123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 |
- /**************************************************************************/
- /* test_quaternion.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef TEST_QUATERNION_H
- #define TEST_QUATERNION_H
- #include "core/math/math_defs.h"
- #include "core/math/math_funcs.h"
- #include "core/math/quaternion.h"
- #include "core/math/vector3.h"
- #include "tests/test_macros.h"
- namespace TestQuaternion {
- Quaternion quat_euler_yxz_deg(Vector3 angle) {
- double yaw = Math::deg_to_rad(angle[1]);
- double pitch = Math::deg_to_rad(angle[0]);
- double roll = Math::deg_to_rad(angle[2]);
- // Generate YXZ (Z-then-X-then-Y) Quaternion using single-axis Euler
- // constructor and quaternion product, both tested separately.
- Quaternion q_y = Quaternion::from_euler(Vector3(0.0, yaw, 0.0));
- Quaternion q_p = Quaternion::from_euler(Vector3(pitch, 0.0, 0.0));
- Quaternion q_r = Quaternion::from_euler(Vector3(0.0, 0.0, roll));
- // Roll-Z is followed by Pitch-X, then Yaw-Y.
- Quaternion q_yxz = q_y * q_p * q_r;
- return q_yxz;
- }
- TEST_CASE("[Quaternion] Default Construct") {
- Quaternion q;
- CHECK(q[0] == 0.0);
- CHECK(q[1] == 0.0);
- CHECK(q[2] == 0.0);
- CHECK(q[3] == 1.0);
- }
- TEST_CASE("[Quaternion] Construct x,y,z,w") {
- // Values are taken from actual use in another project & are valid (except roundoff error).
- Quaternion q(0.2391, 0.099, 0.3696, 0.8924);
- CHECK(q[0] == doctest::Approx(0.2391));
- CHECK(q[1] == doctest::Approx(0.099));
- CHECK(q[2] == doctest::Approx(0.3696));
- CHECK(q[3] == doctest::Approx(0.8924));
- }
- TEST_CASE("[Quaternion] Construct AxisAngle 1") {
- // Easy to visualize: 120 deg about X-axis.
- Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg_to_rad(120.0));
- // 0.866 isn't close enough; doctest::Approx doesn't cut much slack!
- CHECK(q[0] == doctest::Approx(0.866025)); // Sine of half the angle.
- CHECK(q[1] == doctest::Approx(0.0));
- CHECK(q[2] == doctest::Approx(0.0));
- CHECK(q[3] == doctest::Approx(0.5)); // Cosine of half the angle.
- }
- TEST_CASE("[Quaternion] Construct AxisAngle 2") {
- // Easy to visualize: 30 deg about Y-axis.
- Quaternion q(Vector3(0.0, 1.0, 0.0), Math::deg_to_rad(30.0));
- CHECK(q[0] == doctest::Approx(0.0));
- CHECK(q[1] == doctest::Approx(0.258819)); // Sine of half the angle.
- CHECK(q[2] == doctest::Approx(0.0));
- CHECK(q[3] == doctest::Approx(0.965926)); // Cosine of half the angle.
- }
- TEST_CASE("[Quaternion] Construct AxisAngle 3") {
- // Easy to visualize: 60 deg about Z-axis.
- Quaternion q(Vector3(0.0, 0.0, 1.0), Math::deg_to_rad(60.0));
- CHECK(q[0] == doctest::Approx(0.0));
- CHECK(q[1] == doctest::Approx(0.0));
- CHECK(q[2] == doctest::Approx(0.5)); // Sine of half the angle.
- CHECK(q[3] == doctest::Approx(0.866025)); // Cosine of half the angle.
- }
- TEST_CASE("[Quaternion] Construct AxisAngle 4") {
- // More complex & hard to visualize, so test w/ data from online calculator.
