123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200 |
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- //
- //
- // AMD FidelityFX SUPER RESOLUTION [FSR 1] ::: SPATIAL SCALING & EXTRAS - v1.20210629
- //
- //
- //------------------------------------------------------------------------------------------------------------------------------
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //------------------------------------------------------------------------------------------------------------------------------
- // FidelityFX Super Resolution Sample
- //
- // Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files(the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions :
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- // THE SOFTWARE.
- //------------------------------------------------------------------------------------------------------------------------------
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //------------------------------------------------------------------------------------------------------------------------------
- // ABOUT
- // =====
- // FSR is a collection of algorithms relating to generating a higher resolution image.
- // This specific header focuses on single-image non-temporal image scaling, and related tools.
- //
- // The core functions are EASU and RCAS:
- // [EASU] Edge Adaptive Spatial Upsampling ....... 1x to 4x area range spatial scaling, clamped adaptive elliptical filter.
- // [RCAS] Robust Contrast Adaptive Sharpening .... A non-scaling variation on CAS.
- // RCAS needs to be applied after EASU as a separate pass.
- //
- // Optional utility functions are:
- // [LFGA] Linear Film Grain Applicator ........... Tool to apply film grain after scaling.
- // [SRTM] Simple Reversible Tone-Mapper .......... Linear HDR {0 to FP16_MAX} to {0 to 1} and back.
- // [TEPD] Temporal Energy Preserving Dither ...... Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion.
- // See each individual sub-section for inline documentation.
- //------------------------------------------------------------------------------------------------------------------------------
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //------------------------------------------------------------------------------------------------------------------------------
- // FUNCTION PERMUTATIONS
- // =====================
- // *F() ..... Single item computation with 32-bit.
- // *H() ..... Single item computation with 16-bit, with packing (aka two 16-bit ops in parallel) when possible.
- // *Hx2() ... Processing two items in parallel with 16-bit, easier packing.
- // Not all interfaces in this file have a *Hx2() form.
- //==============================================================================================================================
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- //
- // FSR - [EASU] EDGE ADAPTIVE SPATIAL UPSAMPLING
- //
- //------------------------------------------------------------------------------------------------------------------------------
- // EASU provides a high quality spatial-only scaling at relatively low cost.
- // Meaning EASU is appropiate for laptops and other low-end GPUs.
- // Quality from 1x to 4x area scaling is good.
- //------------------------------------------------------------------------------------------------------------------------------
- // The scalar uses a modified fast approximation to the standard lanczos(size=2) kernel.
- // EASU runs in a single pass, so it applies a directionally and anisotropically adaptive radial lanczos.
- // This is also kept as simple as possible to have minimum runtime.
- //------------------------------------------------------------------------------------------------------------------------------
- // The lanzcos filter has negative lobes, so by itself it will introduce ringing.
- // To remove all ringing, the algorithm uses the nearest 2x2 input texels as a neighborhood,
- // and limits output to the minimum and maximum of that neighborhood.
- //------------------------------------------------------------------------------------------------------------------------------
- // Input image requirements:
- //
- // Color needs to be encoded as 3 channel[red, green, blue](e.g.XYZ not supported)
- // Each channel needs to be in the range[0, 1]
- // Any color primaries are supported
- // Display / tonemapping curve needs to be as if presenting to sRGB display or similar(e.g.Gamma 2.0)
- // There should be no banding in the input
- // There should be no high amplitude noise in the input
- // There should be no noise in the input that is not at input pixel granularity
- // For performance purposes, use 32bpp formats
- //------------------------------------------------------------------------------------------------------------------------------
- // Best to apply EASU at the end of the frame after tonemapping
- // but before film grain or composite of the UI.
- //------------------------------------------------------------------------------------------------------------------------------
- // Example of including this header for D3D HLSL :
- //
- // #define A_GPU 1
- // #define A_HLSL 1
- // #define A_HALF 1
- // #include "ffx_a.h"
- // #define FSR_EASU_H 1
- // #define FSR_RCAS_H 1
- // //declare input callbacks
- // #include "ffx_fsr1.h"
- //
- // Example of including this header for Vulkan GLSL :
- //
- // #define A_GPU 1
- // #define A_GLSL 1
- // #define A_HALF 1
- // #include "ffx_a.h"
- // #define FSR_EASU_H 1
- // #define FSR_RCAS_H 1
- // //declare input callbacks
- // #include "ffx_fsr1.h"
- //
- // Example of including this header for Vulkan HLSL :
- //
- // #define A_GPU 1
- // #define A_HLSL 1
- // #define A_HLSL_6_2 1
- // #define A_NO_16_BIT_CAST 1
- // #define A_HALF 1
- // #include "ffx_a.h"
- // #define FSR_EASU_H 1
- // #define FSR_RCAS_H 1
- // //declare input callbacks
- // #include "ffx_fsr1.h"
- //
- // Example of declaring the required input callbacks for GLSL :
- // The callbacks need to gather4 for each color channel using the specified texture coordinate 'p'.
- // EASU uses gather4 to reduce position computation logic and for free Arrays of Structures to Structures of Arrays conversion.
- //
- // AH4 FsrEasuRH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,0));}
- // AH4 FsrEasuGH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,1));}
- // AH4 FsrEasuBH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,2));}
- // ...
- // The FsrEasuCon function needs to be called from the CPU or GPU to set up constants.
- // The difference in viewport and input image size is there to support Dynamic Resolution Scaling.
- // To use FsrEasuCon() on the CPU, define A_CPU before including ffx_a and ffx_fsr1.
- // Including a GPU example here, the 'con0' through 'con3' values would be stored out to a constant buffer.
- // AU4 con0,con1,con2,con3;
- // FsrEasuCon(con0,con1,con2,con3,
- // 1920.0,1080.0, // Viewport size (top left aligned) in the input image which is to be scaled.
- // 3840.0,2160.0, // The size of the input image.
- // 2560.0,1440.0); // The output resolution.
- //==============================================================================================================================
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- // CONSTANT SETUP
- //==============================================================================================================================
- // Call to setup required constant values (works on CPU or GPU).
- A_STATIC void FsrEasuCon(
- outAU4 con0,
- outAU4 con1,
- outAU4 con2,
- outAU4 con3,
- // This the rendered image resolution being upscaled
- AF1 inputViewportInPixelsX,
- AF1 inputViewportInPixelsY,
- // This is the resolution of the resource containing the input image (useful for dynamic resolution)
- AF1 inputSizeInPixelsX,
- AF1 inputSizeInPixelsY,
- // This is the display resolution which the input image gets upscaled to
- AF1 outputSizeInPixelsX,
- AF1 outputSizeInPixelsY){
- // Output integer position to a pixel position in viewport.
- con0[0]=AU1_AF1(inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX));
- con0[1]=AU1_AF1(inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY));
- con0[2]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5));
- con0[3]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5));
- // Viewport pixel position to normalized image space.
- // This is used to get upper-left of 'F' tap.
- con1[0]=AU1_AF1(ARcpF1(inputSizeInPixelsX));
- con1[1]=AU1_AF1(ARcpF1(inputSizeInPixelsY));
- // Centers of gather4, first offset from upper-left of 'F'.
