123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 |
- // Copyright 2009-2021 Intel Corporation
- // SPDX-License-Identifier: Apache-2.0
- #pragma once
- #include "bezier_curve.h"
- namespace embree
- {
- namespace isa
- {
- template<typename V>
- struct TensorLinearQuadraticBezierSurface
- {
- QuadraticBezierCurve<V> L;
- QuadraticBezierCurve<V> R;
-
- __forceinline TensorLinearQuadraticBezierSurface() {}
-
- __forceinline TensorLinearQuadraticBezierSurface(const TensorLinearQuadraticBezierSurface<V>& curve)
- : L(curve.L), R(curve.R) {}
-
- __forceinline TensorLinearQuadraticBezierSurface& operator= (const TensorLinearQuadraticBezierSurface& other) {
- L = other.L; R = other.R; return *this;
- }
-
- __forceinline TensorLinearQuadraticBezierSurface(const QuadraticBezierCurve<V>& L, const QuadraticBezierCurve<V>& R)
- : L(L), R(R) {}
-
- __forceinline BBox<V> bounds() const {
- return merge(L.bounds(),R.bounds());
- }
- };
-
- template<>
- struct TensorLinearQuadraticBezierSurface<Vec2fa>
- {
- QuadraticBezierCurve<vfloat4> LR;
-
- __forceinline TensorLinearQuadraticBezierSurface() {}
-
- __forceinline TensorLinearQuadraticBezierSurface(const TensorLinearQuadraticBezierSurface<Vec2fa>& curve)
- : LR(curve.LR) {}
-
- __forceinline TensorLinearQuadraticBezierSurface& operator= (const TensorLinearQuadraticBezierSurface& other) {
- LR = other.LR; return *this;
- }
-
- __forceinline TensorLinearQuadraticBezierSurface(const QuadraticBezierCurve<vfloat4>& LR)
- : LR(LR) {}
-
- __forceinline BBox<Vec2fa> bounds() const
- {
- const BBox<vfloat4> b = LR.bounds();
- const BBox<Vec2fa> bl(Vec2fa(b.lower),Vec2fa(b.upper));
- const BBox<Vec2fa> br(Vec2fa(shuffle<2,3,2,3>(b.lower)),Vec2fa(shuffle<2,3,2,3>(b.upper)));
- return merge(bl,br);
- }
- };
-
- template<typename V>
- struct TensorLinearCubicBezierSurface
- {
- CubicBezierCurve<V> L;
- CubicBezierCurve<V> R;
-
- __forceinline TensorLinearCubicBezierSurface() {}
-
- __forceinline TensorLinearCubicBezierSurface(const TensorLinearCubicBezierSurface& curve)
- : L(curve.L), R(curve.R) {}
-
- __forceinline TensorLinearCubicBezierSurface& operator= (const TensorLinearCubicBezierSurface& other) {
- L = other.L; R = other.R; return *this;
- }
-
- __forceinline TensorLinearCubicBezierSurface(const CubicBezierCurve<V>& L, const CubicBezierCurve<V>& R)
- : L(L), R(R) {}
- template<template<typename T> class SourceCurve>
- __forceinline static TensorLinearCubicBezierSurface fromCenterAndNormalCurve(const SourceCurve<Vec3ff>& center, const SourceCurve<Vec3fa>& normal)
- {
- SourceCurve<Vec3ff> vcurve = center;
- SourceCurve<Vec3fa> ncurve = normal;
- /* here we construct a patch which follows the curve l(t) =
- * p(t) +/- r(t)*normalize(cross(n(t),dp(t))) */
-
- const Vec3ff p0 = vcurve.eval(0.0f);
- const Vec3ff dp0 = vcurve.eval_du(0.0f);
- //const Vec3ff ddp0 = vcurve.eval_dudu(0.0f); // ddp0 is assumed to be 0
- const Vec3fa n0 = ncurve.eval(0.0f);
