1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852 |
- /*************************************************************************/
- /* Copyright (c) 2011-2021 Ivan Fratric and contributors. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "polypartition.h"
- #include <math.h>
- #include <string.h>
- #include <algorithm>
- TPPLPoly::TPPLPoly() {
- hole = false;
- numpoints = 0;
- points = NULL;
- }
- TPPLPoly::~TPPLPoly() {
- if (points) {
- delete[] points;
- }
- }
- void TPPLPoly::Clear() {
- if (points) {
- delete[] points;
- }
- hole = false;
- numpoints = 0;
- points = NULL;
- }
- void TPPLPoly::Init(long numpoints) {
- Clear();
- this->numpoints = numpoints;
- points = new TPPLPoint[numpoints];
- }
- void TPPLPoly::Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
- Init(3);
- points[0] = p1;
- points[1] = p2;
- points[2] = p3;
- }
- TPPLPoly::TPPLPoly(const TPPLPoly &src) :
- TPPLPoly() {
- hole = src.hole;
- numpoints = src.numpoints;
- if (numpoints > 0) {
- points = new TPPLPoint[numpoints];
- memcpy(points, src.points, numpoints * sizeof(TPPLPoint));
- }
- }
- TPPLPoly &TPPLPoly::operator=(const TPPLPoly &src) {
- Clear();
- hole = src.hole;
- numpoints = src.numpoints;
- if (numpoints > 0) {
- points = new TPPLPoint[numpoints];
- memcpy(points, src.points, numpoints * sizeof(TPPLPoint));
- }
- return *this;
- }
- TPPLOrientation TPPLPoly::GetOrientation() const {
- long i1, i2;
- tppl_float area = 0;
- for (i1 = 0; i1 < numpoints; i1++) {
- i2 = i1 + 1;
- if (i2 == numpoints) {
- i2 = 0;
- }
- area += points[i1].x * points[i2].y - points[i1].y * points[i2].x;
- }
- if (area > 0) {
- return TPPL_ORIENTATION_CCW;
- }
- if (area < 0) {
- return TPPL_ORIENTATION_CW;
- }
- return TPPL_ORIENTATION_NONE;
- }
- void TPPLPoly::SetOrientation(TPPLOrientation orientation) {
- TPPLOrientation polyorientation = GetOrientation();
- if (polyorientation != TPPL_ORIENTATION_NONE && polyorientation != orientation) {
- Invert();
- }
- }
- void TPPLPoly::Invert() {
- std::reverse(points, points + numpoints);
- }
- TPPLPartition::PartitionVertex::PartitionVertex() :
- previous(NULL), next(NULL) {
- }
- TPPLPoint TPPLPartition::Normalize(const TPPLPoint &p) {
- TPPLPoint r;
- tppl_float n = sqrt(p.x * p.x + p.y * p.y);
- if (n != 0) {
- r = p / n;
- } else {
- r.x = 0;
- r.y = 0;
- }
- return r;
- }
- tppl_float TPPLPartition::Distance(const TPPLPoint &p1, const TPPLPoint &p2) {
- tppl_float dx, dy;
- dx = p2.x - p1.x;
- dy = p2.y - p1.y;
- return (sqrt(dx * dx + dy * dy));
- }
- // Checks if two lines intersect.
- int TPPLPartition::Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22) {
- if ((p11.x == p21.x) && (p11.y == p21.y)) {
- return 0;
- }
- if ((p11.x == p22.x) && (p11.y == p22.y)) {
- return 0;
- }
- if ((p12.x == p21.x) && (p12.y == p21.y)) {
- return 0;
- }
- if ((p12.x == p22.x) && (p12.y == p22.y)) {
- return 0;
- }
- TPPLPoint v1ort, v2ort, v;
- tppl_float dot11, dot12, dot21, dot22;
- v1ort.x = p12.y - p11.y;
- v1ort.y = p11.x - p12.x;
- v2ort.x = p22.y - p21.y;
- v2ort.y = p21.x - p22.x;
- v = p21 - p11;
- dot21 = v.x * v1ort.x + v.y * v1ort.y;
- v = p22 - p11;
- dot22 = v.x * v1ort.x + v.y * v1ort.y;
- v = p11 - p21;
- dot11 = v.x * v2ort.x + v.y * v2ort.y;
- v = p12 - p21;
- dot12 = v.x * v2ort.x + v.y * v2ort.y;
- if (dot11 * dot12 > 0) {
- return 0;
- }
- if (dot21 * dot22 > 0) {
- return 0;
- }
- return 1;
- }
- // Removes holes from inpolys by merging them with non-holes.
- int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
- TPPLPolyList polys;
- TPPLPolyList::Element *holeiter, *polyiter, *iter, *iter2;
- long i, i2, holepointindex, polypointindex;
- TPPLPoint holepoint, polypoint, bestpolypoint;
- TPPLPoint linep1, linep2;
- TPPLPoint v1, v2;
- TPPLPoly newpoly;
- bool hasholes;
- bool pointvisible;
- bool pointfound;
- // Check for the trivial case of no holes.
- hasholes = false;
- for (iter = inpolys->front(); iter; iter = iter->next()) {
- if (iter->get().IsHole()) {
- hasholes = true;
- break;
- }
- }
- if (!hasholes) {
- for (iter = inpolys->front(); iter; iter = iter->next()) {
- outpolys->push_back(iter->get());
- }
- return 1;
- }
- polys = *inpolys;
- while (1) {
- // Find the hole point with the largest x.