- // +---+---+
- // | | |
- // +--(0)--+
- // | b | c |
- // +---F---+---+---+
- // | e | f | g | h |
- // +--(1)--+--(2)--+
- // | i | j | k | l |
- // +---+---+---+---+
- // | n | o |
- // +--(3)--+
- // | | |
- // +---+---+
- con1[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX));
- con1[3]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsY));
- // These are from (0) instead of 'F'.
- con2[0]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsX));
- con2[1]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY));
- con2[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX));
- con2[3]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY));
- con3[0]=AU1_AF1(AF1_( 0.0)*ARcpF1(inputSizeInPixelsX));
- con3[1]=AU1_AF1(AF1_( 4.0)*ARcpF1(inputSizeInPixelsY));
- con3[2]=con3[3]=0;}
- //If the an offset into the input image resource
- A_STATIC void FsrEasuConOffset(
- outAU4 con0,
- outAU4 con1,
- outAU4 con2,
- outAU4 con3,
- // This the rendered image resolution being upscaled
- AF1 inputViewportInPixelsX,
- AF1 inputViewportInPixelsY,
- // This is the resolution of the resource containing the input image (useful for dynamic resolution)
- AF1 inputSizeInPixelsX,
- AF1 inputSizeInPixelsY,
- // This is the display resolution which the input image gets upscaled to
- AF1 outputSizeInPixelsX,
- AF1 outputSizeInPixelsY,
- // This is the input image offset into the resource containing it (useful for dynamic resolution)
- AF1 inputOffsetInPixelsX,
- AF1 inputOffsetInPixelsY) {
- FsrEasuCon(con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY, inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY);
- con0[2] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsX * ARcpF1(outputSizeInPixelsX) - AF1_(0.5) + inputOffsetInPixelsX);
- con0[3] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsY * ARcpF1(outputSizeInPixelsY) - AF1_(0.5) + inputOffsetInPixelsY);
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- // NON-PACKED 32-BIT VERSION
- //==============================================================================================================================
- #if defined(A_GPU)&&defined(FSR_EASU_F)
- // Input callback prototypes, need to be implemented by calling shader
- AF4 FsrEasuRF(AF2 p);
- AF4 FsrEasuGF(AF2 p);
- AF4 FsrEasuBF(AF2 p);
- //------------------------------------------------------------------------------------------------------------------------------
- // Filtering for a given tap for the scalar.
- void FsrEasuTapF(
- inout AF3 aC, // Accumulated color, with negative lobe.
- inout AF1 aW, // Accumulated weight.
- AF2 off, // Pixel offset from resolve position to tap.
- AF2 dir, // Gradient direction.
- AF2 len, // Length.
- AF1 lob, // Negative lobe strength.
- AF1 clp, // Clipping point.
- AF3 c){ // Tap color.
- // Rotate offset by direction.
- AF2 v;
- v.x=(off.x*( dir.x))+(off.y*dir.y);
- v.y=(off.x*(-dir.y))+(off.y*dir.x);
- // Anisotropy.
- v*=len;
- // Compute distance^2.
- AF1 d2=v.x*v.x+v.y*v.y;
- // Limit to the window as at corner, 2 taps can easily be outside.
- d2=min(d2,clp);
- // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x.
- // (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2
- // |_______________________________________| |_______________|
- // base window
- // The general form of the 'base' is,
- // (a*(b*x^2-1)^2-(a-1))
- // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe.
- AF1 wB=AF1_(2.0/5.0)*d2+AF1_(-1.0);
- AF1 wA=lob*d2+AF1_(-1.0);
- wB*=wB;
- wA*=wA;
- wB=AF1_(25.0/16.0)*wB+AF1_(-(25.0/16.0-1.0));
- AF1 w=wB*wA;
- // Do weighted average.
- aC+=c*w;aW+=w;}
- //------------------------------------------------------------------------------------------------------------------------------
- // Accumulate direction and length.
- void FsrEasuSetF(
- inout AF2 dir,
- inout AF1 len,
- AF2 pp,
- AP1 biS,AP1 biT,AP1 biU,AP1 biV,
- AF1 lA,AF1 lB,AF1 lC,AF1 lD,AF1 lE){
- // Compute bilinear weight, branches factor out as predicates are compiler time immediates.
- // s t
- // u v
- AF1 w = AF1_(0.0);
- if(biS)w=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y);
- if(biT)w= pp.x *(AF1_(1.0)-pp.y);
- if(biU)w=(AF1_(1.0)-pp.x)* pp.y ;
- if(biV)w= pp.x * pp.y ;
- // Direction is the '+' diff.
- // a
- // b c d
- // e
- // Then takes magnitude from abs average of both sides of 'c'.
- // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms.
- AF1 dc=lD-lC;
- AF1 cb=lC-lB;
- AF1 lenX=max(abs(dc),abs(cb));
- lenX=APrxLoRcpF1(lenX);
- AF1 dirX=lD-lB;
- dir.x+=dirX*w;
- lenX=ASatF1(abs(dirX)*lenX);
- lenX*=lenX;
- len+=lenX*w;
- // Repeat for the y axis.
- AF1 ec=lE-lC;
- AF1 ca=lC-lA;
- AF1 lenY=max(abs(ec),abs(ca));
- lenY=APrxLoRcpF1(lenY);
- AF1 dirY=lE-lA;
- dir.y+=dirY*w;
- lenY=ASatF1(abs(dirY)*lenY);
- lenY*=lenY;
- len+=lenY*w;}
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrEasuF(
- out AF3 pix,
- AU2 ip, // Integer pixel position in output.
- AU4 con0, // Constants generated by FsrEasuCon().
- AU4 con1,
- AU4 con2,
- AU4 con3){
- //------------------------------------------------------------------------------------------------------------------------------
- // Get position of 'f'.
- AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw);
- AF2 fp=floor(pp);
- pp-=fp;
- //------------------------------------------------------------------------------------------------------------------------------
- // 12-tap kernel.
- // b c
- // e f g h
- // i j k l
- // n o
- // Gather 4 ordering.
- // a b
- // r g
- // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions,
- // a b <- unused (z)
- // r g
- // a b a b
- // r g r g
- // a b
- // r g <- unused (z)
- // Allowing dead-code removal to remove the 'z's.
- AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw);
- // These are from p0 to avoid pulling two constants on pre-Navi hardware.
- AF2 p1=p0+AF2_AU2(con2.xy);
- AF2 p2=p0+AF2_AU2(con2.zw);
- AF2 p3=p0+AF2_AU2(con3.xy);
- AF4 bczzR=FsrEasuRF(p0);
- AF4 bczzG=FsrEasuGF(p0);
- AF4 bczzB=FsrEasuBF(p0);
- AF4 ijfeR=FsrEasuRF(p1);
- AF4 ijfeG=FsrEasuGF(p1);
- AF4 ijfeB=FsrEasuBF(p1);
- AF4 klhgR=FsrEasuRF(p2);
- AF4 klhgG=FsrEasuGF(p2);
- AF4 klhgB=FsrEasuBF(p2);
- AF4 zzonR=FsrEasuRF(p3);
- AF4 zzonG=FsrEasuGF(p3);
- AF4 zzonB=FsrEasuBF(p3);
- //------------------------------------------------------------------------------------------------------------------------------
- // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD).