- const Vec3fa dn0 = ncurve.eval_du(0.0f);
- const Vec3ff p1 = vcurve.eval(1.0f);
- const Vec3ff dp1 = vcurve.eval_du(1.0f);
- //const Vec3ff ddp1 = vcurve.eval_dudu(1.0f); // ddp1 is assumed to be 0
- const Vec3fa n1 = ncurve.eval(1.0f);
- const Vec3fa dn1 = ncurve.eval_du(1.0f);
- const Vec3fa bt0 = cross(n0,dp0);
- const Vec3fa dbt0 = cross(dn0,dp0);// + cross(n0,ddp0);
- const Vec3fa bt1 = cross(n1,dp1);
- const Vec3fa dbt1 = cross(dn1,dp1);// + cross(n1,ddp1);
-
- const Vec3fa k0 = normalize(bt0);
- const Vec3fa dk0 = dnormalize(bt0,dbt0);
-
- const Vec3fa k1 = normalize(bt1);
- const Vec3fa dk1 = dnormalize(bt1,dbt1);
-
- const Vec3fa l0 = p0 - p0.w*k0;
- const Vec3fa dl0 = dp0 - (dp0.w*k0 + p0.w*dk0);
- const Vec3fa r0 = p0 + p0.w*k0;
- const Vec3fa dr0 = dp0 + (dp0.w*k0 + p0.w*dk0);
- const Vec3fa l1 = p1 - p1.w*k1;
- const Vec3fa dl1 = dp1 - (dp1.w*k1 + p1.w*dk1);
- const Vec3fa r1 = p1 + p1.w*k1;
- const Vec3fa dr1 = dp1 + (dp1.w*k1 + p1.w*dk1);
- const float scale = 1.0f/3.0f;
- CubicBezierCurve<V> L(l0,l0+scale*dl0,l1-scale*dl1,l1);
- CubicBezierCurve<V> R(r0,r0+scale*dr0,r1-scale*dr1,r1);
- return TensorLinearCubicBezierSurface(L,R);
- }
- __forceinline BBox<V> bounds() const {
- return merge(L.bounds(),R.bounds());
- }
- __forceinline BBox3fa accurateBounds() const {
- return merge(L.accurateBounds(),R.accurateBounds());
- }
-
- __forceinline CubicBezierCurve<Interval1f> reduce_v() const {
- return merge(CubicBezierCurve<Interval<V>>(L),CubicBezierCurve<Interval<V>>(R));
- }
-
- __forceinline LinearBezierCurve<Interval1f> reduce_u() const {
- return LinearBezierCurve<Interval1f>(L.bounds(),R.bounds());
- }
-
- __forceinline TensorLinearCubicBezierSurface<float> xfm(const V& dx) const {
- return TensorLinearCubicBezierSurface<float>(L.xfm(dx),R.xfm(dx));
- }
-
- __forceinline TensorLinearCubicBezierSurface<vfloatx> vxfm(const V& dx) const {
- return TensorLinearCubicBezierSurface<vfloatx>(L.vxfm(dx),R.vxfm(dx));
- }
-
- __forceinline TensorLinearCubicBezierSurface<float> xfm(const V& dx, const V& p) const {
- return TensorLinearCubicBezierSurface<float>(L.xfm(dx,p),R.xfm(dx,p));
- }
- __forceinline TensorLinearCubicBezierSurface<Vec3fa> xfm(const LinearSpace3fa& space) const {
- return TensorLinearCubicBezierSurface(L.xfm(space),R.xfm(space));
- }
-
- __forceinline TensorLinearCubicBezierSurface<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p) const {
- return TensorLinearCubicBezierSurface(L.xfm(space,p),R.xfm(space,p));
- }
- __forceinline TensorLinearCubicBezierSurface<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p, const float s) const {
- return TensorLinearCubicBezierSurface(L.xfm(space,p,s),R.xfm(space,p,s));
- }
- __forceinline TensorLinearCubicBezierSurface clip_u(const Interval1f& u) const {
- return TensorLinearCubicBezierSurface(L.clip(u),R.clip(u));
- }
-
- __forceinline TensorLinearCubicBezierSurface clip_v(const Interval1f& v) const {