- hasholes = false;
- for (iter = polys.front(); iter; iter = iter->next()) {
- if (!iter->get().IsHole()) {
- continue;
- }
- if (!hasholes) {
- hasholes = true;
- holeiter = iter;
- holepointindex = 0;
- }
- for (i = 0; i < iter->get().GetNumPoints(); i++) {
- if (iter->get().GetPoint(i).x > holeiter->get().GetPoint(holepointindex).x) {
- holeiter = iter;
- holepointindex = i;
- }
- }
- }
- if (!hasholes) {
- break;
- }
- holepoint = holeiter->get().GetPoint(holepointindex);
- pointfound = false;
- for (iter = polys.front(); iter; iter = iter->next()) {
- if (iter->get().IsHole()) {
- continue;
- }
- for (i = 0; i < iter->get().GetNumPoints(); i++) {
- if (iter->get().GetPoint(i).x <= holepoint.x) {
- continue;
- }
- if (!InCone(iter->get().GetPoint((i + iter->get().GetNumPoints() - 1) % (iter->get().GetNumPoints())),
- iter->get().GetPoint(i),
- iter->get().GetPoint((i + 1) % (iter->get().GetNumPoints())),
- holepoint)) {
- continue;
- }
- polypoint = iter->get().GetPoint(i);
- if (pointfound) {
- v1 = Normalize(polypoint - holepoint);
- v2 = Normalize(bestpolypoint - holepoint);
- if (v2.x > v1.x) {
- continue;
- }
- }
- pointvisible = true;
- for (iter2 = polys.front(); iter2; iter2 = iter2->next()) {
- if (iter2->get().IsHole()) {
- continue;
- }
- for (i2 = 0; i2 < iter2->get().GetNumPoints(); i2++) {
- linep1 = iter2->get().GetPoint(i2);
- linep2 = iter2->get().GetPoint((i2 + 1) % (iter2->get().GetNumPoints()));
- if (Intersects(holepoint, polypoint, linep1, linep2)) {
- pointvisible = false;
- break;
- }
- }
- if (!pointvisible) {
- break;
- }
- }
- if (pointvisible) {
- pointfound = true;
- bestpolypoint = polypoint;
- polyiter = iter;
- polypointindex = i;
- }
- }
- }
- if (!pointfound) {
- return 0;
- }
- newpoly.Init(holeiter->get().GetNumPoints() + polyiter->get().GetNumPoints() + 2);
- i2 = 0;
- for (i = 0; i <= polypointindex; i++) {
- newpoly[i2] = polyiter->get().GetPoint(i);
- i2++;
- }
- for (i = 0; i <= holeiter->get().GetNumPoints(); i++) {
- newpoly[i2] = holeiter->get().GetPoint((i + holepointindex) % holeiter->get().GetNumPoints());
- i2++;
- }
- for (i = polypointindex; i < polyiter->get().GetNumPoints(); i++) {
- newpoly[i2] = polyiter->get().GetPoint(i);
- i2++;
- }
- polys.erase(holeiter);
- polys.erase(polyiter);
- polys.push_back(newpoly);
- }
- for (iter = polys.front(); iter; iter = iter->next()) {
- outpolys->push_back(iter->get());
- }
- return 1;
- }
- bool TPPLPartition::IsConvex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
- tppl_float tmp;
- tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
- if (tmp > 0) {
- return 1;
- } else {
- return 0;
- }
- }
- bool TPPLPartition::IsReflex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
- tppl_float tmp;
- tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
- if (tmp < 0) {
- return 1;
- } else {
- return 0;
- }
- }
- bool TPPLPartition::IsInside(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) {
- if (IsConvex(p1, p, p2)) {
- return false;
- }
- if (IsConvex(p2, p, p3)) {
- return false;
- }
- if (IsConvex(p3, p, p1)) {
- return false;
- }
- return true;
- }
- bool TPPLPartition::InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) {
- bool convex;
- convex = IsConvex(p1, p2, p3);
- if (convex) {
- if (!IsConvex(p1, p2, p)) {
- return false;
- }
- if (!IsConvex(p2, p3, p)) {
- return false;
- }
- return true;
- } else {
- if (IsConvex(p1, p2, p)) {
- return true;
- }
- if (IsConvex(p2, p3, p)) {
- return true;
- }
- return false;
- }
- }
- bool TPPLPartition::InCone(PartitionVertex *v, TPPLPoint &p) {
- TPPLPoint p1, p2, p3;
- p1 = v->previous->p;
- p2 = v->p;
- p3 = v->next->p;
- return InCone(p1, p2, p3, p);
- }
- void TPPLPartition::UpdateVertexReflexity(PartitionVertex *v) {
- PartitionVertex *v1 = NULL, *v3 = NULL;
- v1 = v->previous;
- v3 = v->next;
- v->isConvex = !IsReflex(v1->p, v->p, v3->p);
- }
- void TPPLPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) {
- long i;
- PartitionVertex *v1 = NULL, *v3 = NULL;
- TPPLPoint vec1, vec3;
- v1 = v->previous;
- v3 = v->next;
- v->isConvex = IsConvex(v1->p, v->p, v3->p);
- vec1 = Normalize(v1->p - v->p);
- vec3 = Normalize(v3->p - v->p);
- v->angle = vec1.x * vec3.x + vec1.y * vec3.y;
- if (v->isConvex) {
- v->isEar = true;
- for (i = 0; i < numvertices; i++) {
- if ((vertices[i].p.x == v->p.x) && (vertices[i].p.y == v->p.y)) {
- continue;
- }
- if ((vertices[i].p.x == v1->p.x) && (vertices[i].p.y == v1->p.y)) {
- continue;
- }
- if ((vertices[i].p.x == v3->p.x) && (vertices[i].p.y == v3->p.y)) {
- continue;
- }
- if (IsInside(v1->p, v->p, v3->p, vertices[i].p)) {
- v->isEar = false;
- break;
- }
- }
- } else {
- v->isEar = false;
- }
- }
- // Triangulation by ear removal.
- int TPPLPartition::Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles) {
- if (!poly->Valid()) {
- return 0;
- }
- long numvertices;
- PartitionVertex *vertices = NULL;
- PartitionVertex *ear = NULL;
- TPPLPoly triangle;
- long i, j;
- bool earfound;
- if (poly->GetNumPoints() < 3) {
- return 0;
- }
- if (poly->GetNumPoints() == 3) {
- triangles->push_back(*poly);
- return 1;
- }
- numvertices = poly->GetNumPoints();
- vertices = new PartitionVertex[numvertices];
- for (i = 0; i < numvertices; i++) {
- vertices[i].isActive = true;
- vertices[i].p = poly->GetPoint(i);
- if (i == (numvertices - 1)) {
- vertices[i].next = &(vertices[0]);
- } else {
- vertices[i].next = &(vertices[i + 1]);
- }
- if (i == 0) {
- vertices[i].previous = &(vertices[numvertices - 1]);
- } else {
- vertices[i].previous = &(vertices[i - 1]);
- }
- }
- for (i = 0; i < numvertices; i++) {
- UpdateVertex(&vertices[i], vertices, numvertices);
- }
- for (i = 0; i < numvertices - 3; i++) {
- earfound = false;
- // Find the most extruded ear.