- AF4 bczzL=bczzB*AF4_(0.5)+(bczzR*AF4_(0.5)+bczzG);
- AF4 ijfeL=ijfeB*AF4_(0.5)+(ijfeR*AF4_(0.5)+ijfeG);
- AF4 klhgL=klhgB*AF4_(0.5)+(klhgR*AF4_(0.5)+klhgG);
- AF4 zzonL=zzonB*AF4_(0.5)+(zzonR*AF4_(0.5)+zzonG);
- // Rename.
- AF1 bL=bczzL.x;
- AF1 cL=bczzL.y;
- AF1 iL=ijfeL.x;
- AF1 jL=ijfeL.y;
- AF1 fL=ijfeL.z;
- AF1 eL=ijfeL.w;
- AF1 kL=klhgL.x;
- AF1 lL=klhgL.y;
- AF1 hL=klhgL.z;
- AF1 gL=klhgL.w;
- AF1 oL=zzonL.z;
- AF1 nL=zzonL.w;
- // Accumulate for bilinear interpolation.
- AF2 dir=AF2_(0.0);
- AF1 len=AF1_(0.0);
- FsrEasuSetF(dir,len,pp,true, false,false,false,bL,eL,fL,gL,jL);
- FsrEasuSetF(dir,len,pp,false,true ,false,false,cL,fL,gL,hL,kL);
- FsrEasuSetF(dir,len,pp,false,false,true ,false,fL,iL,jL,kL,nL);
- FsrEasuSetF(dir,len,pp,false,false,false,true ,gL,jL,kL,lL,oL);
- //------------------------------------------------------------------------------------------------------------------------------
- // Normalize with approximation, and cleanup close to zero.
- AF2 dir2=dir*dir;
- AF1 dirR=dir2.x+dir2.y;
- AP1 zro=dirR<AF1_(1.0/32768.0);
- dirR=APrxLoRsqF1(dirR);
- dirR=zro?AF1_(1.0):dirR;
- dir.x=zro?AF1_(1.0):dir.x;
- dir*=AF2_(dirR);
- // Transform from {0 to 2} to {0 to 1} range, and shape with square.
- len=len*AF1_(0.5);
- len*=len;
- // Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}.
- AF1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpF1(max(abs(dir.x),abs(dir.y)));
- // Anisotropic length after rotation,
- // x := 1.0 lerp to 'stretch' on edges
- // y := 1.0 lerp to 2x on edges
- AF2 len2=AF2(AF1_(1.0)+(stretch-AF1_(1.0))*len,AF1_(1.0)+AF1_(-0.5)*len);
- // Based on the amount of 'edge',
- // the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}.
- AF1 lob=AF1_(0.5)+AF1_((1.0/4.0-0.04)-0.5)*len;
- // Set distance^2 clipping point to the end of the adjustable window.
- AF1 clp=APrxLoRcpF1(lob);
- //------------------------------------------------------------------------------------------------------------------------------
- // Accumulation mixed with min/max of 4 nearest.
- // b c
- // e f g h
- // i j k l
- // n o
- AF3 min4=min(AMin3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)),
- AF3(klhgR.x,klhgG.x,klhgB.x));
- AF3 max4=max(AMax3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)),
- AF3(klhgR.x,klhgG.x,klhgB.x));
- // Accumulation.
- AF3 aC=AF3_(0.0);
- AF1 aW=AF1_(0.0);
- FsrEasuTapF(aC,aW,AF2( 0.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.x,bczzG.x,bczzB.x)); // b
- FsrEasuTapF(aC,aW,AF2( 1.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.y,bczzG.y,bczzB.y)); // c
- FsrEasuTapF(aC,aW,AF2(-1.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.x,ijfeG.x,ijfeB.x)); // i
- FsrEasuTapF(aC,aW,AF2( 0.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.y,ijfeG.y,ijfeB.y)); // j
- FsrEasuTapF(aC,aW,AF2( 0.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.z,ijfeG.z,ijfeB.z)); // f
- FsrEasuTapF(aC,aW,AF2(-1.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.w,ijfeG.w,ijfeB.w)); // e
- FsrEasuTapF(aC,aW,AF2( 1.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.x,klhgG.x,klhgB.x)); // k
- FsrEasuTapF(aC,aW,AF2( 2.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.y,klhgG.y,klhgB.y)); // l
- FsrEasuTapF(aC,aW,AF2( 2.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.z,klhgG.z,klhgB.z)); // h
- FsrEasuTapF(aC,aW,AF2( 1.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.w,klhgG.w,klhgB.w)); // g
- FsrEasuTapF(aC,aW,AF2( 1.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.z,zzonG.z,zzonB.z)); // o
- FsrEasuTapF(aC,aW,AF2( 0.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.w,zzonG.w,zzonB.w)); // n
- //------------------------------------------------------------------------------------------------------------------------------
- // Normalize and dering.
- pix=min(max4,max(min4,aC*AF3_(ARcpF1(aW))));}
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- // PACKED 16-BIT VERSION
- //==============================================================================================================================
- #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_EASU_H)
- // Input callback prototypes, need to be implemented by calling shader
- AH4 FsrEasuRH(AF2 p);
- AH4 FsrEasuGH(AF2 p);
- AH4 FsrEasuBH(AF2 p);
- //------------------------------------------------------------------------------------------------------------------------------
- // This runs 2 taps in parallel.
- void FsrEasuTapH(
- inout AH2 aCR,inout AH2 aCG,inout AH2 aCB,
- inout AH2 aW,
- AH2 offX,AH2 offY,
- AH2 dir,
- AH2 len,
- AH1 lob,
- AH1 clp,
- AH2 cR,AH2 cG,AH2 cB){
- AH2 vX,vY;
- vX=offX* dir.xx +offY*dir.yy;
- vY=offX*(-dir.yy)+offY*dir.xx;
- vX*=len.x;vY*=len.y;
- AH2 d2=vX*vX+vY*vY;
- d2=min(d2,AH2_(clp));
- AH2 wB=AH2_(2.0/5.0)*d2+AH2_(-1.0);
- AH2 wA=AH2_(lob)*d2+AH2_(-1.0);
- wB*=wB;
- wA*=wA;
- wB=AH2_(25.0/16.0)*wB+AH2_(-(25.0/16.0-1.0));
- AH2 w=wB*wA;
- aCR+=cR*w;aCG+=cG*w;aCB+=cB*w;aW+=w;}
- //------------------------------------------------------------------------------------------------------------------------------
- // This runs 2 taps in parallel.
- void FsrEasuSetH(
- inout AH2 dirPX,inout AH2 dirPY,
- inout AH2 lenP,
- AH2 pp,
- AP1 biST,AP1 biUV,
- AH2 lA,AH2 lB,AH2 lC,AH2 lD,AH2 lE){
- AH2 w = AH2_(0.0);
- if(biST)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_(AH1_(1.0)-pp.y);
- if(biUV)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_( pp.y);
- // ABS is not free in the packed FP16 path.