- return TensorLinearCubicBezierSurface(clerp(L,R,V(v.lower)),clerp(L,R,V(v.upper)));
- }
-
- __forceinline TensorLinearCubicBezierSurface clip(const Interval1f& u, const Interval1f& v) const {
- return clip_v(v).clip_u(u);
- }
-
- __forceinline void split_u(TensorLinearCubicBezierSurface& left, TensorLinearCubicBezierSurface& right, const float u = 0.5f) const
- {
- CubicBezierCurve<V> L0,L1; L.split(L0,L1,u);
- CubicBezierCurve<V> R0,R1; R.split(R0,R1,u);
- new (&left ) TensorLinearCubicBezierSurface(L0,R0);
- new (&right) TensorLinearCubicBezierSurface(L1,R1);
- }
-
- __forceinline TensorLinearCubicBezierSurface<Vec2vfx> vsplit_u(vboolx& valid, const BBox1f& u) const {
- valid = true; clear(valid,VSIZEX-1);
- return TensorLinearCubicBezierSurface<Vec2vfx>(L.split(u),R.split(u));
- }
-
- __forceinline V eval(const float u, const float v) const {
- return clerp(L,R,V(v)).eval(u);
- }
-
- __forceinline V eval_du(const float u, const float v) const {
- return clerp(L,R,V(v)).eval_dt(u);
- }
-
- __forceinline V eval_dv(const float u, const float v) const {
- return (R-L).eval(u);
- }
-
- __forceinline void eval(const float u, const float v, V& p, V& dpdu, V& dpdv) const
- {
- V p0, dp0du; L.eval(u,p0,dp0du);
- V p1, dp1du; R.eval(u,p1,dp1du);
- p = lerp(p0,p1,v);
- dpdu = lerp(dp0du,dp1du,v);
- dpdv = p1-p0;
- }
-
- __forceinline TensorLinearQuadraticBezierSurface<V> derivative_u() const {
- return TensorLinearQuadraticBezierSurface<V>(L.derivative(),R.derivative());
- }
-
- __forceinline CubicBezierCurve<V> derivative_v() const {
- return R-L;
- }
-
- __forceinline V axis_u() const {
- return (L.end()-L.begin())+(R.end()-R.begin());
- }
-
- __forceinline V axis_v() const {
- return (R.begin()-L.begin())+(R.end()-L.end());
- }
-
- friend embree_ostream operator<<(embree_ostream cout, const TensorLinearCubicBezierSurface& a)
- {
- return cout << "TensorLinearCubicBezierSurface" << embree_endl
- << "{" << embree_endl
- << " L = " << a.L << ", " << embree_endl
- << " R = " << a.R << embree_endl
- << "}";
- }
- friend __forceinline TensorLinearCubicBezierSurface clerp(const TensorLinearCubicBezierSurface& a, const TensorLinearCubicBezierSurface& b, const float t) {
- return TensorLinearCubicBezierSurface(clerp(a.L,b.L,V(t)), clerp(a.R,b.R,V(t)));
- }
- };
-
- template<>
- struct TensorLinearCubicBezierSurface<Vec2fa>
- {
- CubicBezierCurve<vfloat4> LR;
-
- __forceinline TensorLinearCubicBezierSurface() {}
-
- __forceinline TensorLinearCubicBezierSurface(const TensorLinearCubicBezierSurface& curve)
- : LR(curve.LR) {}
-
- __forceinline TensorLinearCubicBezierSurface& operator= (const TensorLinearCubicBezierSurface& other) {
- LR = other.LR; return *this;
- }
-
- __forceinline TensorLinearCubicBezierSurface(const CubicBezierCurve<vfloat4>& LR)
- : LR(LR) {}
-
- __forceinline TensorLinearCubicBezierSurface(const CubicBezierCurve<Vec2fa>& L, const CubicBezierCurve<Vec2fa>& R)