- for (j = 0; j < numvertices; j++) {
- if (!vertices[j].isActive) {
- continue;
- }
- if (!vertices[j].isEar) {
- continue;
- }
- if (!earfound) {
- earfound = true;
- ear = &(vertices[j]);
- } else {
- if (vertices[j].angle > ear->angle) {
- ear = &(vertices[j]);
- }
- }
- }
- if (!earfound) {
- delete[] vertices;
- return 0;
- }
- triangle.Triangle(ear->previous->p, ear->p, ear->next->p);
- triangles->push_back(triangle);
- ear->isActive = false;
- ear->previous->next = ear->next;
- ear->next->previous = ear->previous;
- if (i == numvertices - 4) {
- break;
- }
- UpdateVertex(ear->previous, vertices, numvertices);
- UpdateVertex(ear->next, vertices, numvertices);
- }
- for (i = 0; i < numvertices; i++) {
- if (vertices[i].isActive) {
- triangle.Triangle(vertices[i].previous->p, vertices[i].p, vertices[i].next->p);
- triangles->push_back(triangle);
- break;
- }
- }
- delete[] vertices;
- return 1;
- }
- int TPPLPartition::Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
- TPPLPolyList outpolys;
- TPPLPolyList::Element *iter;
- if (!RemoveHoles(inpolys, &outpolys)) {
- return 0;
- }
- for (iter = outpolys.front(); iter; iter = iter->next()) {
- if (!Triangulate_EC(&(iter->get()), triangles)) {
- return 0;
- }
- }
- return 1;
- }
- int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
- if (!poly->Valid()) {
- return 0;
- }
- TPPLPolyList triangles;
- TPPLPolyList::Element *iter1, *iter2;
- TPPLPoly *poly1 = NULL, *poly2 = NULL;
- TPPLPoly newpoly;
- TPPLPoint d1, d2, p1, p2, p3;
- long i11, i12, i21, i22, i13, i23, j, k;
- bool isdiagonal;
- long numreflex;
- // Check if the poly is already convex.
- numreflex = 0;
- for (i11 = 0; i11 < poly->GetNumPoints(); i11++) {
- if (i11 == 0) {
- i12 = poly->GetNumPoints() - 1;
- } else {
- i12 = i11 - 1;
- }
- if (i11 == (poly->GetNumPoints() - 1)) {
- i13 = 0;
- } else {
- i13 = i11 + 1;
- }
- if (IsReflex(poly->GetPoint(i12), poly->GetPoint(i11), poly->GetPoint(i13))) {
- numreflex = 1;
- break;
- }
- }
- if (numreflex == 0) {
- parts->push_back(*poly);
- return 1;
- }
- if (!Triangulate_EC(poly, &triangles)) {
- return 0;
- }
- for (iter1 = triangles.front(); iter1; iter1 = iter1->next()) {
- poly1 = &(iter1->get());
- for (i11 = 0; i11 < poly1->GetNumPoints(); i11++) {
- d1 = poly1->GetPoint(i11);
- i12 = (i11 + 1) % (poly1->GetNumPoints());
- d2 = poly1->GetPoint(i12);
- isdiagonal = false;
- for (iter2 = iter1; iter2; iter2 = iter2->next()) {
- if (iter1 == iter2) {
- continue;
- }
- poly2 = &(iter2->get());
- for (i21 = 0; i21 < poly2->GetNumPoints(); i21++) {
- if ((d2.x != poly2->GetPoint(i21).x) || (d2.y != poly2->GetPoint(i21).y)) {
- continue;
- }
- i22 = (i21 + 1) % (poly2->GetNumPoints());
- if ((d1.x != poly2->GetPoint(i22).x) || (d1.y != poly2->GetPoint(i22).y)) {
- continue;
- }
- isdiagonal = true;
- break;
- }
- if (isdiagonal) {
- break;
- }
- }
- if (!isdiagonal) {
- continue;
- }
- p2 = poly1->GetPoint(i11);
- if (i11 == 0) {
- i13 = poly1->GetNumPoints() - 1;
- } else {
- i13 = i11 - 1;
- }
- p1 = poly1->GetPoint(i13);
- if (i22 == (poly2->GetNumPoints() - 1)) {
- i23 = 0;
- } else {
- i23 = i22 + 1;
- }
- p3 = poly2->GetPoint(i23);
- if (!IsConvex(p1, p2, p3)) {
- continue;
- }
- p2 = poly1->GetPoint(i12);
- if (i12 == (poly1->GetNumPoints() - 1)) {
- i13 = 0;
- } else {
- i13 = i12 + 1;
- }
- p3 = poly1->GetPoint(i13);
- if (i21 == 0) {
- i23 = poly2->GetNumPoints() - 1;
- } else {
- i23 = i21 - 1;
- }
- p1 = poly2->GetPoint(i23);
- if (!IsConvex(p1, p2, p3)) {
- continue;
- }
- newpoly.Init(poly1->GetNumPoints() + poly2->GetNumPoints() - 2);
- k = 0;
- for (j = i12; j != i11; j = (j + 1) % (poly1->GetNumPoints())) {
- newpoly[k] = poly1->GetPoint(j);
- k++;
- }
- for (j = i22; j != i21; j = (j + 1) % (poly2->GetNumPoints())) {
- newpoly[k] = poly2->GetPoint(j);
- k++;
- }
- triangles.erase(iter2);
- iter1->get() = newpoly;
- poly1 = &(iter1->get());
- i11 = -1;
- continue;
- }
- }
- for (iter1 = triangles.front(); iter1; iter1 = iter1->next()) {
- parts->push_back(iter1->get());
- }
- return 1;
- }
- int TPPLPartition::ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts) {
- TPPLPolyList outpolys;
- TPPLPolyList::Element *iter;
- if (!RemoveHoles(inpolys, &outpolys)) {
- return 0;
- }
- for (iter = outpolys.front(); iter; iter = iter->next()) {
- if (!ConvexPartition_HM(&(iter->get()), parts)) {
- return 0;
- }
- }
- return 1;
- }
- // Minimum-weight polygon triangulation by dynamic programming.
- // Time complexity: O(n^3)
- // Space complexity: O(n^2)
- int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles) {
- if (!poly->Valid()) {
- return 0;
- }
- long i, j, k, gap, n;
- DPState **dpstates = NULL;
- TPPLPoint p1, p2, p3, p4;
- long bestvertex;
- tppl_float weight, minweight, d1, d2;
- Diagonal diagonal, newdiagonal;
- DiagonalList diagonals;
- TPPLPoly triangle;
- int ret = 1;
- n = poly->GetNumPoints();
- dpstates = new DPState *[n];
- for (i = 1; i < n; i++) {
- dpstates[i] = new DPState[i];
- }
- // Initialize states and visibility.
- for (i = 0; i < (n - 1); i++) {
- p1 = poly->GetPoint(i);
- for (j = i + 1; j < n; j++) {
- dpstates[j][i].visible = true;
- dpstates[j][i].weight = 0;
- dpstates[j][i].bestvertex = -1;
- if (j != (i + 1)) {
- p2 = poly->GetPoint(j);
- // Visibility check.
