123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <math.h>
- #include <string.h>
- // This work is based on:
- // Pedro Sander, Diego Nehab and Joshua Barczak. Fast Triangle Reordering for Vertex Locality and Reduced Overdraw. 2007
- namespace meshopt
- {
- static void calculateSortData(float* sort_data, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_positions_stride, const unsigned int* clusters, size_t cluster_count)
- {
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- float mesh_centroid[3] = {};
- for (size_t i = 0; i < index_count; ++i)
- {
- const float* p = vertex_positions + vertex_stride_float * indices[i];
- mesh_centroid[0] += p[0];
- mesh_centroid[1] += p[1];
- mesh_centroid[2] += p[2];
- }
- mesh_centroid[0] /= index_count;
- mesh_centroid[1] /= index_count;
- mesh_centroid[2] /= index_count;
- for (size_t cluster = 0; cluster < cluster_count; ++cluster)
- {
- size_t cluster_begin = clusters[cluster] * 3;
- size_t cluster_end = (cluster + 1 < cluster_count) ? clusters[cluster + 1] * 3 : index_count;
- assert(cluster_begin < cluster_end);
- float cluster_area = 0;
- float cluster_centroid[3] = {};
- float cluster_normal[3] = {};
- for (size_t i = cluster_begin; i < cluster_end; i += 3)
- {
- const float* p0 = vertex_positions + vertex_stride_float * indices[i + 0];
- const float* p1 = vertex_positions + vertex_stride_float * indices[i + 1];
- const float* p2 = vertex_positions + vertex_stride_float * indices[i + 2];
- float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
- float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
- float normalx = p10[1] * p20[2] - p10[2] * p20[1];
- float normaly = p10[2] * p20[0] - p10[0] * p20[2];
- float normalz = p10[0] * p20[1] - p10[1] * p20[0];
- float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
- cluster_centroid[0] += (p0[0] + p1[0] + p2[0]) * (area / 3);
- cluster_centroid[1] += (p0[1] + p1[1] + p2[1]) * (area / 3);
- cluster_centroid[2] += (p0[2] + p1[2] + p2[2]) * (area / 3);
- cluster_normal[0] += normalx;
- cluster_normal[1] += normaly;
- cluster_normal[2] += normalz;
- cluster_area += area;
- }
- float inv_cluster_area = cluster_area == 0 ? 0 : 1 / cluster_area;
- cluster_centroid[0] *= inv_cluster_area;
- cluster_centroid[1] *= inv_cluster_area;
- cluster_centroid[2] *= inv_cluster_area;
- float cluster_normal_length = sqrtf(cluster_normal[0] * cluster_normal[0] + cluster_normal[1] * cluster_normal[1] + cluster_normal[2] * cluster_normal[2]);
- float inv_cluster_normal_length = cluster_normal_length == 0 ? 0 : 1 / cluster_normal_length;
- cluster_normal[0] *= inv_cluster_normal_length;
- cluster_normal[1] *= inv_cluster_normal_length;
- cluster_normal[2] *= inv_cluster_normal_length;
- float centroid_vector[3] = {cluster_centroid[0] - mesh_centroid[0], cluster_centroid[1] - mesh_centroid[1], cluster_centroid[2] - mesh_centroid[2]};
- sort_data[cluster] = centroid_vector[0] * cluster_normal[0] + centroid_vector[1] * cluster_normal[1] + centroid_vector[2] * cluster_normal[2];
- }
- }
- static void calculateSortOrderRadix(unsigned int* sort_order, const float* sort_data, unsigned short* sort_keys, size_t cluster_count)
- {
- // compute sort data bounds and renormalize, using fixed point snorm
- float sort_data_max = 1e-3f;
- for (size_t i = 0; i < cluster_count; ++i)
- {
- float dpa = fabsf(sort_data[i]);
- sort_data_max = (sort_data_max < dpa) ? dpa : sort_data_max;
- }
- const int sort_bits = 11;
- for (size_t i = 0; i < cluster_count; ++i)
- {
- // note that we flip distribution since high dot product should come first
- float sort_key = 0.5f - 0.5f * (sort_data[i] / sort_data_max);
