vhacdVector.inl 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. #pragma once
  2. #ifndef VHACD_VECTOR_INL
  3. #define VHACD_VECTOR_INL
  4. namespace VHACD
  5. {
  6. template <typename T>
  7. inline Vec3<T> operator*(T lhs, const Vec3<T> & rhs)
  8. {
  9. return Vec3<T>(lhs * rhs.X(), lhs * rhs.Y(), lhs * rhs.Z());
  10. }
  11. template <typename T>
  12. inline T & Vec3<T>::X()
  13. {
  14. return m_data[0];
  15. }
  16. template <typename T>
  17. inline T & Vec3<T>::Y()
  18. {
  19. return m_data[1];
  20. }
  21. template <typename T>
  22. inline T & Vec3<T>::Z()
  23. {
  24. return m_data[2];
  25. }
  26. template <typename T>
  27. inline const T & Vec3<T>::X() const
  28. {
  29. return m_data[0];
  30. }
  31. template <typename T>
  32. inline const T & Vec3<T>::Y() const
  33. {
  34. return m_data[1];
  35. }
  36. template <typename T>
  37. inline const T & Vec3<T>::Z() const
  38. {
  39. return m_data[2];
  40. }
  41. template <typename T>
  42. inline void Vec3<T>::Normalize()
  43. {
  44. T n = sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]+m_data[2]*m_data[2]);
  45. if (n != 0.0) (*this) /= n;
  46. }
  47. template <typename T>
  48. inline T Vec3<T>::GetNorm() const
  49. {
  50. return sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]+m_data[2]*m_data[2]);
  51. }
  52. template <typename T>
  53. inline void Vec3<T>::operator= (const Vec3 & rhs)
  54. {
  55. this->m_data[0] = rhs.m_data[0];
  56. this->m_data[1] = rhs.m_data[1];
  57. this->m_data[2] = rhs.m_data[2];
  58. }
  59. template <typename T>
  60. inline void Vec3<T>::operator+=(const Vec3 & rhs)
  61. {
  62. this->m_data[0] += rhs.m_data[0];
  63. this->m_data[1] += rhs.m_data[1];
  64. this->m_data[2] += rhs.m_data[2];
  65. }
  66. template <typename T>
  67. inline void Vec3<T>::operator-=(const Vec3 & rhs)
  68. {
  69. this->m_data[0] -= rhs.m_data[0];
  70. this->m_data[1] -= rhs.m_data[1];
  71. this->m_data[2] -= rhs.m_data[2];
  72. }
  73. template <typename T>
  74. inline void Vec3<T>::operator-=(T a)
  75. {
  76. this->m_data[0] -= a;
  77. this->m_data[1] -= a;
  78. this->m_data[2] -= a;
  79. }
  80. template <typename T>
  81. inline void Vec3<T>::operator+=(T a)
  82. {
  83. this->m_data[0] += a;
  84. this->m_data[1] += a;
  85. this->m_data[2] += a;
  86. }
  87. template <typename T>
  88. inline void Vec3<T>::operator/=(T a)
  89. {
  90. this->m_data[0] /= a;
  91. this->m_data[1] /= a;
  92. this->m_data[2] /= a;
  93. }
  94. template <typename T>
  95. inline void Vec3<T>::operator*=(T a)
  96. {
  97. this->m_data[0] *= a;
  98. this->m_data[1] *= a;
  99. this->m_data[2] *= a;
  100. }
  101. template <typename T>
  102. inline Vec3<T> Vec3<T>::operator^ (const Vec3<T> & rhs) const
  103. {
  104. return Vec3<T>(m_data[1] * rhs.m_data[2] - m_data[2] * rhs.m_data[1],
  105. m_data[2] * rhs.m_data[0] - m_data[0] * rhs.m_data[2],
  106. m_data[0] * rhs.m_data[1] - m_data[1] * rhs.m_data[0]);
  107. }
  108. template <typename T>
  109. inline T Vec3<T>::operator*(const Vec3<T> & rhs) const
  110. {
  111. return (m_data[0] * rhs.m_data[0] + m_data[1] * rhs.m_data[1] + m_data[2] * rhs.m_data[2]);
  112. }
  113. template <typename T>
  114. inline Vec3<T> Vec3<T>::operator+(const Vec3<T> & rhs) const
  115. {
  116. return Vec3<T>(m_data[0] + rhs.m_data[0],m_data[1] + rhs.m_data[1],m_data[2] + rhs.m_data[2]);
  117. }
  118. template <typename T>
  119. inline Vec3<T> Vec3<T>::operator-(const Vec3<T> & rhs) const
  120. {