- if (i == 0) {
- p3 = poly->GetPoint(n - 1);
- } else {
- p3 = poly->GetPoint(i - 1);
- }
- if (i == (n - 1)) {
- p4 = poly->GetPoint(0);
- } else {
- p4 = poly->GetPoint(i + 1);
- }
- if (!InCone(p3, p1, p4, p2)) {
- dpstates[j][i].visible = false;
- continue;
- }
- if (j == 0) {
- p3 = poly->GetPoint(n - 1);
- } else {
- p3 = poly->GetPoint(j - 1);
- }
- if (j == (n - 1)) {
- p4 = poly->GetPoint(0);
- } else {
- p4 = poly->GetPoint(j + 1);
- }
- if (!InCone(p3, p2, p4, p1)) {
- dpstates[j][i].visible = false;
- continue;
- }
- for (k = 0; k < n; k++) {
- p3 = poly->GetPoint(k);
- if (k == (n - 1)) {
- p4 = poly->GetPoint(0);
- } else {
- p4 = poly->GetPoint(k + 1);
- }
- if (Intersects(p1, p2, p3, p4)) {
- dpstates[j][i].visible = false;
- break;
- }
- }
- }
- }
- }
- dpstates[n - 1][0].visible = true;
- dpstates[n - 1][0].weight = 0;
- dpstates[n - 1][0].bestvertex = -1;
- for (gap = 2; gap < n; gap++) {
- for (i = 0; i < (n - gap); i++) {
- j = i + gap;
- if (!dpstates[j][i].visible) {
- continue;
- }
- bestvertex = -1;
- for (k = (i + 1); k < j; k++) {
- if (!dpstates[k][i].visible) {
- continue;
- }
- if (!dpstates[j][k].visible) {
- continue;
- }
- if (k <= (i + 1)) {
- d1 = 0;
- } else {
- d1 = Distance(poly->GetPoint(i), poly->GetPoint(k));
- }
- if (j <= (k + 1)) {
- d2 = 0;
- } else {
- d2 = Distance(poly->GetPoint(k), poly->GetPoint(j));
- }
- weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2;
- if ((bestvertex == -1) || (weight < minweight)) {
- bestvertex = k;
- minweight = weight;
- }
- }
- if (bestvertex == -1) {
- for (i = 1; i < n; i++) {
- delete[] dpstates[i];
- }
- delete[] dpstates;
- return 0;
- }
- dpstates[j][i].bestvertex = bestvertex;
- dpstates[j][i].weight = minweight;
- }
- }
- newdiagonal.index1 = 0;
- newdiagonal.index2 = n - 1;
- diagonals.push_back(newdiagonal);
- while (!diagonals.is_empty()) {
- diagonal = diagonals.front()->get();
- diagonals.pop_front();
- bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
- if (bestvertex == -1) {
- ret = 0;
- break;
- }
- triangle.Triangle(poly->GetPoint(diagonal.index1), poly->GetPoint(bestvertex), poly->GetPoint(diagonal.index2));
- triangles->push_back(triangle);
- if (bestvertex > (diagonal.index1 + 1)) {
- newdiagonal.index1 = diagonal.index1;
- newdiagonal.index2 = bestvertex;
- diagonals.push_back(newdiagonal);
- }
- if (diagonal.index2 > (bestvertex + 1)) {
- newdiagonal.index1 = bestvertex;
- newdiagonal.index2 = diagonal.index2;
- diagonals.push_back(newdiagonal);
- }
- }
- for (i = 1; i < n; i++) {
- delete[] dpstates[i];
- }
- delete[] dpstates;
- return ret;
- }
- void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
- Diagonal newdiagonal;
- DiagonalList *pairs = NULL;
- long w2;
- w2 = dpstates[a][b].weight;
- if (w > w2) {
- return;
- }
- pairs = &(dpstates[a][b].pairs);
- newdiagonal.index1 = i;
- newdiagonal.index2 = j;
- if (w < w2) {
- pairs->clear();
- pairs->push_front(newdiagonal);
- dpstates[a][b].weight = w;
- } else {
- if ((!pairs->is_empty()) && (i <= pairs->front()->get().index1)) {
- return;
- }
- while ((!pairs->is_empty()) && (pairs->front()->get().index2 >= j)) {
- pairs->pop_front();
- }
- pairs->push_front(newdiagonal);
- }
- }
- void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
- DiagonalList *pairs = NULL;
- DiagonalList::Element *iter, *lastiter;
- long top;
- long w;
- if (!dpstates[i][j].visible) {
- return;
- }
- top = j;
- w = dpstates[i][j].weight;
- if (k - j > 1) {
- if (!dpstates[j][k].visible) {
- return;
- }
- w += dpstates[j][k].weight + 1;
- }
- if (j - i > 1) {
- pairs = &(dpstates[i][j].pairs);
- iter = pairs->back();
- lastiter = pairs->back();
- while (iter != pairs->front()) {
- iter--;
- if (!IsReflex(vertices[iter->get().index2].p, vertices[j].p, vertices[k].p)) {
- lastiter = iter;
- } else {
- break;
- }
- }
- if (lastiter == pairs->back()) {
- w++;
- } else {
- if (IsReflex(vertices[k].p, vertices[i].p, vertices[lastiter->get().index1].p)) {
- w++;
- } else {
- top = lastiter->get().index1;
- }
- }
- }
- UpdateState(i, k, w, top, j, dpstates);
- }
- void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
- DiagonalList *pairs = NULL;
- DiagonalList::Element *iter, *lastiter;
- long top;
- long w;
- if (!dpstates[j][k].visible) {
- return;
- }
- top = j;
- w = dpstates[j][k].weight;
- if (j - i > 1) {
- if (!dpstates[i][j].visible) {
- return;
- }
- w += dpstates[i][j].weight + 1;
- }
- if (k - j > 1) {
- pairs = &(dpstates[j][k].pairs);
- iter = pairs->front();
- if ((!pairs->is_empty()) && (!IsReflex(vertices[i].p, vertices[j].p, vertices[iter->get().index1].p))) {
- lastiter = iter;
- while (iter) {
- if (!IsReflex(vertices[i].p, vertices[j].p, vertices[iter->get().index1].p)) {
- lastiter = iter;
- iter = iter->next();
- } else {
- break;
- }
- }
- if (IsReflex(vertices[lastiter->get().index2].p, vertices[k].p, vertices[i].p)) {
- w++;
- } else {
- top = lastiter->get().index2;
- }
- } else {
- w++;
- }
- }
- UpdateState(i, k, w, j, top, dpstates);
- }
- int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
- if (!poly->Valid()) {
- return 0;
- }
- TPPLPoint p1, p2, p3, p4;
- PartitionVertex *vertices = NULL;
- DPState2 **dpstates = NULL;
- long i, j, k, n, gap;
- DiagonalList diagonals, diagonals2;
- Diagonal diagonal, newdiagonal;
- DiagonalList *pairs = NULL, *pairs2 = NULL;
- DiagonalList::Element *iter, *iter2;
- int ret;
- TPPLPoly newpoly;
- List<long> indices;
- List<long>::Element *iiter;
- bool ijreal, jkreal;
- n = poly->GetNumPoints();
- vertices = new PartitionVertex[n];
- dpstates = new DPState2 *[n];
- for (i = 0; i < n; i++) {
- dpstates[i] = new DPState2[n];
- }
- // Initialize vertex information.