- Vector3 axis(1.0, 2.0, 0.5);
- Quaternion q(axis.normalized(), Math::deg_to_rad(35.0));
- CHECK(q[0] == doctest::Approx(0.131239));
- CHECK(q[1] == doctest::Approx(0.262478));
- CHECK(q[2] == doctest::Approx(0.0656194));
- CHECK(q[3] == doctest::Approx(0.953717));
- }
- TEST_CASE("[Quaternion] Construct from Quaternion") {
- Vector3 axis(1.0, 2.0, 0.5);
- Quaternion q_src(axis.normalized(), Math::deg_to_rad(35.0));
- Quaternion q(q_src);
- CHECK(q[0] == doctest::Approx(0.131239));
- CHECK(q[1] == doctest::Approx(0.262478));
- CHECK(q[2] == doctest::Approx(0.0656194));
- CHECK(q[3] == doctest::Approx(0.953717));
- }
- TEST_CASE("[Quaternion] Construct Euler SingleAxis") {
- double yaw = Math::deg_to_rad(45.0);
- double pitch = Math::deg_to_rad(30.0);
- double roll = Math::deg_to_rad(10.0);
- Vector3 euler_y(0.0, yaw, 0.0);
- Quaternion q_y = Quaternion::from_euler(euler_y);
- CHECK(q_y[0] == doctest::Approx(0.0));
- CHECK(q_y[1] == doctest::Approx(0.382684));
- CHECK(q_y[2] == doctest::Approx(0.0));
- CHECK(q_y[3] == doctest::Approx(0.923879));
- Vector3 euler_p(pitch, 0.0, 0.0);
- Quaternion q_p = Quaternion::from_euler(euler_p);
- CHECK(q_p[0] == doctest::Approx(0.258819));
- CHECK(q_p[1] == doctest::Approx(0.0));
- CHECK(q_p[2] == doctest::Approx(0.0));
- CHECK(q_p[3] == doctest::Approx(0.965926));
- Vector3 euler_r(0.0, 0.0, roll);
- Quaternion q_r = Quaternion::from_euler(euler_r);
- CHECK(q_r[0] == doctest::Approx(0.0));
- CHECK(q_r[1] == doctest::Approx(0.0));
- CHECK(q_r[2] == doctest::Approx(0.0871558));
- CHECK(q_r[3] == doctest::Approx(0.996195));
- }
- TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") {
- double yaw = Math::deg_to_rad(45.0);
- double pitch = Math::deg_to_rad(30.0);
- double roll = Math::deg_to_rad(10.0);
- // Generate YXZ comparison data (Z-then-X-then-Y) using single-axis Euler
- // constructor and quaternion product, both tested separately.
- Vector3 euler_y(0.0, yaw, 0.0);
- Quaternion q_y = Quaternion::from_euler(euler_y);
- Vector3 euler_p(pitch, 0.0, 0.0);
- Quaternion q_p = Quaternion::from_euler(euler_p);
- Vector3 euler_r(0.0, 0.0, roll);
- Quaternion q_r = Quaternion::from_euler(euler_r);
- // Instrinsically, Yaw-Y then Pitch-X then Roll-Z.
- // Extrinsically, Roll-Z is followed by Pitch-X, then Yaw-Y.
- Quaternion check_yxz = q_y * q_p * q_r;
- // Test construction from YXZ Euler angles.
- Vector3 euler_yxz(pitch, yaw, roll);
- Quaternion q = Quaternion::from_euler(euler_yxz);
- CHECK(q[0] == doctest::Approx(check_yxz[0]));
- CHECK(q[1] == doctest::Approx(check_yxz[1]));
- CHECK(q[2] == doctest::Approx(check_yxz[2]));
- CHECK(q[3] == doctest::Approx(check_yxz[3]));
- CHECK(q.is_equal_approx(check_yxz));
- CHECK(q.get_euler().is_equal_approx(euler_yxz));
- CHECK(check_yxz.get_euler().is_equal_approx(euler_yxz));
- }
- TEST_CASE("[Quaternion] Construct Basis Euler") {
- double yaw = Math::deg_to_rad(45.0);
- double pitch = Math::deg_to_rad(30.0);
- double roll = Math::deg_to_rad(10.0);
- Vector3 euler_yxz(pitch, yaw, roll);
- Quaternion q_yxz = Quaternion::from_euler(euler_yxz);
- Basis basis_axes = Basis::from_euler(euler_yxz);
- Quaternion q(basis_axes);
- CHECK(q.is_equal_approx(q_yxz));
- }
- TEST_CASE("[Quaternion] Construct Basis Axes") {
- // Arbitrary Euler angles.