  121. return Vec3<T>(m_data[0] - rhs.m_data[0],m_data[1] - rhs.m_data[1],m_data[2] - rhs.m_data[2]) ;
  122. }
  123. template <typename T>
  124. inline Vec3<T> Vec3<T>::operator-() const
  125. {
  126. return Vec3<T>(-m_data[0],-m_data[1],-m_data[2]) ;
  127. }
  128. template <typename T>
  129. inline Vec3<T> Vec3<T>::operator*(T rhs) const
  130. {
  131. return Vec3<T>(rhs * this->m_data[0], rhs * this->m_data[1], rhs * this->m_data[2]);
  132. }
  133. template <typename T>
  134. inline Vec3<T> Vec3<T>::operator/ (T rhs) const
  135. {
  136. return Vec3<T>(m_data[0] / rhs, m_data[1] / rhs, m_data[2] / rhs);
  137. }
  138. template <typename T>
  139. inline Vec3<T>::Vec3(T a)
  140. {
  141. m_data[0] = m_data[1] = m_data[2] = a;
  142. }
  143. template <typename T>
  144. inline Vec3<T>::Vec3(T x, T y, T z)
  145. {
  146. m_data[0] = x;
  147. m_data[1] = y;
  148. m_data[2] = z;
  149. }
  150. template <typename T>
  151. inline Vec3<T>::Vec3(const Vec3 & rhs)
  152. {
  153. m_data[0] = rhs.m_data[0];
  154. m_data[1] = rhs.m_data[1];
  155. m_data[2] = rhs.m_data[2];
  156. }
  157. template <typename T>
  158. inline Vec3<T>::~Vec3(void){};
  159. template <typename T>
  160. inline Vec3<T>::Vec3() {}
  161. template<typename T>
  162. inline const bool Colinear(const Vec3<T> & a, const Vec3<T> & b, const Vec3<T> & c)
  163. {
  164. return ((c.Z() - a.Z()) * (b.Y() - a.Y()) - (b.Z() - a.Z()) * (c.Y() - a.Y()) == 0.0 /*EPS*/) &&
  165. ((b.Z() - a.Z()) * (c.X() - a.X()) - (b.X() - a.X()) * (c.Z() - a.Z()) == 0.0 /*EPS*/) &&
  166. ((b.X() - a.X()) * (c.Y() - a.Y()) - (b.Y() - a.Y()) * (c.X() - a.X()) == 0.0 /*EPS*/);
  167. }
  168. template<typename T>
  169. inline const T ComputeVolume4(const Vec3<T> & a, const Vec3<T> & b, const Vec3<T> & c, const Vec3<T> & d)
  170. {
  171. return (a-d) * ((b-d) ^ (c-d));
  172. }
  173. template <typename T>
  174. inline bool Vec3<T>::operator<(const Vec3 & rhs) const
  175. {
  176. if (X() == rhs[0])
  177. {
  178. if (Y() == rhs[1])
  179. {
  180. return (Z()<rhs[2]);
  181. }
  182. return (Y()<rhs[1]);
  183. }
  184. return (X()<rhs[0]);
  185. }
  186. template <typename T>
  187. inline bool Vec3<T>::operator>(const Vec3 & rhs) const
  188. {
  189. if (X() == rhs[0])
  190. {
  191. if (Y() == rhs[1])
  192. {
  193. return (Z()>rhs[2]);
  194. }
  195. return (Y()>rhs[1]);
  196. }
  197. return (X()>rhs[0]);
  198. }
  199. template <typename T>
  200. inline Vec2<T> operator*(T lhs, const Vec2<T> & rhs)
  201. {
  202. return Vec2<T>(lhs * rhs.X(), lhs * rhs.Y());
  203. }
  204. template <typename T>
  205. inline T & Vec2<T>::X()
  206. {
  207. return m_data[0];
  208. }
  209. template <typename T>
  210. inline T & Vec2<T>::Y()
  211. {
  212. return m_data[1];
  213. }
  214. template <typename T>
  215. inline const T & Vec2<T>::X() const
  216. {
  217. return m_data[0];
  218. }
  219. template <typename T>
  220. inline const T & Vec2<T>::Y() const
  221. {
  222. return m_data[1];
  223. }
  224. template <typename T>
  225. inline void Vec2<T>::Normalize()
  226. {
  227. T n = sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]);
  228. if (n != 0.0) (*this) /= n;
  229. }
  230. template <typename T>
  231. inline T Vec2<T>::GetNorm() const
  232. {
  233. return sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]);
  234. }
  235. template <typename T>
  236. inline void Vec2<T>::operator= (const Vec2 & rhs)
  237. {
  238. this->m_data[0] = rhs.m_data[0];
  239. this->m_data[1] = rhs.m_data[1];
  240. }
  241. template <typename T>