- for (i = 0; i < n; i++) {
- vertices[i].p = poly->GetPoint(i);
- vertices[i].isActive = true;
- if (i == 0) {
- vertices[i].previous = &(vertices[n - 1]);
- } else {
- vertices[i].previous = &(vertices[i - 1]);
- }
- if (i == (poly->GetNumPoints() - 1)) {
- vertices[i].next = &(vertices[0]);
- } else {
- vertices[i].next = &(vertices[i + 1]);
- }
- }
- for (i = 1; i < n; i++) {
- UpdateVertexReflexity(&(vertices[i]));
- }
- // Initialize states and visibility.
- for (i = 0; i < (n - 1); i++) {
- p1 = poly->GetPoint(i);
- for (j = i + 1; j < n; j++) {
- dpstates[i][j].visible = true;
- if (j == i + 1) {
- dpstates[i][j].weight = 0;
- } else {
- dpstates[i][j].weight = 2147483647;
- }
- if (j != (i + 1)) {
- p2 = poly->GetPoint(j);
- // Visibility check.
- if (!InCone(&vertices[i], p2)) {
- dpstates[i][j].visible = false;
- continue;
- }
- if (!InCone(&vertices[j], p1)) {
- dpstates[i][j].visible = false;
- continue;
- }
- for (k = 0; k < n; k++) {
- p3 = poly->GetPoint(k);
- if (k == (n - 1)) {
- p4 = poly->GetPoint(0);
- } else {
- p4 = poly->GetPoint(k + 1);
- }
- if (Intersects(p1, p2, p3, p4)) {
- dpstates[i][j].visible = false;
- break;
- }
- }
- }
- }
- }
- for (i = 0; i < (n - 2); i++) {
- j = i + 2;
- if (dpstates[i][j].visible) {
- dpstates[i][j].weight = 0;
- newdiagonal.index1 = i + 1;
- newdiagonal.index2 = i + 1;
- dpstates[i][j].pairs.push_back(newdiagonal);
- }
- }
- dpstates[0][n - 1].visible = true;
- vertices[0].isConvex = false; // By convention.
- for (gap = 3; gap < n; gap++) {
- for (i = 0; i < n - gap; i++) {
- if (vertices[i].isConvex) {
- continue;
- }
- k = i + gap;
- if (dpstates[i][k].visible) {
- if (!vertices[k].isConvex) {
- for (j = i + 1; j < k; j++) {
- TypeA(i, j, k, vertices, dpstates);
- }
- } else {
- for (j = i + 1; j < (k - 1); j++) {
- if (vertices[j].isConvex) {
- continue;
- }
- TypeA(i, j, k, vertices, dpstates);
- }
- TypeA(i, k - 1, k, vertices, dpstates);
- }
- }
- }
- for (k = gap; k < n; k++) {
- if (vertices[k].isConvex) {
- continue;
- }
- i = k - gap;
- if ((vertices[i].isConvex) && (dpstates[i][k].visible)) {
- TypeB(i, i + 1, k, vertices, dpstates);
- for (j = i + 2; j < k; j++) {
- if (vertices[j].isConvex) {
- continue;
- }
- TypeB(i, j, k, vertices, dpstates);
- }
- }
- }
- }
- // Recover solution.
- ret = 1;
- newdiagonal.index1 = 0;
- newdiagonal.index2 = n - 1;
- diagonals.push_front(newdiagonal);
- while (!diagonals.is_empty()) {
- diagonal = diagonals.front()->get();
- diagonals.pop_front();
- if ((diagonal.index2 - diagonal.index1) <= 1) {
- continue;
- }
- pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
- if (pairs->is_empty()) {
- ret = 0;
- break;
- }
- if (!vertices[diagonal.index1].isConvex) {
- iter = pairs->back();
- iter--;
- j = iter->get().index2;
- newdiagonal.index1 = j;
- newdiagonal.index2 = diagonal.index2;
- diagonals.push_front(newdiagonal);
- if ((j - diagonal.index1) > 1) {
- if (iter->get().index1 != iter->get().index2) {
- pairs2 = &(dpstates[diagonal.index1][j].pairs);
- while (1) {
- if (pairs2->is_empty()) {
- ret = 0;
- break;
- }
- iter2 = pairs2->back();
- iter2--;
- if (iter->get().index1 != iter2->get().index1) {
- pairs2->pop_back();
- } else {
- break;
- }
- }
- if (ret == 0) {
- break;
- }
- }
- newdiagonal.index1 = diagonal.index1;
- newdiagonal.index2 = j;
- diagonals.push_front(newdiagonal);
- }
- } else {
- iter = pairs->front();
- j = iter->get().index1;
- newdiagonal.index1 = diagonal.index1;
- newdiagonal.index2 = j;
- diagonals.push_front(newdiagonal);
- if ((diagonal.index2 - j) > 1) {
- if (iter->get().index1 != iter->get().index2) {
- pairs2 = &(dpstates[j][diagonal.index2].pairs);
- while (1) {
- if (pairs2->is_empty()) {
- ret = 0;
- break;
- }
- iter2 = pairs2->front();
- if (iter->get().index2 != iter2->get().index2) {
- pairs2->pop_front();
- } else {
- break;
- }
- }
- if (ret == 0) {
- break;
- }
- }
- newdiagonal.index1 = j;
- newdiagonal.index2 = diagonal.index2;
- diagonals.push_front(newdiagonal);
- }
- }
- }
- if (ret == 0) {
- for (i = 0; i < n; i++) {
- delete[] dpstates[i];
- }
- delete[] dpstates;
- delete[] vertices;
- return ret;
- }
- newdiagonal.index1 = 0;
- newdiagonal.index2 = n - 1;
- diagonals.push_front(newdiagonal);
- while (!diagonals.is_empty()) {
- diagonal = diagonals.front()->get();
- diagonals.pop_front();
- if ((diagonal.index2 - diagonal.index1) <= 1) {
- continue;
- }
- indices.clear();
- diagonals2.clear();
- indices.push_back(diagonal.index1);
- indices.push_back(diagonal.index2);
- diagonals2.push_front(diagonal);
- while (!diagonals2.is_empty()) {
- diagonal = diagonals2.front()->get();
- diagonals2.pop_front();
- if ((diagonal.index2 - diagonal.index1) <= 1) {
- continue;
- }
- ijreal = true;
- jkreal = true;
- pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
- if (!vertices[diagonal.index1].isConvex) {
- iter = pairs->back();
- iter--;
- j = iter->get().index2;
- if (iter->get().index1 != iter->get().index2) {
- ijreal = false;
- }
- } else {
- iter = pairs->front();
- j = iter->get().index1;
- if (iter->get().index1 != iter->get().index2) {
- jkreal = false;
- }
- }
- newdiagonal.index1 = diagonal.index1;
- newdiagonal.index2 = j;
- if (ijreal) {
- diagonals.push_back(newdiagonal);
- } else {
- diagonals2.push_back(newdiagonal);
- }
- newdiagonal.index1 = j;
- newdiagonal.index2 = diagonal.index2;
- if (jkreal) {
- diagonals.push_back(newdiagonal);
- } else {
- diagonals2.push_back(newdiagonal);
- }
- indices.push_back(j);
- }
- //std::sort(indices.begin(), indices.end());
- indices.sort();
- newpoly.Init((long)indices.size());
- k = 0;
- for (iiter = indices.front(); iiter != indices.back(); iiter = iiter->next()) {
- newpoly[k] = vertices[iiter->get()].p;
- k++;
- }
- parts->push_back(newpoly);
- }
- for (i = 0; i < n; i++) {
- delete[] dpstates[i];
- }
- delete[] dpstates;
- delete[] vertices;
- return ret;
- }
- // Creates a monotone partition of a list of polygons that
- // can contain holes. Triangulates a set of polygons by
- // first partitioning them into monotone polygons.