- AH2 dc=lD-lC;
- AH2 cb=lC-lB;
- AH2 lenX=max(abs(dc),abs(cb));
- lenX=ARcpH2(lenX);
- AH2 dirX=lD-lB;
- dirPX+=dirX*w;
- lenX=ASatH2(abs(dirX)*lenX);
- lenX*=lenX;
- lenP+=lenX*w;
- AH2 ec=lE-lC;
- AH2 ca=lC-lA;
- AH2 lenY=max(abs(ec),abs(ca));
- lenY=ARcpH2(lenY);
- AH2 dirY=lE-lA;
- dirPY+=dirY*w;
- lenY=ASatH2(abs(dirY)*lenY);
- lenY*=lenY;
- lenP+=lenY*w;}
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrEasuH(
- out AH3 pix,
- AU2 ip,
- AU4 con0,
- AU4 con1,
- AU4 con2,
- AU4 con3){
- //------------------------------------------------------------------------------------------------------------------------------
- AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw);
- AF2 fp=floor(pp);
- pp-=fp;
- AH2 ppp=AH2(pp);
- //------------------------------------------------------------------------------------------------------------------------------
- AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw);
- AF2 p1=p0+AF2_AU2(con2.xy);
- AF2 p2=p0+AF2_AU2(con2.zw);
- AF2 p3=p0+AF2_AU2(con3.xy);
- AH4 bczzR=FsrEasuRH(p0);
- AH4 bczzG=FsrEasuGH(p0);
- AH4 bczzB=FsrEasuBH(p0);
- AH4 ijfeR=FsrEasuRH(p1);
- AH4 ijfeG=FsrEasuGH(p1);
- AH4 ijfeB=FsrEasuBH(p1);
- AH4 klhgR=FsrEasuRH(p2);
- AH4 klhgG=FsrEasuGH(p2);
- AH4 klhgB=FsrEasuBH(p2);
- AH4 zzonR=FsrEasuRH(p3);
- AH4 zzonG=FsrEasuGH(p3);
- AH4 zzonB=FsrEasuBH(p3);
- //------------------------------------------------------------------------------------------------------------------------------
- AH4 bczzL=bczzB*AH4_(0.5)+(bczzR*AH4_(0.5)+bczzG);
- AH4 ijfeL=ijfeB*AH4_(0.5)+(ijfeR*AH4_(0.5)+ijfeG);
- AH4 klhgL=klhgB*AH4_(0.5)+(klhgR*AH4_(0.5)+klhgG);
- AH4 zzonL=zzonB*AH4_(0.5)+(zzonR*AH4_(0.5)+zzonG);
- AH1 bL=bczzL.x;
- AH1 cL=bczzL.y;
- AH1 iL=ijfeL.x;
- AH1 jL=ijfeL.y;
- AH1 fL=ijfeL.z;
- AH1 eL=ijfeL.w;
- AH1 kL=klhgL.x;
- AH1 lL=klhgL.y;
- AH1 hL=klhgL.z;
- AH1 gL=klhgL.w;
- AH1 oL=zzonL.z;
- AH1 nL=zzonL.w;
- // This part is different, accumulating 2 taps in parallel.
- AH2 dirPX=AH2_(0.0);
- AH2 dirPY=AH2_(0.0);
- AH2 lenP=AH2_(0.0);
- FsrEasuSetH(dirPX,dirPY,lenP,ppp,true, false,AH2(bL,cL),AH2(eL,fL),AH2(fL,gL),AH2(gL,hL),AH2(jL,kL));
- FsrEasuSetH(dirPX,dirPY,lenP,ppp,false,true ,AH2(fL,gL),AH2(iL,jL),AH2(jL,kL),AH2(kL,lL),AH2(nL,oL));
- AH2 dir=AH2(dirPX.r+dirPX.g,dirPY.r+dirPY.g);
- AH1 len=lenP.r+lenP.g;
- //------------------------------------------------------------------------------------------------------------------------------
- AH2 dir2=dir*dir;
- AH1 dirR=dir2.x+dir2.y;
- AP1 zro=dirR<AH1_(1.0/32768.0);
- dirR=APrxLoRsqH1(dirR);
- dirR=zro?AH1_(1.0):dirR;
- dir.x=zro?AH1_(1.0):dir.x;
- dir*=AH2_(dirR);
- len=len*AH1_(0.5);
- len*=len;
- AH1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpH1(max(abs(dir.x),abs(dir.y)));
- AH2 len2=AH2(AH1_(1.0)+(stretch-AH1_(1.0))*len,AH1_(1.0)+AH1_(-0.5)*len);
- AH1 lob=AH1_(0.5)+AH1_((1.0/4.0-0.04)-0.5)*len;
- AH1 clp=APrxLoRcpH1(lob);
- //------------------------------------------------------------------------------------------------------------------------------
- // FP16 is different, using packed trick to do min and max in same operation.
- AH2 bothR=max(max(AH2(-ijfeR.z,ijfeR.z),AH2(-klhgR.w,klhgR.w)),max(AH2(-ijfeR.y,ijfeR.y),AH2(-klhgR.x,klhgR.x)));
- AH2 bothG=max(max(AH2(-ijfeG.z,ijfeG.z),AH2(-klhgG.w,klhgG.w)),max(AH2(-ijfeG.y,ijfeG.y),AH2(-klhgG.x,klhgG.x)));
- AH2 bothB=max(max(AH2(-ijfeB.z,ijfeB.z),AH2(-klhgB.w,klhgB.w)),max(AH2(-ijfeB.y,ijfeB.y),AH2(-klhgB.x,klhgB.x)));
- // This part is different for FP16, working pairs of taps at a time.
- AH2 pR=AH2_(0.0);
- AH2 pG=AH2_(0.0);
- AH2 pB=AH2_(0.0);
- AH2 pW=AH2_(0.0);
- FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0, 1.0)-ppp.xx,AH2(-1.0,-1.0)-ppp.yy,dir,len2,lob,clp,bczzR.xy,bczzG.xy,bczzB.xy);
- FsrEasuTapH(pR,pG,pB,pW,AH2(-1.0, 0.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,ijfeR.xy,ijfeG.xy,ijfeB.xy);
- FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0,-1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,ijfeR.zw,ijfeG.zw,ijfeB.zw);
- FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 2.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,klhgR.xy,klhgG.xy,klhgB.xy);
- FsrEasuTapH(pR,pG,pB,pW,AH2( 2.0, 1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,klhgR.zw,klhgG.zw,klhgB.zw);
- FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 0.0)-ppp.xx,AH2( 2.0, 2.0)-ppp.yy,dir,len2,lob,clp,zzonR.zw,zzonG.zw,zzonB.zw);
- AH3 aC=AH3(pR.x+pR.y,pG.x+pG.y,pB.x+pB.y);
- AH1 aW=pW.x+pW.y;
- //------------------------------------------------------------------------------------------------------------------------------
- // Slightly different for FP16 version due to combined min and max.
- pix=min(AH3(bothR.y,bothG.y,bothB.y),max(-AH3(bothR.x,bothG.x,bothB.x),aC*AH3_(ARcpH1(aW))));}
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- //
- // FSR - [RCAS] ROBUST CONTRAST ADAPTIVE SHARPENING
- //
- //------------------------------------------------------------------------------------------------------------------------------
- // CAS uses a simplified mechanism to convert local contrast into a variable amount of sharpness.
- // RCAS uses a more exact mechanism, solving for the maximum local sharpness possible before clipping.
- // RCAS also has a built in process to limit sharpening of what it detects as possible noise.
- // RCAS sharper does not support scaling, as it should be applied after EASU scaling.
- // Pass EASU output straight into RCAS, no color conversions necessary.
- //------------------------------------------------------------------------------------------------------------------------------
- // RCAS is based on the following logic.
