123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- // Copyright 2009-2021 Intel Corporation
- // SPDX-License-Identifier: Apache-2.0
- #pragma once
- #include "../common/default.h"
- #include "bezier_curve.h"
- namespace embree
- {
- class BSplineBasis
- {
- public:
- template<typename T>
- static __forceinline Vec4<T> eval(const T& u)
- {
- const T t = u;
- const T s = T(1.0f) - u;
- const T n0 = s*s*s;
- const T n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t));
- const T n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s));
- const T n3 = t*t*t;
- return T(1.0f/6.0f)*Vec4<T>(n0,n1,n2,n3);
- }
-
- template<typename T>
- static __forceinline Vec4<T> derivative(const T& u)
- {
- const T t = u;
- const T s = 1.0f - u;
- const T n0 = -s*s;
- const T n1 = -t*t - 4.0f*(t*s);
- const T n2 = s*s + 4.0f*(s*t);
- const T n3 = t*t;
- return T(0.5f)*Vec4<T>(n0,n1,n2,n3);
- }
- template<typename T>
- static __forceinline Vec4<T> derivative2(const T& u)
- {
- const T t = u;
- const T s = 1.0f - u;
- const T n0 = s;
- const T n1 = t - 2.0f*s;
- const T n2 = s - 2.0f*t;
- const T n3 = t;
- return Vec4<T>(n0,n1,n2,n3);
- }
- };
-
- struct PrecomputedBSplineBasis
- {
- enum { N = 16 };
- public:
- PrecomputedBSplineBasis() {}
- PrecomputedBSplineBasis(int shift);
- /* basis for bspline evaluation */
- public:
- float c0[N+1][N+1];
- float c1[N+1][N+1];
- float c2[N+1][N+1];
- float c3[N+1][N+1];
-
- /* basis for bspline derivative evaluation */
- public:
- float d0[N+1][N+1];
- float d1[N+1][N+1];
- float d2[N+1][N+1];
- float d3[N+1][N+1];
- };
- extern PrecomputedBSplineBasis bspline_basis0;
- extern PrecomputedBSplineBasis bspline_basis1;
- template<typename Vertex>
- struct BSplineCurveT
- {
- Vertex v0,v1,v2,v3;
-
- __forceinline BSplineCurveT() {}
-
- __forceinline BSplineCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
- : v0(v0), v1(v1), v2(v2), v3(v3) {}
- __forceinline Vertex begin() const {
- return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2));
- }
- __forceinline Vertex end() const {
- return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3));
- }
- __forceinline Vertex center() const {
- return 0.25f*(v0+v1+v2+v3);
- }
- __forceinline BBox<Vertex> bounds() const {
- return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3));
- }
-
- __forceinline friend BSplineCurveT operator -( const BSplineCurveT& a, const Vertex& b ) {
- return BSplineCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b);
- }
- __forceinline BSplineCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
- {
- const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w);
- const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w);
- const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w);
- const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w);
- return BSplineCurveT<Vec3ff>(q0,q1,q2,q3);
- }
-
- __forceinline Vertex eval(const float t) const
- {
- const Vec4<float> b = BSplineBasis::eval(t);
- return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
- }
-
- __forceinline Vertex eval_du(const float t) const
- {
- const Vec4<float> b = BSplineBasis::derivative(t);
- return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
- }
-
- __forceinline Vertex eval_dudu(const float t) const
- {
- const Vec4<float> b = BSplineBasis::derivative2(t);
- return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
- }
-
- __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
- {
- p = eval(t);
- dp = eval_du(t);
- ddp = eval_dudu(t);
- }
- template<int M>
- __forceinline Vec4vf<M> veval(const vfloat<M>& t) const
- {
- const Vec4vf<M> b = BSplineBasis::eval(t);
- return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
- }
- template<int M>
- __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const
- {
- const Vec4vf<M> b = BSplineBasis::derivative(t);
- return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
- }
- template<int M>
- __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const
- {
- const Vec4vf<M> b = BSplineBasis::derivative2(t);
- return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
- }
- template<int M>
- __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const
- {
- p = veval<M>(t);
- dp = veval_du<M>(t);
- }
-
- template<int M>
- __forceinline Vec4vf<M> eval0(const int ofs, const int size) const
- {
- assert(size <= PrecomputedBSplineBasis::N);
- assert(ofs <= size);
- return madd(vfloat<M>::loadu(&bspline_basis0.c0[size][ofs]), Vec4vf<M>(v0),
- madd(vfloat<M>::loadu(&bspline_basis0.c1[size][ofs]), Vec4vf<M>(v1),
- madd(vfloat<M>::loadu(&bspline_basis0.c2[size][ofs]), Vec4vf<M>(v2),
- vfloat<M>::loadu(&bspline_basis0.c3[size][ofs]) * Vec4vf<M>(v3))));
- }
-
- template<int M>
- __forceinline Vec4vf<M> eval1(const int ofs, const int size) const
- {
- assert(size <= PrecomputedBSplineBasis::N);
- assert(ofs <= size);
- return madd(vfloat<M>::loadu(&bspline_basis1.c0[size][ofs]), Vec4vf<M>(v0),
- madd(vfloat<M>::loadu(&bspline_basis1.c1[size][ofs]), Vec4vf<M>(v1),
- madd(vfloat<M>::loadu(&bspline_basis1.c2[size][ofs]), Vec4vf<M>(v2),