  242. inline void Vec2<T>::operator+=(const Vec2 & rhs)
  243. {
  244. this->m_data[0] += rhs.m_data[0];
  245. this->m_data[1] += rhs.m_data[1];
  246. }
  247. template <typename T>
  248. inline void Vec2<T>::operator-=(const Vec2 & rhs)
  249. {
  250. this->m_data[0] -= rhs.m_data[0];
  251. this->m_data[1] -= rhs.m_data[1];
  252. }
  253. template <typename T>
  254. inline void Vec2<T>::operator-=(T a)
  255. {
  256. this->m_data[0] -= a;
  257. this->m_data[1] -= a;
  258. }
  259. template <typename T>
  260. inline void Vec2<T>::operator+=(T a)
  261. {
  262. this->m_data[0] += a;
  263. this->m_data[1] += a;
  264. }
  265. template <typename T>
  266. inline void Vec2<T>::operator/=(T a)
  267. {
  268. this->m_data[0] /= a;
  269. this->m_data[1] /= a;
  270. }
  271. template <typename T>
  272. inline void Vec2<T>::operator*=(T a)
  273. {
  274. this->m_data[0] *= a;
  275. this->m_data[1] *= a;
  276. }
  277. template <typename T>
  278. inline T Vec2<T>::operator^ (const Vec2<T> & rhs) const
  279. {
  280. return m_data[0] * rhs.m_data[1] - m_data[1] * rhs.m_data[0];
  281. }
  282. template <typename T>
  283. inline T Vec2<T>::operator*(const Vec2<T> & rhs) const
  284. {
  285. return (m_data[0] * rhs.m_data[0] + m_data[1] * rhs.m_data[1]);
  286. }
  287. template <typename T>
  288. inline Vec2<T> Vec2<T>::operator+(const Vec2<T> & rhs) const
  289. {
  290. return Vec2<T>(m_data[0] + rhs.m_data[0],m_data[1] + rhs.m_data[1]);
  291. }
  292. template <typename T>
  293. inline Vec2<T> Vec2<T>::operator-(const Vec2<T> & rhs) const
  294. {
  295. return Vec2<T>(m_data[0] - rhs.m_data[0],m_data[1] - rhs.m_data[1]);
  296. }
  297. template <typename T>
  298. inline Vec2<T> Vec2<T>::operator-() const
  299. {
  300. return Vec2<T>(-m_data[0],-m_data[1]) ;
  301. }
  302. template <typename T>
  303. inline Vec2<T> Vec2<T>::operator*(T rhs) const
  304. {
  305. return Vec2<T>(rhs * this->m_data[0], rhs * this->m_data[1]);
  306. }
  307. template <typename T>
  308. inline Vec2<T> Vec2<T>::operator/ (T rhs) const
  309. {
  310. return Vec2<T>(m_data[0] / rhs, m_data[1] / rhs);
  311. }
  312. template <typename T>
  313. inline Vec2<T>::Vec2(T a)
  314. {
  315. m_data[0] = m_data[1] = a;
  316. }
  317. template <typename T>
  318. inline Vec2<T>::Vec2(T x, T y)
  319. {
  320. m_data[0] = x;
  321. m_data[1] = y;
  322. }
  323. template <typename T>
  324. inline Vec2<T>::Vec2(const Vec2 & rhs)
  325. {
  326. m_data[0] = rhs.m_data[0];
  327. m_data[1] = rhs.m_data[1];
  328. }
  329. template <typename T>
  330. inline Vec2<T>::~Vec2(void){};
  331. template <typename T>
  332. inline Vec2<T>::Vec2() {}
  333. /*
  334. InsideTriangle decides if a point P is Inside of the triangle
  335. defined by A, B, C.
  336. */
  337. template<typename T>
  338. inline const bool InsideTriangle(const Vec2<T> & a, const Vec2<T> & b, const Vec2<T> & c, const Vec2<T> & p)
  339. {
  340. T ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
  341. T cCROSSap, bCROSScp, aCROSSbp;
  342. ax = c.X() - b.X(); ay = c.Y() - b.Y();
  343. bx = a.X() - c.X(); by = a.Y() - c.Y();
  344. cx = b.X() - a.X(); cy = b.Y() - a.Y();
  345. apx= p.X() - a.X(); apy= p.Y() - a.Y();
  346. bpx= p.X() - b.X(); bpy= p.Y() - b.Y();
  347. cpx= p.X() - c.X(); cpy= p.Y() - c.Y();
  348. aCROSSbp = ax*bpy - ay*bpx;
  349. cCROSSap = cx*apy - cy*apx;
  350. bCROSScp = bx*cpy - by*cpx;
  351. return ((aCROSSbp >= 0.0) && (bCROSScp >= 0.0) && (cCROSSap >= 0.0));
  352. }
  353. }
  354. #endif //VHACD_VECTOR_INL