- sort_keys[i] = meshopt_quantizeUnorm(sort_key, sort_bits) & ((1 << sort_bits) - 1);
- }
- // fill histogram for counting sort
- unsigned int histogram[1 << sort_bits];
- memset(histogram, 0, sizeof(histogram));
- for (size_t i = 0; i < cluster_count; ++i)
- {
- histogram[sort_keys[i]]++;
- }
- // compute offsets based on histogram data
- size_t histogram_sum = 0;
- for (size_t i = 0; i < 1 << sort_bits; ++i)
- {
- size_t count = histogram[i];
- histogram[i] = unsigned(histogram_sum);
- histogram_sum += count;
- }
- assert(histogram_sum == cluster_count);
- // compute sort order based on offsets
- for (size_t i = 0; i < cluster_count; ++i)
- {
- sort_order[histogram[sort_keys[i]]++] = unsigned(i);
- }
- }
- static unsigned int updateCache(unsigned int a, unsigned int b, unsigned int c, unsigned int cache_size, unsigned int* cache_timestamps, unsigned int& timestamp)
- {
- unsigned int cache_misses = 0;
- // if vertex is not in cache, put it in cache
- if (timestamp - cache_timestamps[a] > cache_size)
- {
- cache_timestamps[a] = timestamp++;
- cache_misses++;
- }
- if (timestamp - cache_timestamps[b] > cache_size)
- {
- cache_timestamps[b] = timestamp++;
- cache_misses++;
- }
- if (timestamp - cache_timestamps[c] > cache_size)
- {
- cache_timestamps[c] = timestamp++;
- cache_misses++;
- }
- return cache_misses;
- }
- static size_t generateHardBoundaries(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int* cache_timestamps)
- {
- memset(cache_timestamps, 0, vertex_count * sizeof(unsigned int));
- unsigned int timestamp = cache_size + 1;
- size_t face_count = index_count / 3;
- size_t result = 0;
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int m = updateCache(indices[i * 3 + 0], indices[i * 3 + 1], indices[i * 3 + 2], cache_size, &cache_timestamps[0], timestamp);
- // when all three vertices are not in the cache it's usually relatively safe to assume that this is a new patch in the mesh
- // that is disjoint from previous vertices; sometimes it might come back to reference existing vertices but that frequently
- // suggests an inefficiency in the vertex cache optimization algorithm
- // usually the first triangle has 3 misses unless it's degenerate - thus we make sure the first cluster always starts with 0
- if (i == 0 || m == 3)
- {
- destination[result++] = unsigned(i);
- }
- }
- assert(result <= index_count / 3);
- return result;
- }
- static size_t generateSoftBoundaries(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* clusters, size_t cluster_count, unsigned int cache_size, float threshold, unsigned int* cache_timestamps)
- {
- memset(cache_timestamps, 0, vertex_count * sizeof(unsigned int));
- unsigned int timestamp = 0;
- size_t result = 0;
- for (size_t it = 0; it < cluster_count; ++it)
- {
- size_t start = clusters[it];
- size_t end = (it + 1 < cluster_count) ? clusters[it + 1] : index_count / 3;
- assert(start < end);
- // reset cache
- timestamp += cache_size + 1;
- // measure cluster ACMR
- unsigned int cluster_misses = 0;
- for (size_t i = start; i < end; ++i)
- {
- unsigned int m = updateCache(indices[i * 3 + 0], indices[i * 3 + 1], indices[i * 3 + 2], cache_size, &cache_timestamps[0], timestamp);
- cluster_misses += m;
- }
- float cluster_threshold = threshold * (float(cluster_misses) / float(end - start));
- // first cluster always starts from the hard cluster boundary
- destination[result++] = unsigned(start);
- // reset cache
- timestamp += cache_size + 1;
- unsigned int running_misses = 0;
- unsigned int running_faces = 0;
- for (size_t i = start; i < end; ++i)
- {
- unsigned int m = updateCache(indices[i * 3 + 0], indices[i * 3 + 1], indices[i * 3 + 2], cache_size, &cache_timestamps[0], timestamp);