- Vector3 euler_yxz(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34));
- // Basis vectors from online calculation of rotation matrix.
- Vector3 i_unit(0.5545787, 0.1823950, 0.8118957);
- Vector3 j_unit(-0.5249245, 0.8337420, 0.1712555);
- Vector3 k_unit(-0.6456754, -0.5211586, 0.5581192);
- // Quaternion from online calculation.
- Quaternion q_calc(0.2016913, -0.4245716, 0.206033, 0.8582598);
- // Quaternion from local calculation.
- Quaternion q_local = quat_euler_yxz_deg(Vector3(31.41, -49.16, 12.34));
- // Quaternion from Euler angles constructor.
- Quaternion q_euler = Quaternion::from_euler(euler_yxz);
- CHECK(q_calc.is_equal_approx(q_local));
- CHECK(q_local.is_equal_approx(q_euler));
- // Calculate Basis and construct Quaternion.
- // When this is written, C++ Basis class does not construct from basis vectors.
- // This is by design, but may be subject to change.
- // Workaround by constructing Basis from Euler angles.
- // basis_axes = Basis(i_unit, j_unit, k_unit);
- Basis basis_axes = Basis::from_euler(euler_yxz);
- Quaternion q(basis_axes);
- CHECK(basis_axes.get_column(0).is_equal_approx(i_unit));
- CHECK(basis_axes.get_column(1).is_equal_approx(j_unit));
- CHECK(basis_axes.get_column(2).is_equal_approx(k_unit));
- CHECK(q.is_equal_approx(q_calc));
- CHECK_FALSE(q.inverse().is_equal_approx(q_calc));
- CHECK(q.is_equal_approx(q_local));
- CHECK(q.is_equal_approx(q_euler));
- CHECK(q[0] == doctest::Approx(0.2016913));
- CHECK(q[1] == doctest::Approx(-0.4245716));
- CHECK(q[2] == doctest::Approx(0.206033));
- CHECK(q[3] == doctest::Approx(0.8582598));
- }
- TEST_CASE("[Quaternion] Get Euler Orders") {
- double x = Math::deg_to_rad(30.0);
- double y = Math::deg_to_rad(45.0);
- double z = Math::deg_to_rad(10.0);
- Vector3 euler(x, y, z);
- for (int i = 0; i < 6; i++) {
- EulerOrder order = (EulerOrder)i;
- Basis basis = Basis::from_euler(euler, order);
- Quaternion q = Quaternion(basis);
- Vector3 check = q.get_euler(order);
- CHECK_MESSAGE(check.is_equal_approx(euler),
- "Quaternion get_euler method should return the original angles.");
- CHECK_MESSAGE(check.is_equal_approx(basis.get_euler(order)),
- "Quaternion get_euler method should behave the same as Basis get_euler.");
- }
- }
- TEST_CASE("[Quaternion] Product (book)") {
- // Example from "Quaternions and Rotation Sequences" by Jack Kuipers, p. 108.
- Quaternion p(1.0, -2.0, 1.0, 3.0);
- Quaternion q(-1.0, 2.0, 3.0, 2.0);
- Quaternion pq = p * q;
- CHECK(pq[0] == doctest::Approx(-9.0));
- CHECK(pq[1] == doctest::Approx(-2.0));
- CHECK(pq[2] == doctest::Approx(11.0));
- CHECK(pq[3] == doctest::Approx(8.0));
- }
- TEST_CASE("[Quaternion] Product") {
- double yaw = Math::deg_to_rad(45.0);
- double pitch = Math::deg_to_rad(30.0);
- double roll = Math::deg_to_rad(10.0);
- Vector3 euler_y(0.0, yaw, 0.0);
- Quaternion q_y = Quaternion::from_euler(euler_y);
- CHECK(q_y[0] == doctest::Approx(0.0));
- CHECK(q_y[1] == doctest::Approx(0.382684));
- CHECK(q_y[2] == doctest::Approx(0.0));
- CHECK(q_y[3] == doctest::Approx(0.923879));
- Vector3 euler_p(pitch, 0.0, 0.0);
- Quaternion q_p = Quaternion::from_euler(euler_p);
- CHECK(q_p[0] == doctest::Approx(0.258819));
- CHECK(q_p[1] == doctest::Approx(0.0));
- CHECK(q_p[2] == doctest::Approx(0.0));
- CHECK(q_p[3] == doctest::Approx(0.965926));
- Vector3 euler_r(0.0, 0.0, roll);
- Quaternion q_r = Quaternion::from_euler(euler_r);
- CHECK(q_r[0] == doctest::Approx(0.0));
- CHECK(q_r[1] == doctest::Approx(0.0));
- CHECK(q_r[2] == doctest::Approx(0.0871558));
- CHECK(q_r[3] == doctest::Approx(0.996195));
- // Test ZYX dynamic-axes since test data is available online.