- // Time complexity: O(n*log(n)), n is the number of vertices.
- // Space complexity: O(n)
- // The algorithm used here is outlined in the book
- // "Computational Geometry: Algorithms and Applications"
- // by Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
- int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys) {
- TPPLPolyList::Element *iter;
- MonotoneVertex *vertices = NULL;
- long i, numvertices, vindex, vindex2, newnumvertices, maxnumvertices;
- long polystartindex, polyendindex;
- TPPLPoly *poly = NULL;
- MonotoneVertex *v = NULL, *v2 = NULL, *vprev = NULL, *vnext = NULL;
- ScanLineEdge newedge;
- bool error = false;
- numvertices = 0;
- for (iter = inpolys->front(); iter; iter = iter->next()) {
- numvertices += iter->get().GetNumPoints();
- }
- maxnumvertices = numvertices * 3;
- vertices = new MonotoneVertex[maxnumvertices];
- newnumvertices = numvertices;
- polystartindex = 0;
- for (iter = inpolys->front(); iter; iter = iter->next()) {
- poly = &(iter->get());
- polyendindex = polystartindex + poly->GetNumPoints() - 1;
- for (i = 0; i < poly->GetNumPoints(); i++) {
- vertices[i + polystartindex].p = poly->GetPoint(i);
- if (i == 0) {
- vertices[i + polystartindex].previous = polyendindex;
- } else {
- vertices[i + polystartindex].previous = i + polystartindex - 1;
- }
- if (i == (poly->GetNumPoints() - 1)) {
- vertices[i + polystartindex].next = polystartindex;
- } else {
- vertices[i + polystartindex].next = i + polystartindex + 1;
- }
- }
- polystartindex = polyendindex + 1;
- }
- // Construct the priority queue.
- long *priority = new long[numvertices];
- for (i = 0; i < numvertices; i++) {
- priority[i] = i;
- }
- std::sort(priority, &(priority[numvertices]), VertexSorter(vertices));
- // Determine vertex types.
- TPPLVertexType *vertextypes = new TPPLVertexType[maxnumvertices];
- for (i = 0; i < numvertices; i++) {
- v = &(vertices[i]);
- vprev = &(vertices[v->previous]);
- vnext = &(vertices[v->next]);
- if (Below(vprev->p, v->p) && Below(vnext->p, v->p)) {
- if (IsConvex(vnext->p, vprev->p, v->p)) {
- vertextypes[i] = TPPL_VERTEXTYPE_START;
- } else {
- vertextypes[i] = TPPL_VERTEXTYPE_SPLIT;
- }
- } else if (Below(v->p, vprev->p) && Below(v->p, vnext->p)) {
- if (IsConvex(vnext->p, vprev->p, v->p)) {
- vertextypes[i] = TPPL_VERTEXTYPE_END;
- } else {
- vertextypes[i] = TPPL_VERTEXTYPE_MERGE;
- }
- } else {
- vertextypes[i] = TPPL_VERTEXTYPE_REGULAR;
- }
- }
- // Helpers.
- long *helpers = new long[maxnumvertices];
- // Binary search tree that holds edges intersecting the scanline.
- // Note that while set doesn't actually have to be implemented as
- // a tree, complexity requirements for operations are the same as
- // for the balanced binary search tree.
- RBSet<ScanLineEdge> edgeTree;
- // Store iterators to the edge tree elements.
- // This makes deleting existing edges much faster.
- RBSet<ScanLineEdge>::Element **edgeTreeIterators, *edgeIter;
- edgeTreeIterators = new RBSet<ScanLineEdge>::Element *[maxnumvertices];
- //Pair<RBSet<ScanLineEdge>::iterator, bool> edgeTreeRet;
- for (i = 0; i < numvertices; i++) {
- edgeTreeIterators[i] = nullptr;
- }
- // For each vertex.
- for (i = 0; i < numvertices; i++) {
- vindex = priority[i];
- v = &(vertices[vindex]);
- vindex2 = vindex;
- v2 = v;
- // Depending on the vertex type, do the appropriate action.
- // Comments in the following sections are copied from
- // "Computational Geometry: Algorithms and Applications".
- // Notation: e_i = e subscript i, v_i = v subscript i, etc.
- switch (vertextypes[vindex]) {
- case TPPL_VERTEXTYPE_START:
- // Insert e_i in T and set helper(e_i) to v_i.
- newedge.p1 = v->p;
- newedge.p2 = vertices[v->next].p;
- newedge.index = vindex;
- //edgeTreeRet = edgeTree.insert(newedge);
- //edgeTreeIterators[vindex] = edgeTreeRet.first;
- edgeTreeIterators[vindex] = edgeTree.insert(newedge);
- helpers[vindex] = vindex;
- break;
- case TPPL_VERTEXTYPE_END:
- if (edgeTreeIterators[v->previous] == edgeTree.back()) {
- error = true;
- break;
- }
- // If helper(e_i - 1) is a merge vertex
- if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting vi to helper(e_i - 1) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- }
- // Delete e_i - 1 from T
- edgeTree.erase(edgeTreeIterators[v->previous]);
- break;
- case TPPL_VERTEXTYPE_SPLIT:
- // Search in T to find the edge e_j directly left of v_i.