- vfloat<M>::loadu(&bspline_basis1.c3[size][ofs]) * Vec4vf<M>(v3))));
- }
-
- template<int M>
- __forceinline Vec4vf<M> derivative0(const int ofs, const int size) const
- {
- assert(size <= PrecomputedBSplineBasis::N);
- assert(ofs <= size);
- return madd(vfloat<M>::loadu(&bspline_basis0.d0[size][ofs]), Vec4vf<M>(v0),
- madd(vfloat<M>::loadu(&bspline_basis0.d1[size][ofs]), Vec4vf<M>(v1),
- madd(vfloat<M>::loadu(&bspline_basis0.d2[size][ofs]), Vec4vf<M>(v2),
- vfloat<M>::loadu(&bspline_basis0.d3[size][ofs]) * Vec4vf<M>(v3))));
- }
-
- template<int M>
- __forceinline Vec4vf<M> derivative1(const int ofs, const int size) const
- {
- assert(size <= PrecomputedBSplineBasis::N);
- assert(ofs <= size);
- return madd(vfloat<M>::loadu(&bspline_basis1.d0[size][ofs]), Vec4vf<M>(v0),
- madd(vfloat<M>::loadu(&bspline_basis1.d1[size][ofs]), Vec4vf<M>(v1),
- madd(vfloat<M>::loadu(&bspline_basis1.d2[size][ofs]), Vec4vf<M>(v2),
- vfloat<M>::loadu(&bspline_basis1.d3[size][ofs]) * Vec4vf<M>(v3))));
- }
-
- /* calculates bounds of bspline curve geometry */
- __forceinline BBox3fa accurateRoundBounds() const
- {
- const int N = 7;
- const float scale = 1.0f/(3.0f*(N-1));
- Vec4vfx pl(pos_inf), pu(neg_inf);
- for (int i=0; i<=N; i+=VSIZEX)
- {
- vintx vi = vintx(i)+vintx(step);
- vboolx valid = vi <= vintx(N);
- const Vec4vfx p = eval0<VSIZEX>(i,N);
- const Vec4vfx dp = derivative0<VSIZEX>(i,N);
- const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
- const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
- pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
- pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
- }
- const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
- const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
- const float r_min = reduce_min(pl.w);
- const float r_max = reduce_max(pu.w);
- const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max)));
- return enlarge(BBox3fa(lower,upper),upper_r);
- }
-
- /* calculates bounds when tessellated into N line segments */
- __forceinline BBox3fa accurateFlatBounds(int N) const
- {
- if (likely(N == 4))
- {
- const Vec4vf4 pi = eval0<4>(0,4);
- const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
- const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
- const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
- const Vec3ff pe = end();
- return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w))));
- }
- else
- {
- Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
- for (int i=0; i<=N; i+=VSIZEX)
- {
- vboolx valid = vintx(i)+vintx(step) <= vintx(N);
- const Vec4vfx pi = eval0<VSIZEX>(i,N);
-
- pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
- pl.y = select(valid,min(pl.y,pi.y),pl.y);
- pl.z = select(valid,min(pl.z,pi.z),pl.z);
-
- pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
- pu.y = select(valid,max(pu.y,pi.y),pu.y);
- pu.z = select(valid,max(pu.z,pi.z),pu.z);
-
- ru = select(valid,max(ru,abs(pi.w)),ru);
- }
- const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
- const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
- const Vec3fa upper_r(reduce_max(ru));
- return enlarge(BBox3fa(lower,upper),upper_r);
- }
- }
-
- friend __forceinline embree_ostream operator<<(embree_ostream cout, const BSplineCurveT& curve) {
- return cout << "BSplineCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
- }
- };
-
- template<typename Vertex>
- __forceinline void convert(const BezierCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) {
- ocurve = icurve;
- }
-
- template<typename Vertex>
- __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) {
- ocurve = icurve;
- }
-
- template<typename Vertex>
- __forceinline void convert(const BezierCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve)
- {
- const Vertex v0 = madd(6.0f,icurve.v0,madd(-7.0f,icurve.v1,2.0f*icurve.v2));
- const Vertex v1 = msub(2.0f,icurve.v1,icurve.v2);
- const Vertex v2 = msub(2.0f,icurve.v2,icurve.v1);
- const Vertex v3 = madd(2.0f,icurve.v1,madd(-7.0f,icurve.v2,6.0f*icurve.v3));
- ocurve = BSplineCurveT<Vertex>(v0,v1,v2,v3);
- }
-
- template<typename Vertex>
- __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve)
- {
- const Vertex v0 = madd(1.0f/6.0f,icurve.v0,madd(2.0f/3.0f,icurve.v1,1.0f/6.0f*icurve.v2));
- const Vertex v1 = madd(2.0f/3.0f,icurve.v1,1.0f/3.0f*icurve.v2);
- const Vertex v2 = madd(1.0f/3.0f,icurve.v1,2.0f/3.0f*icurve.v2);
- const Vertex v3 = madd(1.0f/6.0f,icurve.v1,madd(2.0f/3.0f,icurve.v2,1.0f/6.0f*icurve.v3));
- ocurve = BezierCurveT<Vertex>(v0,v1,v2,v3);
- }
- template<typename CurveGeometry>
- __forceinline BSplineCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const BSplineCurveT<Vec3ff>& curve)
- {
- return BSplineCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0),
- enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1),
- enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2),
- enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3));
- }
-
- typedef BSplineCurveT<Vec3fa> BSplineCurve3fa;
- }
|