- running_misses += m;
- running_faces += 1;
- if (float(running_misses) / float(running_faces) <= cluster_threshold)
- {
- // we have reached the target ACMR with the current triangle so we need to start a new cluster on the next one
- // note that this may mean that we add 'end` to destination for the last triangle, which will imply that the last
- // cluster is empty; however, the 'pop_back' after the loop will clean it up
- destination[result++] = unsigned(i + 1);
- // reset cache
- timestamp += cache_size + 1;
- running_misses = 0;
- running_faces = 0;
- }
- }
- // each time we reach the target ACMR we flush the cluster
- // this means that the last cluster is by definition not very good - there are frequent cases where we are left with a few triangles
- // in the last cluster, producing a very bad ACMR and significantly penalizing the overall results
- // thus we remove the last cluster boundary, merging the last complete cluster with the last incomplete one
- // there are sometimes cases when the last cluster is actually good enough - in which case the code above would have added 'end'
- // to the cluster boundary array which we need to remove anyway - this code will do that automatically
- if (destination[result - 1] != start)
- {
- result--;
- }
- }
- assert(result >= cluster_count);
- assert(result <= index_count / 3);
- return result;
- }
- } // namespace meshopt
- void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- meshopt_Allocator allocator;
- // guard for empty meshes
- if (index_count == 0 || vertex_count == 0)
- return;
- // support in-place optimization
- if (destination == indices)
- {
- unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count);
- memcpy(indices_copy, indices, index_count * sizeof(unsigned int));
- indices = indices_copy;
- }
- unsigned int cache_size = 16;
- unsigned int* cache_timestamps = allocator.allocate<unsigned int>(vertex_count);
- // generate hard boundaries from full-triangle cache misses
- unsigned int* hard_clusters = allocator.allocate<unsigned int>(index_count / 3);
- size_t hard_cluster_count = generateHardBoundaries(hard_clusters, indices, index_count, vertex_count, cache_size, cache_timestamps);
- // generate soft boundaries
- unsigned int* soft_clusters = allocator.allocate<unsigned int>(index_count / 3 + 1);
- size_t soft_cluster_count = generateSoftBoundaries(soft_clusters, indices, index_count, vertex_count, hard_clusters, hard_cluster_count, cache_size, threshold, cache_timestamps);
- const unsigned int* clusters = soft_clusters;
- size_t cluster_count = soft_cluster_count;
- // fill sort data
- float* sort_data = allocator.allocate<float>(cluster_count);
- calculateSortData(sort_data, indices, index_count, vertex_positions, vertex_positions_stride, clusters, cluster_count);
- // sort clusters using sort data
- unsigned short* sort_keys = allocator.allocate<unsigned short>(cluster_count);
- unsigned int* sort_order = allocator.allocate<unsigned int>(cluster_count);
- calculateSortOrderRadix(sort_order, sort_data, sort_keys, cluster_count);
- // fill output buffer
- size_t offset = 0;
- for (size_t it = 0; it < cluster_count; ++it)
- {
- unsigned int cluster = sort_order[it];
- assert(cluster < cluster_count);
- size_t cluster_begin = clusters[cluster] * 3;
- size_t cluster_end = (cluster + 1 < cluster_count) ? clusters[cluster + 1] * 3 : index_count;
- assert(cluster_begin < cluster_end);
- memcpy(destination + offset, indices + cluster_begin, (cluster_end - cluster_begin) * sizeof(unsigned int));
- offset += cluster_end - cluster_begin;
- }
- assert(offset == index_count);
- }
|