- // Rotate first about X axis, then new Y axis, then new Z axis.
- // (Godot uses YXZ Yaw-Pitch-Roll order).
- Quaternion q_yp = q_y * q_p;
- CHECK(q_yp[0] == doctest::Approx(0.239118));
- CHECK(q_yp[1] == doctest::Approx(0.369644));
- CHECK(q_yp[2] == doctest::Approx(-0.099046));
- CHECK(q_yp[3] == doctest::Approx(0.892399));
- Quaternion q_ryp = q_r * q_yp;
- CHECK(q_ryp[0] == doctest::Approx(0.205991));
- CHECK(q_ryp[1] == doctest::Approx(0.389078));
- CHECK(q_ryp[2] == doctest::Approx(-0.0208912));
- CHECK(q_ryp[3] == doctest::Approx(0.897636));
- }
- TEST_CASE("[Quaternion] xform unit vectors") {
- // Easy to visualize: 120 deg about X-axis.
- // Transform the i, j, & k unit vectors.
- Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg_to_rad(120.0));
- Vector3 i_t = q.xform(Vector3(1.0, 0.0, 0.0));
- Vector3 j_t = q.xform(Vector3(0.0, 1.0, 0.0));
- Vector3 k_t = q.xform(Vector3(0.0, 0.0, 1.0));
- //
- CHECK(i_t.is_equal_approx(Vector3(1.0, 0.0, 0.0)));
- CHECK(j_t.is_equal_approx(Vector3(0.0, -0.5, 0.866025)));
- CHECK(k_t.is_equal_approx(Vector3(0.0, -0.866025, -0.5)));
- CHECK(i_t.length_squared() == doctest::Approx(1.0));
- CHECK(j_t.length_squared() == doctest::Approx(1.0));
- CHECK(k_t.length_squared() == doctest::Approx(1.0));
- // Easy to visualize: 30 deg about Y-axis.
- q = Quaternion(Vector3(0.0, 1.0, 0.0), Math::deg_to_rad(30.0));
- i_t = q.xform(Vector3(1.0, 0.0, 0.0));
- j_t = q.xform(Vector3(0.0, 1.0, 0.0));
- k_t = q.xform(Vector3(0.0, 0.0, 1.0));
- //
- CHECK(i_t.is_equal_approx(Vector3(0.866025, 0.0, -0.5)));
- CHECK(j_t.is_equal_approx(Vector3(0.0, 1.0, 0.0)));
- CHECK(k_t.is_equal_approx(Vector3(0.5, 0.0, 0.866025)));
- CHECK(i_t.length_squared() == doctest::Approx(1.0));
- CHECK(j_t.length_squared() == doctest::Approx(1.0));
- CHECK(k_t.length_squared() == doctest::Approx(1.0));
- // Easy to visualize: 60 deg about Z-axis.
- q = Quaternion(Vector3(0.0, 0.0, 1.0), Math::deg_to_rad(60.0));
- i_t = q.xform(Vector3(1.0, 0.0, 0.0));
- j_t = q.xform(Vector3(0.0, 1.0, 0.0));
- k_t = q.xform(Vector3(0.0, 0.0, 1.0));
- //
- CHECK(i_t.is_equal_approx(Vector3(0.5, 0.866025, 0.0)));
- CHECK(j_t.is_equal_approx(Vector3(-0.866025, 0.5, 0.0)));
- CHECK(k_t.is_equal_approx(Vector3(0.0, 0.0, 1.0)));
- CHECK(i_t.length_squared() == doctest::Approx(1.0));
- CHECK(j_t.length_squared() == doctest::Approx(1.0));
- CHECK(k_t.length_squared() == doctest::Approx(1.0));
- }
- TEST_CASE("[Quaternion] xform vector") {
- // Arbitrary quaternion rotates an arbitrary vector.
