidance_agent_index);
- agents_dirty = true;
- }
- }
- void NavMap::sync() {
- // Check if we need to update the links.
- if (regenerate_polygons) {
- for (uint32_t r = 0; r < regions.size(); r++) {
- regions[r]->scratch_polygons();
- }
- regenerate_links = true;
- }
- for (uint32_t r = 0; r < regions.size(); r++) {
- if (regions[r]->sync()) {
- regenerate_links = true;
- }
- }
- if (regenerate_links) {
- // Remove regions connections.
- for (uint32_t r = 0; r < regions.size(); r++) {
- regions[r]->get_connections().clear();
- }
- // Resize the polygon count.
- int count = 0;
- for (uint32_t r = 0; r < regions.size(); r++) {
- count += regions[r]->get_polygons().size();
- }
- polygons.resize(count);
- // Copy all region polygons in the map.
- count = 0;
- for (uint32_t r = 0; r < regions.size(); r++) {
- const LocalVector<gd::Polygon> &polygons_source = regions[r]->get_polygons();
- for (uint32_t n = 0; n < polygons_source.size(); n++) {
- polygons[count + n] = polygons_source[n];
- }
- count += regions[r]->get_polygons().size();
- }
- // Group all edges per key.
- Map<gd::EdgeKey, Vector<gd::Edge::Connection>> connections;
- for (uint32_t poly_id = 0; poly_id < polygons.size(); poly_id++) {
- gd::Polygon &poly(polygons[poly_id]);
- for (uint32_t p = 0; p < poly.points.size(); p++) {
- int next_point = (p + 1) % poly.points.size();
- gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);
- Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *connection = connections.find(ek);
- if (!connection) {
- connections[ek] = Vector<gd::Edge::Connection>();
- }
- if (connections[ek].size() <= 1) {
- // Add the polygon/edge tuple to this key.
- gd::Edge::Connection new_connection;
- new_connection.polygon = &poly;
- new_connection.edge = p;
- new_connection.pathway_start = poly.points[p].pos;
- new_connection.pathway_end = poly.points[next_point].pos;
- connections[ek].push_back(new_connection);
- } else {
- // The edge is already connected with another edge, skip.
- ERR_PRINT_ONCE("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problems.");
- }
- }
- }
- Vector<gd::Edge::Connection> free_edges;
- for (Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *E = connections.front(); E; E = E->next()) {
- if (E->get().size() == 2) {
- // Connect edge that are shared in different polygons.
- gd::Edge::Connection &c1 = E->get().write[0];
- gd::Edge::Connection &c2 = E->get().write[1];
- c1.polygon->edges[c1.edge].connections.push_back(c2);
- c2.polygon->edges[c2.edge].connections.push_back(c1);
- // Note: The pathway_start/end are full for those connection and do not need to be modified.
- } else {
- CRASH_COND_MSG(E->get().size() != 1, vformat("Number of connection != 1. Found: %d", E->get().size()));
- free_edges.push_back(E->get()[0]);
- }
- }
- // Find the compatible near edges.
- //
- // Note:
- // Considering that the edges must be compatible (for obvious reasons)
- // to be connected, create new polygons to remove that small gap is
- // not really useful and would result in wasteful computation during
- // connection, integration and path finding.
- for (int i = 0; i < free_edges.size(); i++) {
- const gd::Edge::Connection &free_edge = free_edges[i];
- Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos;
- Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos;
- for (int j = 0; j < free_edges.size(); j++) {
- const gd::Edge::Connection &other_edge = free_edges[j];
- if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
- continue;
- }
- Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos;
- Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos;
- // Compute the projection of the opposite edge on the current one
- Vector3 edge_vector = edge_p2 - edge_p1;
- float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared());
- float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared());
- if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
- continue;
- }
- // Check if the two edges are close to each other enough and compute a pathway between the two regions.
- Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
- Vector3 other1;
- if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
- other1 = other_edge_p1;
- } else {
- other1 = other_edge_p1.linear_interpolate(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
- }
- if (other1.distance_to(self1) > edge_connection_margin) {
- continue;
- }
- Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
- Vector3 other2;
- if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
- other2 = other_edge_p2;
- } else {
- other2 = other_edge_p1.linear_interpolate(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
- }
- if (other2.distance_to(self2) > edge_connection_margin) {
- continue;
- }
- // The edges can now be connected.
- gd::Edge::Connection new_connection = other_edge;
- new_connection.pathway_start = (self1 + other1) / 2.0;
- new_connection.pathway_end = (self2 + other2) / 2.0;
- free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);
- // Add the connection to the region_connection map.
- free_edge.polygon->owner->get_connections().push_back(new_connection);
- }
- }
- // Update the update ID.
- map_update_id = (map_update_id + 1) % 9999999;
- }
- // Update agents tree.
- if (agents_dirty) {
- // cannot use LocalVector here as RVO library expects std::vector to build KdTree
- std::vector<RVO::Agent *> raw_agents;
- raw_agents.reserve(agents.size());
- for (size_t i(0); i < agents.size(); i++) {
- raw_agents.push_back(agents[i]->get_agent());
- }
- rvo.buildAgentTree(raw_agents);
- }
- regenerate_polygons = false;
- regenerate_links = false;
- agents_dirty = false;
- }
- void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) {
- (*(agent + index))->get_agent()->computeNeighbors(&rvo);
- (*(agent + index))->get_agent()->computeNewVelocity(deltatime);
- }
- void NavMap::step(real_t p_deltatime) {
- deltatime = p_deltatime;
- if (controlled_agents.size() > 0) {
- #ifndef NO_THREADS
- if (step_work_pool.get_thread_count() == 0) {
- step_work_pool.init();
- }
- step_work_pool.do_work(
- controlled_agents.size(),
- this,
- &NavMap::compute_single_step,
- controlled_agents.ptr());
- #else
- for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) {
- controlled_agents[i]->get_agent()->computeNeighbors(&rvo);
- controlled_agents[i]->get_agent()->computeNewVelocity(deltatime);
- }
- #endif // NO_THREADS
- }
- }
- void NavMap::dispatch_callbacks() {
- for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) {
- controlled_agents[i]->dispatch_callback();
- }
- }
- void NavMap::clip_path(const LocalVector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const {
- Vector3 from = path[path.size() - 1];
- if (from.is_equal_approx(p_to_point)) {
- return;
- }
- Plane cut_plane;
- cut_plane.normal = (from - p_to_point).cross(up);
- if (cut_plane.normal == Vector3()) {
- return;
- }
- cut_plane.normal.normalize();
- cut_plane.d = cut_plane.normal.dot(from);
- while (from_poly != p_to_poly) {
- Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
- Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
- ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
- from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
- if (!pathway_start.is_equal_approx(pathway_end)) {
- Vector3 inters;
- if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
- if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
- path.push_back(inters);
- }
- }
- }
- }
- }
- NavMap::NavMap() {
- }
- NavMap::~NavMap() {
- #ifndef NO_THREADS
- step_work_pool.finish();
- #endif // !NO_THREADS
- }
|