- // RCAS uses a 5 tap filter in a cross pattern (same as CAS),
- // w n
- // w 1 w for taps w m e
- // w s
- // Where 'w' is the negative lobe weight.
- // output = (w*(n+e+w+s)+m)/(4*w+1)
- // RCAS solves for 'w' by seeing where the signal might clip out of the {0 to 1} input range,
- // 0 == (w*(n+e+w+s)+m)/(4*w+1) -> w = -m/(n+e+w+s)
- // 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1)
- // Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount.
- // This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues.
- // So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps.
- // As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation.
- // This stabilizes RCAS.
- // RCAS does a simple highpass which is normalized against the local contrast then shaped,
- // 0.25
- // 0.25 -1 0.25
- // 0.25
- // This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges.
- //
- // GLSL example for the required callbacks :
- //
- // AH4 FsrRcasLoadH(ASW2 p){return AH4(imageLoad(imgSrc,ASU2(p)));}
- // void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b)
- // {
- // //do any simple input color conversions here or leave empty if none needed
- // }
- //
- // FsrRcasCon need to be called from the CPU or GPU to set up constants.
- // Including a GPU example here, the 'con' value would be stored out to a constant buffer.
- //
- // AU4 con;
- // FsrRcasCon(con,
- // 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
- // ---------------
- // RCAS sharpening supports a CAS-like pass-through alpha via,
- // #define FSR_RCAS_PASSTHROUGH_ALPHA 1
- // RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise.
- // Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define,
- // #define FSR_RCAS_DENOISE 1
- //==============================================================================================================================
- // This is set at the limit of providing unnatural results for sharpening.
- #define FSR_RCAS_LIMIT (0.25-(1.0/16.0))
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- // CONSTANT SETUP
- //==============================================================================================================================
- // Call to setup required constant values (works on CPU or GPU).
- A_STATIC void FsrRcasCon(
- outAU4 con,
- // The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
- AF1 sharpness){
- // Transform from stops to linear value.
- sharpness=AExp2F1(-sharpness);
- varAF2(hSharp)=initAF2(sharpness,sharpness);
- con[0]=AU1_AF1(sharpness);
- con[1]=AU1_AH2_AF2(hSharp);
- con[2]=0;
- con[3]=0;}
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- // NON-PACKED 32-BIT VERSION
- //==============================================================================================================================
- #if defined(A_GPU)&&defined(FSR_RCAS_F)
- // Input callback prototypes that need to be implemented by calling shader
- AF4 FsrRcasLoadF(ASU2 p);
- void FsrRcasInputF(inout AF1 r,inout AF1 g,inout AF1 b);
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrRcasF(
- out AF1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
- out AF1 pixG,
- out AF1 pixB,
- #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
- out AF1 pixA,
- #endif
- AU2 ip, // Integer pixel position in output.
- AU4 con){ // Constant generated by RcasSetup().
- // Algorithm uses minimal 3x3 pixel neighborhood.
- // b
- // d e f
- // h
- ASU2 sp=ASU2(ip);
- AF3 b=FsrRcasLoadF(sp+ASU2( 0,-1)).rgb;
- AF3 d=FsrRcasLoadF(sp+ASU2(-1, 0)).rgb;
- #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
- AF4 ee=FsrRcasLoadF(sp);
- AF3 e=ee.rgb;pixA=ee.a;
- #else
- AF3 e=FsrRcasLoadF(sp).rgb;
- #endif
- AF3 f=FsrRcasLoadF(sp+ASU2( 1, 0)).rgb;
- AF3 h=FsrRcasLoadF(sp+ASU2( 0, 1)).rgb;
- // Rename (32-bit) or regroup (16-bit).
- AF1 bR=b.r;
- AF1 bG=b.g;
- AF1 bB=b.b;
- AF1 dR=d.r;
- AF1 dG=d.g;
- AF1 dB=d.b;
- AF1 eR=e.r;
- AF1 eG=e.g;
- AF1 eB=e.b;
- AF1 fR=f.r;
- AF1 fG=f.g;
- AF1 fB=f.b;
- AF1 hR=h.r;
- AF1 hG=h.g;
- AF1 hB=h.b;
- // Run optional input transform.
- FsrRcasInputF(bR,bG,bB);
- FsrRcasInputF(dR,dG,dB);
- FsrRcasInputF(eR,eG,eB);
- FsrRcasInputF(fR,fG,fB);
- FsrRcasInputF(hR,hG,hB);
- // Luma times 2.
- AF1 bL=bB*AF1_(0.5)+(bR*AF1_(0.5)+bG);
- AF1 dL=dB*AF1_(0.5)+(dR*AF1_(0.5)+dG);
- AF1 eL=eB*AF1_(0.5)+(eR*AF1_(0.5)+eG);
- AF1 fL=fB*AF1_(0.5)+(fR*AF1_(0.5)+fG);
- AF1 hL=hB*AF1_(0.5)+(hR*AF1_(0.5)+hG);
- // Noise detection.
- AF1 nz=AF1_(0.25)*bL+AF1_(0.25)*dL+AF1_(0.25)*fL+AF1_(0.25)*hL-eL;
- nz=ASatF1(abs(nz)*APrxMedRcpF1(AMax3F1(AMax3F1(bL,dL,eL),fL,hL)-AMin3F1(AMin3F1(bL,dL,eL),fL,hL)));
- nz=AF1_(-0.5)*nz+AF1_(1.0);
- // Min and max of ring.
- AF1 mn4R=min(AMin3F1(bR,dR,fR),hR);
- AF1 mn4G=min(AMin3F1(bG,dG,fG),hG);
- AF1 mn4B=min(AMin3F1(bB,dB,fB),hB);
- AF1 mx4R=max(AMax3F1(bR,dR,fR),hR);
- AF1 mx4G=max(AMax3F1(bG,dG,fG),hG);
- AF1 mx4B=max(AMax3F1(bB,dB,fB),hB);
- // Immediate constants for peak range.
- AF2 peakC=AF2(1.0,-1.0*4.0);
- // Limiters, these need to be high precision RCPs.
- AF1 hitMinR=min(mn4R,eR)*ARcpF1(AF1_(4.0)*mx4R);
- AF1 hitMinG=min(mn4G,eG)*ARcpF1(AF1_(4.0)*mx4G);
- AF1 hitMinB=min(mn4B,eB)*ARcpF1(AF1_(4.0)*mx4B);
- AF1 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpF1(AF1_(4.0)*mn4R+peakC.y);
- AF1 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpF1(AF1_(4.0)*mn4G+peakC.y);
- AF1 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpF1(AF1_(4.0)*mn4B+peakC.y);
- AF1 lobeR=max(-hitMinR,hitMaxR);
- AF1 lobeG=max(-hitMinG,hitMaxG);
- AF1 lobeB=max(-hitMinB,hitMaxB);
- AF1 lobe=max(AF1_(-FSR_RCAS_LIMIT),min(AMax3F1(lobeR,lobeG,lobeB),AF1_(0.0)))*AF1_AU1(con.x);
- // Apply noise removal.