- newedge.p1 = v->p;
- newedge.p2 = v->p;
- edgeIter = edgeTree.lower_bound(newedge);
- if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
- error = true;
- break;
- }
- edgeIter--;
- // Insert the diagonal connecting vi to helper(e_j) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[edgeIter->get().index],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- vindex2 = newnumvertices - 2;
- v2 = &(vertices[vindex2]);
- // helper(e_j) in v_i.
- helpers[edgeIter->get().index] = vindex;
- // Insert e_i in T and set helper(e_i) to v_i.
- newedge.p1 = v2->p;
- newedge.p2 = vertices[v2->next].p;
- newedge.index = vindex2;
- //edgeTreeRet = edgeTree.insert(newedge);
- //edgeTreeIterators[vindex2] = edgeTreeRet.first;
- edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
- helpers[vindex2] = vindex2;
- break;
- case TPPL_VERTEXTYPE_MERGE:
- if (edgeTreeIterators[v->previous] == edgeTree.back()) {
- error = true;
- break;
- }
- // if helper(e_i - 1) is a merge vertex
- if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting vi to helper(e_i - 1) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- vindex2 = newnumvertices - 2;
- v2 = &(vertices[vindex2]);
- }
- // Delete e_i - 1 from T.
- edgeTree.erase(edgeTreeIterators[v->previous]);
- // Search in T to find the edge e_j directly left of v_i.
- newedge.p1 = v->p;
- newedge.p2 = v->p;
- edgeIter = edgeTree.lower_bound(newedge);
- if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
- error = true;
- break;
- }
- edgeIter--;
- // If helper(e_j) is a merge vertex.
- if (vertextypes[helpers[edgeIter->get().index]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting v_i to helper(e_j) in D.
- AddDiagonal(vertices, &newnumvertices, vindex2, helpers[edgeIter->get().index],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- }
- // helper(e_j) <- v_i
- helpers[edgeIter->get().index] = vindex2;
- break;
- case TPPL_VERTEXTYPE_REGULAR:
- // If the interior of P lies to the right of v_i.
- if (Below(v->p, vertices[v->previous].p)) {
- if (edgeTreeIterators[v->previous] == edgeTree.back()) {
- error = true;
- break;
- }
- // If helper(e_i - 1) is a merge vertex.
- if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting v_i to helper(e_i - 1) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- vindex2 = newnumvertices - 2;
- v2 = &(vertices[vindex2]);
- }
- // Delete e_i - 1 from T.
- edgeTree.erase(edgeTreeIterators[v->previous]);
- // Insert e_i in T and set helper(e_i) to v_i.
- newedge.p1 = v2->p;
- newedge.p2 = vertices[v2->next].p;
- newedge.index = vindex2;
- //edgeTreeRet = edgeTree.insert(newedge);
- //edgeTreeIterators[vindex2] = edgeTreeRet.first;
- edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
- helpers[vindex2] = vindex;
- } else {
- // Search in T to find the edge e_j directly left of v_i.
- newedge.p1 = v->p;
- newedge.p2 = v->p;
- edgeIter = edgeTree.lower_bound(newedge);
- if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
- error = true;
- break;
- }
- edgeIter = edgeIter->prev();
- // If helper(e_j) is a merge vertex.
- if (vertextypes[helpers[edgeIter->get().index]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting v_i to helper(e_j) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[edgeIter->get().index],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- }
- // helper(e_j) <- v_i.
- helpers[edgeIter->get().index] = vindex;
- }
- break;
- }
- if (error)
- break;
- }
- char *used = new char[newnumvertices];
- memset(used, 0, newnumvertices * sizeof(char));
- if (!error) {
- // Return result.
- long size;
- TPPLPoly mpoly;
- for (i = 0; i < newnumvertices; i++) {
- if (used[i]) {
- continue;
- }
- v = &(vertices[i]);
- vnext = &(vertices[v->next]);
- size = 1;
- while (vnext != v) {
- vnext = &(vertices[vnext->next]);
- size++;
- }
- mpoly.Init(size);
- v = &(vertices[i]);
- mpoly[0] = v->p;
- vnext = &(vertices[v->next]);
- size = 1;
- used[i] = 1;
- used[v->next] = 1;
- while (vnext != v) {
- mpoly[size] = vnext->p;
- used[vnext->next] = 1;
- vnext = &(vertices[vnext->next]);
- size++;
- }
- monotonePolys->push_back(mpoly);
- }
- }
- // Cleanup.
- delete[] vertices;
- delete[] priority;
- delete[] vertextypes;
- delete[] edgeTreeIterators;
- delete[] helpers;
- delete[] used;
- if (error) {
- return 0;
- } else {
- return 1;
- }
- }
- // Adds a diagonal to the doubly-connected list of vertices.
- void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
- TPPLVertexType *vertextypes, RBSet<ScanLineEdge>::Element **edgeTreeIterators,
- RBSet<ScanLineEdge> *edgeTree, long *helpers) {
- long newindex1, newindex2;
- newindex1 = *numvertices;
- (*numvertices)++;
- newindex2 = *numvertices;
- (*numvertices)++;
- vertices[newindex1].p = vertices[index1].p;
- vertices[newindex2].p = vertices[index2].p;
- vertices[newindex2].next = vertices[index2].next;
- vertices[newindex1].next = vertices[index1].next;
- vertices[vertices[index2].next].previous = newindex2;
- vertices[vertices[index1].next].previous = newindex1;
- vertices[index1].next = newindex2;
- vertices[newindex2].previous = index1;
- vertices[index2].next = newindex1;
- vertices[newindex1].previous = index2;
- // Update all relevant structures.
- vertextypes[newindex1] = vertextypes[index1];
- edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
- helpers[newindex1] = helpers[index1];
- if (edgeTreeIterators[newindex1] != edgeTree->back()) {
- edgeTreeIterators[newindex1]->get().index = newindex1;
- }
- vertextypes[newindex2] = vertextypes[index2];
- edgeTreeIterators[newindex2] = edgeTreeIterators[index2];
- helpers[newindex2] = helpers[index2];
- if (edgeTreeIterators[newindex2] != edgeTree->back()) {
- edgeTreeIterators[newindex2]->get().index = newindex2;
- }
- }
- bool TPPLPartition::Below(TPPLPoint &p1, TPPLPoint &p2) {
- if (p1.y < p2.y) {
- return true;
- } else if (p1.y == p2.y) {
- if (p1.x < p2.x) {
- return true;
- }
- }
- return false;
- }
- // Sorts in the falling order of y values, if y is equal, x is used instead.