- : LR(shuffle<0,1,0,1>(vfloat4(L.v0),vfloat4(R.v0)),shuffle<0,1,0,1>(vfloat4(L.v1),vfloat4(R.v1)),shuffle<0,1,0,1>(vfloat4(L.v2),vfloat4(R.v2)),shuffle<0,1,0,1>(vfloat4(L.v3),vfloat4(R.v3))) {}
-
- __forceinline CubicBezierCurve<Vec2fa> getL() const {
- return CubicBezierCurve<Vec2fa>(Vec2fa(LR.v0),Vec2fa(LR.v1),Vec2fa(LR.v2),Vec2fa(LR.v3));
- }
-
- __forceinline CubicBezierCurve<Vec2fa> getR() const {
- return CubicBezierCurve<Vec2fa>(Vec2fa(shuffle<2,3,2,3>(LR.v0)),Vec2fa(shuffle<2,3,2,3>(LR.v1)),Vec2fa(shuffle<2,3,2,3>(LR.v2)),Vec2fa(shuffle<2,3,2,3>(LR.v3)));
- }
-
- __forceinline BBox<Vec2fa> bounds() const
- {
- const BBox<vfloat4> b = LR.bounds();
- const BBox<Vec2fa> bl(Vec2fa(b.lower),Vec2fa(b.upper));
- const BBox<Vec2fa> br(Vec2fa(shuffle<2,3,2,3>(b.lower)),Vec2fa(shuffle<2,3,2,3>(b.upper)));
- return merge(bl,br);
- }
-
- __forceinline BBox1f bounds(const Vec2fa& axis) const
- {
- const CubicBezierCurve<vfloat4> LRx = LR;
- const CubicBezierCurve<vfloat4> LRy(shuffle<1,0,3,2>(LR.v0),shuffle<1,0,3,2>(LR.v1),shuffle<1,0,3,2>(LR.v2),shuffle<1,0,3,2>(LR.v3));
- const CubicBezierCurve<vfloat4> LRa = cmadd(shuffle<0>(vfloat4(axis)),LRx,shuffle<1>(vfloat4(axis))*LRy);
- const BBox<vfloat4> Lb = LRa.bounds();
- const BBox<vfloat4> Rb(shuffle<3>(Lb.lower),shuffle<3>(Lb.upper));
- const BBox<vfloat4> b = merge(Lb,Rb);
- return BBox1f(b.lower[0],b.upper[0]);
- }
- __forceinline TensorLinearCubicBezierSurface<float> xfm(const Vec2fa& dx) const
- {
- const CubicBezierCurve<vfloat4> LRx = LR;
- const CubicBezierCurve<vfloat4> LRy(shuffle<1,0,3,2>(LR.v0),shuffle<1,0,3,2>(LR.v1),shuffle<1,0,3,2>(LR.v2),shuffle<1,0,3,2>(LR.v3));
- const CubicBezierCurve<vfloat4> LRa = cmadd(shuffle<0>(vfloat4(dx)),LRx,shuffle<1>(vfloat4(dx))*LRy);
- return TensorLinearCubicBezierSurface<float>(CubicBezierCurve<float>(LRa.v0[0],LRa.v1[0],LRa.v2[0],LRa.v3[0]),
- CubicBezierCurve<float>(LRa.v0[2],LRa.v1[2],LRa.v2[2],LRa.v3[2]));
- }
-
- __forceinline TensorLinearCubicBezierSurface<float> xfm(const Vec2fa& dx, const Vec2fa& p) const
- {
- const vfloat4 pxyxy = shuffle<0,1,0,1>(vfloat4(p));
- const CubicBezierCurve<vfloat4> LRx = LR-pxyxy;
- const CubicBezierCurve<vfloat4> LRy(shuffle<1,0,3,2>(LR.v0),shuffle<1,0,3,2>(LR.v1),shuffle<1,0,3,2>(LR.v2),shuffle<1,0,3,2>(LR.v3));
- const CubicBezierCurve<vfloat4> LRa = cmadd(shuffle<0>(vfloat4(dx)),LRx,shuffle<1>(vfloat4(dx))*LRy);
- return TensorLinearCubicBezierSurface<float>(CubicBezierCurve<float>(LRa.v0[0],LRa.v1[0],LRa.v2[0],LRa.v3[0]),
- CubicBezierCurve<float>(LRa.v0[2],LRa.v1[2],LRa.v2[2],LRa.v3[2]));
- }
- __forceinline TensorLinearCubicBezierSurface clip_u(const Interval1f& u) const {
- return TensorLinearCubicBezierSurface(LR.clip(u));
- }
-
- __forceinline TensorLinearCubicBezierSurface clip_v(const Interval1f& v) const
- {
- const CubicBezierCurve<vfloat4> LL(shuffle<0,1,0,1>(LR.v0),shuffle<0,1,0,1>(LR.v1),shuffle<0,1,0,1>(LR.v2),shuffle<0,1,0,1>(LR.v3));