- #ifdef FSR_RCAS_DENOISE
- lobe*=nz;
- #endif
- // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
- AF1 rcpL=APrxMedRcpF1(AF1_(4.0)*lobe+AF1_(1.0));
- pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
- pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
- pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;
- return;}
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- // NON-PACKED 16-BIT VERSION
- //==============================================================================================================================
- #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_H)
- // Input callback prototypes that need to be implemented by calling shader
- AH4 FsrRcasLoadH(ASW2 p);
- void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b);
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrRcasH(
- out AH1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
- out AH1 pixG,
- out AH1 pixB,
- #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
- out AH1 pixA,
- #endif
- AU2 ip, // Integer pixel position in output.
- AU4 con){ // Constant generated by RcasSetup().
- // Sharpening algorithm uses minimal 3x3 pixel neighborhood.
- // b
- // d e f
- // h
- ASW2 sp=ASW2(ip);
- AH3 b=FsrRcasLoadH(sp+ASW2( 0,-1)).rgb;
- AH3 d=FsrRcasLoadH(sp+ASW2(-1, 0)).rgb;
- #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
- AH4 ee=FsrRcasLoadH(sp);
- AH3 e=ee.rgb;pixA=ee.a;
- #else
- AH3 e=FsrRcasLoadH(sp).rgb;
- #endif
- AH3 f=FsrRcasLoadH(sp+ASW2( 1, 0)).rgb;
- AH3 h=FsrRcasLoadH(sp+ASW2( 0, 1)).rgb;
- // Rename (32-bit) or regroup (16-bit).
- AH1 bR=b.r;
- AH1 bG=b.g;
- AH1 bB=b.b;
- AH1 dR=d.r;
- AH1 dG=d.g;
- AH1 dB=d.b;
- AH1 eR=e.r;
- AH1 eG=e.g;
- AH1 eB=e.b;
- AH1 fR=f.r;
- AH1 fG=f.g;
- AH1 fB=f.b;
- AH1 hR=h.r;
- AH1 hG=h.g;
- AH1 hB=h.b;
- // Run optional input transform.
- FsrRcasInputH(bR,bG,bB);
- FsrRcasInputH(dR,dG,dB);
- FsrRcasInputH(eR,eG,eB);
- FsrRcasInputH(fR,fG,fB);
- FsrRcasInputH(hR,hG,hB);
- // Luma times 2.
- AH1 bL=bB*AH1_(0.5)+(bR*AH1_(0.5)+bG);
- AH1 dL=dB*AH1_(0.5)+(dR*AH1_(0.5)+dG);
- AH1 eL=eB*AH1_(0.5)+(eR*AH1_(0.5)+eG);
- AH1 fL=fB*AH1_(0.5)+(fR*AH1_(0.5)+fG);
- AH1 hL=hB*AH1_(0.5)+(hR*AH1_(0.5)+hG);
- // Noise detection.
- AH1 nz=AH1_(0.25)*bL+AH1_(0.25)*dL+AH1_(0.25)*fL+AH1_(0.25)*hL-eL;
- nz=ASatH1(abs(nz)*APrxMedRcpH1(AMax3H1(AMax3H1(bL,dL,eL),fL,hL)-AMin3H1(AMin3H1(bL,dL,eL),fL,hL)));
- nz=AH1_(-0.5)*nz+AH1_(1.0);
- // Min and max of ring.
- AH1 mn4R=min(AMin3H1(bR,dR,fR),hR);
- AH1 mn4G=min(AMin3H1(bG,dG,fG),hG);
- AH1 mn4B=min(AMin3H1(bB,dB,fB),hB);
- AH1 mx4R=max(AMax3H1(bR,dR,fR),hR);
- AH1 mx4G=max(AMax3H1(bG,dG,fG),hG);
- AH1 mx4B=max(AMax3H1(bB,dB,fB),hB);
- // Immediate constants for peak range.
- AH2 peakC=AH2(1.0,-1.0*4.0);
- // Limiters, these need to be high precision RCPs.
- AH1 hitMinR=min(mn4R,eR)*ARcpH1(AH1_(4.0)*mx4R);
- AH1 hitMinG=min(mn4G,eG)*ARcpH1(AH1_(4.0)*mx4G);
- AH1 hitMinB=min(mn4B,eB)*ARcpH1(AH1_(4.0)*mx4B);
- AH1 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpH1(AH1_(4.0)*mn4R+peakC.y);
- AH1 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpH1(AH1_(4.0)*mn4G+peakC.y);
- AH1 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpH1(AH1_(4.0)*mn4B+peakC.y);
- AH1 lobeR=max(-hitMinR,hitMaxR);
- AH1 lobeG=max(-hitMinG,hitMaxG);
- AH1 lobeB=max(-hitMinB,hitMaxB);
- AH1 lobe=max(AH1_(-FSR_RCAS_LIMIT),min(AMax3H1(lobeR,lobeG,lobeB),AH1_(0.0)))*AH2_AU1(con.y).x;
- // Apply noise removal.
- #ifdef FSR_RCAS_DENOISE
- lobe*=nz;
- #endif
- // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
- AH1 rcpL=APrxMedRcpH1(AH1_(4.0)*lobe+AH1_(1.0));
- pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
- pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
- pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;}
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- // PACKED 16-BIT VERSION
- //==============================================================================================================================
- #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_HX2)
- // Input callback prototypes that need to be implemented by the calling shader
- AH4 FsrRcasLoadHx2(ASW2 p);
- void FsrRcasInputHx2(inout AH2 r,inout AH2 g,inout AH2 b);
- //------------------------------------------------------------------------------------------------------------------------------
- // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store.
- void FsrRcasDepackHx2(out AH4 pix0,out AH4 pix1,AH2 pixR,AH2 pixG,AH2 pixB){
- #ifdef A_HLSL
- // Invoke a slower path for DX only, since it won't allow uninitialized values.
- pix0.a=pix1.a=0.0;
- #endif
- pix0.rgb=AH3(pixR.x,pixG.x,pixB.x);
- pix1.rgb=AH3(pixR.y,pixG.y,pixB.y);}
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrRcasHx2(
- // Output values are for 2 8x8 tiles in a 16x8 region.
- // pix<R,G,B>.x = left 8x8 tile
- // pix<R,G,B>.y = right 8x8 tile
- // This enables later processing to easily be packed as well.
- out AH2 pixR,
- out AH2 pixG,
- out AH2 pixB,
- #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
- out AH2 pixA,
- #endif
- AU2 ip, // Integer pixel position in output.
- AU4 con){ // Constant generated by RcasSetup().
- // No scaling algorithm uses minimal 3x3 pixel neighborhood.
- ASW2 sp0=ASW2(ip);
- AH3 b0=FsrRcasLoadHx2(sp0+ASW2( 0,-1)).rgb;
- AH3 d0=FsrRcasLoadHx2(sp0+ASW2(-1, 0)).rgb;
- #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
- AH4 ee0=FsrRcasLoadHx2(sp0);
- AH3 e0=ee0.rgb;pixA.r=ee0.a;
- #else
- AH3 e0=FsrRcasLoadHx2(sp0).rgb;
- #endif
- AH3 f0=FsrRcasLoadHx2(sp0+ASW2( 1, 0)).rgb;
- AH3 h0=FsrRcasLoadHx2(sp0+ASW2( 0, 1)).rgb;
- ASW2 sp1=sp0+ASW2(8,0);
- AH3 b1=FsrRcasLoadHx2(sp1+ASW2( 0,-1)).rgb;
- AH3 d1=FsrRcasLoadHx2(sp1+ASW2(-1, 0)).rgb;
- #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
- AH4 ee1=FsrRcasLoadHx2(sp1);
- AH3 e1=ee1.rgb;pixA.g=ee1.a;
- #else
- AH3 e1=FsrRcasLoadHx2(sp1).rgb;
- #endif
- AH3 f1=FsrRcasLoadHx2(sp1+ASW2( 1, 0)).rgb;
- AH3 h1=FsrRcasLoadHx2(sp1+ASW2( 0, 1)).rgb;
- // Arrays of Structures to Structures of Arrays conversion.