- bool TPPLPartition::VertexSorter::operator()(long index1, long index2) {
- if (vertices[index1].p.y > vertices[index2].p.y) {
- return true;
- } else if (vertices[index1].p.y == vertices[index2].p.y) {
- if (vertices[index1].p.x > vertices[index2].p.x) {
- return true;
- }
- }
- return false;
- }
- bool TPPLPartition::ScanLineEdge::IsConvex(const TPPLPoint &p1, const TPPLPoint &p2, const TPPLPoint &p3) const {
- tppl_float tmp;
- tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
- if (tmp > 0) {
- return 1;
- }
- return 0;
- }
- bool TPPLPartition::ScanLineEdge::operator<(const ScanLineEdge &other) const {
- if (other.p1.y == other.p2.y) {
- if (p1.y == p2.y) {
- return (p1.y < other.p1.y);
- }
- return IsConvex(p1, p2, other.p1);
- } else if (p1.y == p2.y) {
- return !IsConvex(other.p1, other.p2, p1);
- } else if (p1.y < other.p1.y) {
- return !IsConvex(other.p1, other.p2, p1);
- } else {
- return IsConvex(p1, p2, other.p1);
- }
- }
- // Triangulates monotone polygon.
- // Time complexity: O(n)
- // Space complexity: O(n)
- int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles) {
- if (!inPoly->Valid()) {
- return 0;
- }
- long i, i2, j, topindex, bottomindex, leftindex, rightindex, vindex;
- TPPLPoint *points = NULL;
- long numpoints;
- TPPLPoly triangle;
- numpoints = inPoly->GetNumPoints();
- points = inPoly->GetPoints();
- // Trivial case.
- if (numpoints == 3) {
- triangles->push_back(*inPoly);
- return 1;
- }
- topindex = 0;
- bottomindex = 0;
- for (i = 1; i < numpoints; i++) {
- if (Below(points[i], points[bottomindex])) {
- bottomindex = i;
- }
- if (Below(points[topindex], points[i])) {
- topindex = i;
- }
- }
- // Check if the poly is really monotone.
- i = topindex;
- while (i != bottomindex) {
- i2 = i + 1;
- if (i2 >= numpoints) {
- i2 = 0;
- }
- if (!Below(points[i2], points[i])) {
- return 0;
- }
- i = i2;
- }
- i = bottomindex;
- while (i != topindex) {
- i2 = i + 1;
- if (i2 >= numpoints) {
- i2 = 0;
- }
- if (!Below(points[i], points[i2])) {
- return 0;
- }
- i = i2;
- }
- char *vertextypes = new char[numpoints];
- long *priority = new long[numpoints];
- // Merge left and right vertex chains.
- priority[0] = topindex;
- vertextypes[topindex] = 0;
- leftindex = topindex + 1;
- if (leftindex >= numpoints) {
- leftindex = 0;
- }
- rightindex = topindex - 1;
- if (rightindex < 0) {
- rightindex = numpoints - 1;
- }
- for (i = 1; i < (numpoints - 1); i++) {
- if (leftindex == bottomindex) {
- priority[i] = rightindex;
- rightindex--;
- if (rightindex < 0) {
- rightindex = numpoints - 1;
- }
- vertextypes[priority[i]] = -1;
- } else if (rightindex == bottomindex) {
- priority[i] = leftindex;
- leftindex++;
- if (leftindex >= numpoints) {
- leftindex = 0;
- }
- vertextypes[priority[i]] = 1;
- } else {
- if (Below(points[leftindex], points[rightindex])) {
- priority[i] = rightindex;
- rightindex--;
- if (rightindex < 0) {
- rightindex = numpoints - 1;
- }
- vertextypes[priority[i]] = -1;
- } else {
- priority[i] = leftindex;
- leftindex++;
- if (leftindex >= numpoints) {
- leftindex = 0;
- }
- vertextypes[priority[i]] = 1;
- }
- }
- }
- priority[i] = bottomindex;
- vertextypes[bottomindex] = 0;
- long *stack = new long[numpoints];
- long stackptr = 0;
- stack[0] = priority[0];
- stack[1] = priority[1];
- stackptr = 2;
- // For each vertex from top to bottom trim as many triangles as possible.
- for (i = 2; i < (numpoints - 1); i++) {
- vindex = priority[i];
- if (vertextypes[vindex] != vertextypes[stack[stackptr - 1]]) {
- for (j = 0; j < (stackptr - 1); j++) {
- if (vertextypes[vindex] == 1) {
- triangle.Triangle(points[stack[j + 1]], points[stack[j]], points[vindex]);
- } else {
- triangle.Triangle(points[stack[j]], points[stack[j + 1]], points[vindex]);
- }
- triangles->push_back(triangle);
- }
- stack[0] = priority[i - 1];
- stack[1] = priority[i];
- stackptr = 2;
- } else {
- stackptr--;
- while (stackptr > 0) {
- if (vertextypes[vindex] == 1) {
- if (IsConvex(points[vindex], points[stack[stackptr - 1]], points[stack[stackptr]])) {
- triangle.Triangle(points[vindex], points[stack[stackptr - 1]], points[stack[stackptr]]);
- triangles->push_back(triangle);
- stackptr--;
- } else {
- break;
- }
- } else {
- if (IsConvex(points[vindex], points[stack[stackptr]], points[stack[stackptr - 1]])) {
- triangle.Triangle(points[vindex], points[stack[stackptr]], points[stack[stackptr - 1]]);
- triangles->push_back(triangle);
- stackptr--;
- } else {
- break;
- }
- }
- }
- stackptr++;
- stack[stackptr] = vindex;
- stackptr++;
- }
- }
- vindex = priority[i];
- for (j = 0; j < (stackptr - 1); j++) {
- if (vertextypes[stack[j + 1]] == 1) {
- triangle.Triangle(points[stack[j]], points[stack[j + 1]], points[vindex]);
- } else {
- triangle.Triangle(points[stack[j + 1]], points[stack[j]], points[vindex]);
- }
- triangles->push_back(triangle);
- }
- delete[] priority;
- delete[] vertextypes;
- delete[] stack;
- return 1;
- }
- int TPPLPartition::Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
- TPPLPolyList monotone;
- TPPLPolyList::Element *iter;
- if (!MonotonePartition(inpolys, &monotone)) {
- return 0;
- }
- for (iter = monotone.front(); iter; iter = iter->next()) {
- if (!TriangulateMonotone(&(iter->get()), triangles)) {
- return 0;
- }
- }
- return 1;
- }
- int TPPLPartition::Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles) {
- TPPLPolyList polys;
- polys.push_back(*poly);
- return Triangulate_MONO(&polys, triangles);
- }
|