- const CubicBezierCurve<vfloat4> RR(shuffle<2,3,2,3>(LR.v0),shuffle<2,3,2,3>(LR.v1),shuffle<2,3,2,3>(LR.v2),shuffle<2,3,2,3>(LR.v3));
- return TensorLinearCubicBezierSurface(clerp(LL,RR,vfloat4(v.lower,v.lower,v.upper,v.upper)));
- }
-
- __forceinline TensorLinearCubicBezierSurface clip(const Interval1f& u, const Interval1f& v) const {
- return clip_v(v).clip_u(u);
- }
-
- __forceinline void split_u(TensorLinearCubicBezierSurface& left, TensorLinearCubicBezierSurface& right, const float u = 0.5f) const
- {
- CubicBezierCurve<vfloat4> LR0,LR1; LR.split(LR0,LR1,u);
- new (&left ) TensorLinearCubicBezierSurface(LR0);
- new (&right) TensorLinearCubicBezierSurface(LR1);
- }
-
- __forceinline TensorLinearCubicBezierSurface<Vec2vfx> vsplit_u(vboolx& valid, const BBox1f& u) const {
- valid = true; clear(valid,VSIZEX-1);
- return TensorLinearCubicBezierSurface<Vec2vfx>(getL().split(u),getR().split(u));
- }
-
- __forceinline Vec2fa eval(const float u, const float v) const
- {
- const vfloat4 p = LR.eval(u);
- return Vec2fa(lerp(shuffle<0,1,0,1>(p),shuffle<2,3,2,3>(p),v));
- }
-
- __forceinline Vec2fa eval_du(const float u, const float v) const
- {
- const vfloat4 dpdu = LR.eval_dt(u);
- return Vec2fa(lerp(shuffle<0,1,0,1>(dpdu),shuffle<2,3,2,3>(dpdu),v));
- }
-
- __forceinline Vec2fa eval_dv(const float u, const float v) const
- {
- const vfloat4 p = LR.eval(u);
- return Vec2fa(shuffle<2,3,2,3>(p)-shuffle<0,1,0,1>(p));
- }
-
- __forceinline void eval(const float u, const float v, Vec2fa& p, Vec2fa& dpdu, Vec2fa& dpdv) const
- {
- vfloat4 p0, dp0du; LR.eval(u,p0,dp0du);
- p = Vec2fa(lerp(shuffle<0,1,0,1>(p0),shuffle<2,3,2,3>(p0),v));
- dpdu = Vec2fa(lerp(shuffle<0,1,0,1>(dp0du),shuffle<2,3,2,3>(dp0du),v));
- dpdv = Vec2fa(shuffle<2,3,2,3>(p0)-shuffle<0,1,0,1>(p0));
- }
-
- __forceinline TensorLinearQuadraticBezierSurface<Vec2fa> derivative_u() const {
- return TensorLinearQuadraticBezierSurface<Vec2fa>(LR.derivative());
- }
-
- __forceinline CubicBezierCurve<Vec2fa> derivative_v() const {
- return getR()-getL();
- }
-
- __forceinline Vec2fa axis_u() const
- {
- const CubicBezierCurve<Vec2fa> L = getL();
- const CubicBezierCurve<Vec2fa> R = getR();
- return (L.end()-L.begin())+(R.end()-R.begin());
- }
-
- __forceinline Vec2fa axis_v() const
- {
- const CubicBezierCurve<Vec2fa> L = getL();
- const CubicBezierCurve<Vec2fa> R = getR();
- return (R.begin()-L.begin())+(R.end()-L.end());
- }
-
- friend embree_ostream operator<<(embree_ostream cout, const TensorLinearCubicBezierSurface& a)
- {
- return cout << "TensorLinearCubicBezierSurface" << embree_endl
- << "{" << embree_endl
- << " L = " << a.getL() << ", " << embree_endl
- << " R = " << a.getR() << embree_endl
- << "}";
- }
- };
- typedef TensorLinearCubicBezierSurface<float> TensorLinearCubicBezierSurface1f;
- typedef TensorLinearCubicBezierSurface<Vec2fa> TensorLinearCubicBezierSurface2fa;
- typedef TensorLinearCubicBezierSurface<Vec3fa> TensorLinearCubicBezierSurface3fa;
- }
- }
|