- AH2 bR=AH2(b0.r,b1.r);
- AH2 bG=AH2(b0.g,b1.g);
- AH2 bB=AH2(b0.b,b1.b);
- AH2 dR=AH2(d0.r,d1.r);
- AH2 dG=AH2(d0.g,d1.g);
- AH2 dB=AH2(d0.b,d1.b);
- AH2 eR=AH2(e0.r,e1.r);
- AH2 eG=AH2(e0.g,e1.g);
- AH2 eB=AH2(e0.b,e1.b);
- AH2 fR=AH2(f0.r,f1.r);
- AH2 fG=AH2(f0.g,f1.g);
- AH2 fB=AH2(f0.b,f1.b);
- AH2 hR=AH2(h0.r,h1.r);
- AH2 hG=AH2(h0.g,h1.g);
- AH2 hB=AH2(h0.b,h1.b);
- // Run optional input transform.
- FsrRcasInputHx2(bR,bG,bB);
- FsrRcasInputHx2(dR,dG,dB);
- FsrRcasInputHx2(eR,eG,eB);
- FsrRcasInputHx2(fR,fG,fB);
- FsrRcasInputHx2(hR,hG,hB);
- // Luma times 2.
- AH2 bL=bB*AH2_(0.5)+(bR*AH2_(0.5)+bG);
- AH2 dL=dB*AH2_(0.5)+(dR*AH2_(0.5)+dG);
- AH2 eL=eB*AH2_(0.5)+(eR*AH2_(0.5)+eG);
- AH2 fL=fB*AH2_(0.5)+(fR*AH2_(0.5)+fG);
- AH2 hL=hB*AH2_(0.5)+(hR*AH2_(0.5)+hG);
- // Noise detection.
- AH2 nz=AH2_(0.25)*bL+AH2_(0.25)*dL+AH2_(0.25)*fL+AH2_(0.25)*hL-eL;
- nz=ASatH2(abs(nz)*APrxMedRcpH2(AMax3H2(AMax3H2(bL,dL,eL),fL,hL)-AMin3H2(AMin3H2(bL,dL,eL),fL,hL)));
- nz=AH2_(-0.5)*nz+AH2_(1.0);
- // Min and max of ring.
- AH2 mn4R=min(AMin3H2(bR,dR,fR),hR);
- AH2 mn4G=min(AMin3H2(bG,dG,fG),hG);
- AH2 mn4B=min(AMin3H2(bB,dB,fB),hB);
- AH2 mx4R=max(AMax3H2(bR,dR,fR),hR);
- AH2 mx4G=max(AMax3H2(bG,dG,fG),hG);
- AH2 mx4B=max(AMax3H2(bB,dB,fB),hB);
- // Immediate constants for peak range.
- AH2 peakC=AH2(1.0,-1.0*4.0);
- // Limiters, these need to be high precision RCPs.
- AH2 hitMinR=min(mn4R,eR)*ARcpH2(AH2_(4.0)*mx4R);
- AH2 hitMinG=min(mn4G,eG)*ARcpH2(AH2_(4.0)*mx4G);
- AH2 hitMinB=min(mn4B,eB)*ARcpH2(AH2_(4.0)*mx4B);
- AH2 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpH2(AH2_(4.0)*mn4R+peakC.y);
- AH2 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpH2(AH2_(4.0)*mn4G+peakC.y);
- AH2 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpH2(AH2_(4.0)*mn4B+peakC.y);
- AH2 lobeR=max(-hitMinR,hitMaxR);
- AH2 lobeG=max(-hitMinG,hitMaxG);
- AH2 lobeB=max(-hitMinB,hitMaxB);
- AH2 lobe=max(AH2_(-FSR_RCAS_LIMIT),min(AMax3H2(lobeR,lobeG,lobeB),AH2_(0.0)))*AH2_(AH2_AU1(con.y).x);
- // Apply noise removal.
- #ifdef FSR_RCAS_DENOISE
- lobe*=nz;
- #endif
- // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
- AH2 rcpL=APrxMedRcpH2(AH2_(4.0)*lobe+AH2_(1.0));
- pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
- pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
- pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;}
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- //
- // FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR
- //
- //------------------------------------------------------------------------------------------------------------------------------
- // Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts.
- // Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel.
- // The 'Lfga*()' functions provide a convenient way to introduce grain.
- // These functions limit grain based on distance to signal limits.
- // This is done so that the grain is temporally energy preserving, and thus won't modify image tonality.
- // Grain application should be done in a linear colorspace.
- // The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased).
- //------------------------------------------------------------------------------------------------------------------------------
- // Usage,
- // FsrLfga*(
- // color, // In/out linear colorspace color {0 to 1} ranged.
- // grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain.
- // amount); // Amount of grain (0 to 1} ranged.
- //------------------------------------------------------------------------------------------------------------------------------
- // Example if grain texture is monochrome: 'FsrLfgaF(color,AF3_(grain),amount)'
- //==============================================================================================================================
- #if defined(A_GPU)
- // Maximum grain is the minimum distance to the signal limit.
- void FsrLfgaF(inout AF3 c,AF3 t,AF1 a){c+=(t*AF3_(a))*min(AF3_(1.0)-c,c);}
- #endif
- //==============================================================================================================================
- #if defined(A_GPU)&&defined(A_HALF)
- // Half precision version (slower).
- void FsrLfgaH(inout AH3 c,AH3 t,AH1 a){c+=(t*AH3_(a))*min(AH3_(1.0)-c,c);}
- //------------------------------------------------------------------------------------------------------------------------------
- // Packed half precision version (faster).
- void FsrLfgaHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 tR,AH2 tG,AH2 tB,AH1 a){
- cR+=(tR*AH2_(a))*min(AH2_(1.0)-cR,cR);cG+=(tG*AH2_(a))*min(AH2_(1.0)-cG,cG);cB+=(tB*AH2_(a))*min(AH2_(1.0)-cB,cB);}
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- //
- // FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER
- //
- //------------------------------------------------------------------------------------------------------------------------------
- // This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear.
- // The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering.
- //------------------------------------------------------------------------------------------------------------------------------
- // Reversible tonemapper usage,
- // FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}.
- // FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}.
- //==============================================================================================================================
- #if defined(A_GPU)
- void FsrSrtmF(inout AF3 c){c*=AF3_(ARcpF1(AMax3F1(c.r,c.g,c.b)+AF1_(1.0)));}
- // The extra max solves the c=1.0 case (which is a /0).