- Vector3 euler_yzx(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34));
- Basis basis_axes = Basis::from_euler(euler_yzx);
- Quaternion q(basis_axes);
- Vector3 v_arb(3.0, 4.0, 5.0);
- Vector3 v_rot = q.xform(v_arb);
- Vector3 v_compare = basis_axes.xform(v_arb);
- CHECK(v_rot.length_squared() == doctest::Approx(v_arb.length_squared()));
- CHECK(v_rot.is_equal_approx(v_compare));
- }
- // Test vector xform for a single combination of Quaternion and Vector.
- void test_quat_vec_rotate(Vector3 euler_yzx, Vector3 v_in) {
- Basis basis_axes = Basis::from_euler(euler_yzx);
- Quaternion q(basis_axes);
- Vector3 v_rot = q.xform(v_in);
- Vector3 v_compare = basis_axes.xform(v_in);
- CHECK(v_rot.length_squared() == doctest::Approx(v_in.length_squared()));
- CHECK(v_rot.is_equal_approx(v_compare));
- }
- TEST_CASE("[Stress][Quaternion] Many vector xforms") {
- // Many arbitrary quaternions rotate many arbitrary vectors.
- // For each trial, check that rotation by Quaternion yields same result as
- // rotation by Basis.
- const int STEPS = 100; // Number of test steps in each dimension
- const double delta = 2.0 * Math_PI / STEPS; // Angle increment per step
- const double delta_vec = 20.0 / STEPS; // Vector increment per step
- Vector3 vec_arb(1.0, 1.0, 1.0);
- double x_angle = -Math_PI;
- double y_angle = -Math_PI;
- double z_angle = -Math_PI;
- for (double i = 0; i < STEPS; ++i) {
- vec_arb[0] = -10.0 + i * delta_vec;
- x_angle = i * delta - Math_PI;
- for (double j = 0; j < STEPS; ++j) {
- vec_arb[1] = -10.0 + j * delta_vec;
- y_angle = j * delta - Math_PI;
- for (double k = 0; k < STEPS; ++k) {
- vec_arb[2] = -10.0 + k * delta_vec;
- z_angle = k * delta - Math_PI;
- Vector3 euler_yzx(x_angle, y_angle, z_angle);
- test_quat_vec_rotate(euler_yzx, vec_arb);
- }
- }
- }
- }
- TEST_CASE("[Quaternion] Finite number checks") {
- const real_t x = NAN;
- CHECK_MESSAGE(
- Quaternion(0, 1, 2, 3).is_finite(),
- "Quaternion with all components finite should be finite");
- CHECK_FALSE_MESSAGE(
- Quaternion(x, 1, 2, 3).is_finite(),
- "Quaternion with one component infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(0, x, 2, 3).is_finite(),
- "Quaternion with one component infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(0, 1, x, 3).is_finite(),
- "Quaternion with one component infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(0, 1, 2, x).is_finite(),
- "Quaternion with one component infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(x, x, 2, 3).is_finite(),
- "Quaternion with two components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(x, 1, x, 3).is_finite(),
- "Quaternion with two components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(x, 1, 2, x).is_finite(),
- "Quaternion with two components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(0, x, x, 3).is_finite(),
- "Quaternion with two components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(0, x, 2, x).is_finite(),
- "Quaternion with two components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(0, 1, x, x).is_finite(),
- "Quaternion with two components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(0, x, x, x).is_finite(),
- "Quaternion with three components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(x, 1, x, x).is_finite(),
- "Quaternion with three components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(x, x, 2, x).is_finite(),
- "Quaternion with three components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(x, x, x, 3).is_finite(),
- "Quaternion with three components infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Quaternion(x, x, x, x).is_finite(),
- "Quaternion with four components infinite should not be finite.");
- }
- } // namespace TestQuaternion
- #endif // TEST_QUATERNION_H
|