- void FsrSrtmInvF(inout AF3 c){c*=AF3_(ARcpF1(max(AF1_(1.0/32768.0),AF1_(1.0)-AMax3F1(c.r,c.g,c.b))));}
- #endif
- //==============================================================================================================================
- #if defined(A_GPU)&&defined(A_HALF)
- void FsrSrtmH(inout AH3 c){c*=AH3_(ARcpH1(AMax3H1(c.r,c.g,c.b)+AH1_(1.0)));}
- void FsrSrtmInvH(inout AH3 c){c*=AH3_(ARcpH1(max(AH1_(1.0/32768.0),AH1_(1.0)-AMax3H1(c.r,c.g,c.b))));}
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrSrtmHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){
- AH2 rcp=ARcpH2(AMax3H2(cR,cG,cB)+AH2_(1.0));cR*=rcp;cG*=rcp;cB*=rcp;}
- void FsrSrtmInvHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){
- AH2 rcp=ARcpH2(max(AH2_(1.0/32768.0),AH2_(1.0)-AMax3H2(cR,cG,cB)));cR*=rcp;cG*=rcp;cB*=rcp;}
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //_____________________________________________________________/\_______________________________________________________________
- //==============================================================================================================================
- //
- // FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER
- //
- //------------------------------------------------------------------------------------------------------------------------------
- // Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion.
- // Gamma 2.0 is used so that the conversion back to linear is just to square the color.
- // The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively.
- // Given good non-biased temporal blue noise as dither input,
- // the output dither will temporally conserve energy.
- // This is done by choosing the linear nearest step point instead of perceptual nearest.
- // See code below for details.
- //------------------------------------------------------------------------------------------------------------------------------
- // DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION
- // ===============================================
- // - Output is 'uint(floor(saturate(n)*255.0+0.5))'.
- // - Thus rounding is to nearest.
- // - NaN gets converted to zero.
- // - INF is clamped to {0.0 to 1.0}.
- //==============================================================================================================================
- #if defined(A_GPU)
- // Hand tuned integer position to dither value, with more values than simple checkerboard.
- // Only 32-bit has enough precision for this compddation.
- // Output is {0 to <1}.
- AF1 FsrTepdDitF(AU2 p,AU1 f){
- AF1 x=AF1_(p.x+f);
- AF1 y=AF1_(p.y);
- // The 1.61803 golden ratio.
- AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
- // Number designed to provide a good visual pattern.
- AF1 b=AF1_(1.0/3.69);
- x=x*a+(y*b);
- return AFractF1(x);}
- //------------------------------------------------------------------------------------------------------------------------------
- // This version is 8-bit gamma 2.0.
- // The 'c' input is {0 to 1}.
- // Output is {0 to 1} ready for image store.
- void FsrTepdC8F(inout AF3 c,AF1 dit){
- AF3 n=sqrt(c);
- n=floor(n*AF3_(255.0))*AF3_(1.0/255.0);
- AF3 a=n*n;
- AF3 b=n+AF3_(1.0/255.0);b=b*b;
- // Ratio of 'a' to 'b' required to produce 'c'.
- // APrxLoRcpF1() won't work here (at least for very high dynamic ranges).
- // APrxMedRcpF1() is an IADD,FMA,MUL.
- AF3 r=(c-b)*APrxMedRcpF3(a-b);
- // Use the ratio as a cutoff to choose 'a' or 'b'.
- // AGtZeroF1() is a MUL.
- c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/255.0));}
- //------------------------------------------------------------------------------------------------------------------------------
- // This version is 10-bit gamma 2.0.
- // The 'c' input is {0 to 1}.
- // Output is {0 to 1} ready for image store.
- void FsrTepdC10F(inout AF3 c,AF1 dit){
- AF3 n=sqrt(c);
- n=floor(n*AF3_(1023.0))*AF3_(1.0/1023.0);
- AF3 a=n*n;
- AF3 b=n+AF3_(1.0/1023.0);b=b*b;
- AF3 r=(c-b)*APrxMedRcpF3(a-b);
- c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/1023.0));}
- #endif
- //==============================================================================================================================
- #if defined(A_GPU)&&defined(A_HALF)
- AH1 FsrTepdDitH(AU2 p,AU1 f){
- AF1 x=AF1_(p.x+f);
- AF1 y=AF1_(p.y);
- AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
- AF1 b=AF1_(1.0/3.69);
- x=x*a+(y*b);
- return AH1(AFractF1(x));}
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrTepdC8H(inout AH3 c,AH1 dit){
- AH3 n=sqrt(c);
- n=floor(n*AH3_(255.0))*AH3_(1.0/255.0);
- AH3 a=n*n;
- AH3 b=n+AH3_(1.0/255.0);b=b*b;
- AH3 r=(c-b)*APrxMedRcpH3(a-b);
- c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/255.0));}
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrTepdC10H(inout AH3 c,AH1 dit){
- AH3 n=sqrt(c);
- n=floor(n*AH3_(1023.0))*AH3_(1.0/1023.0);
- AH3 a=n*n;
- AH3 b=n+AH3_(1.0/1023.0);b=b*b;
- AH3 r=(c-b)*APrxMedRcpH3(a-b);
- c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/1023.0));}
- //==============================================================================================================================
- // This computes dither for positions 'p' and 'p+{8,0}'.
- AH2 FsrTepdDitHx2(AU2 p,AU1 f){
- AF2 x;
- x.x=AF1_(p.x+f);
- x.y=x.x+AF1_(8.0);
- AF1 y=AF1_(p.y);
- AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
- AF1 b=AF1_(1.0/3.69);
- x=x*AF2_(a)+AF2_(y*b);
- return AH2(AFractF2(x));}
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrTepdC8Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){
- AH2 nR=sqrt(cR);
- AH2 nG=sqrt(cG);
- AH2 nB=sqrt(cB);
- nR=floor(nR*AH2_(255.0))*AH2_(1.0/255.0);
- nG=floor(nG*AH2_(255.0))*AH2_(1.0/255.0);
- nB=floor(nB*AH2_(255.0))*AH2_(1.0/255.0);
- AH2 aR=nR*nR;
- AH2 aG=nG*nG;
- AH2 aB=nB*nB;
- AH2 bR=nR+AH2_(1.0/255.0);bR=bR*bR;
- AH2 bG=nG+AH2_(1.0/255.0);bG=bG*bG;
- AH2 bB=nB+AH2_(1.0/255.0);bB=bB*bB;
- AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR);
- AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG);
- AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB);
- cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/255.0));
- cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/255.0));
- cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/255.0));}
- //------------------------------------------------------------------------------------------------------------------------------
- void FsrTepdC10Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){
- AH2 nR=sqrt(cR);
- AH2 nG=sqrt(cG);
- AH2 nB=sqrt(cB);
- nR=floor(nR*AH2_(1023.0))*AH2_(1.0/1023.0);
- nG=floor(nG*AH2_(1023.0))*AH2_(1.0/1023.0);
- nB=floor(nB*AH2_(1023.0))*AH2_(1.0/1023.0);
- AH2 aR=nR*nR;
- AH2 aG=nG*nG;
- AH2 aB=nB*nB;
- AH2 bR=nR+AH2_(1.0/1023.0);bR=bR*bR;
- AH2 bG=nG+AH2_(1.0/1023.0);bG=bG*bG;
- AH2 bB=nB+AH2_(1.0/1023.0);bB=bB*bB;
- AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR);
- AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG);
- AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB);
- cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/1023.0));
- cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/1023.0));
- cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/1023.0));}
- #endif
|