12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214 |
- // SPDX-License-Identifier: Apache-2.0
- // ----------------------------------------------------------------------------
- // Copyright 2019-2024 Arm Limited
- //
- // Licensed under the Apache License, Version 2.0 (the "License"); you may not
- // use this file except in compliance with the License. You may obtain a copy
- // of the License at:
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
- // License for the specific language governing permissions and limitations
- // under the License.
- // ----------------------------------------------------------------------------
- /**
- * @brief 4x32-bit vectors, implemented using plain C++.
- *
- * This module implements 4-wide 32-bit float, int, and mask vectors. This
- * module provides a scalar fallback for VLA code, primarily useful for
- * debugging VLA algorithms without the complexity of handling SIMD. Only the
- * baseline level of functionality needed to support VLA is provided.
- *
- * Note that the vector conditional operators implemented by this module are
- * designed to behave like SIMD conditional operators that generate lane masks.
- * Rather than returning 0/1 booleans like normal C++ code they will return
- * 0/-1 to give a full lane-width bitmask.
- *
- * Note that the documentation for this module still talks about "vectors" to
- * help developers think about the implied VLA behavior when writing optimized
- * paths.
- */
- #ifndef ASTC_VECMATHLIB_NONE_4_H_INCLUDED
- #define ASTC_VECMATHLIB_NONE_4_H_INCLUDED
- #ifndef ASTCENC_SIMD_INLINE
- #error "Include astcenc_vecmathlib.h, do not include directly"
- #endif
- #include <algorithm>
- #include <cstdio>
- #include <cstring>
- #include <cfenv>
- // ============================================================================
- // vfloat4 data type
- // ============================================================================
- /**
- * @brief Data type for 4-wide floats.
- */
- struct vfloat4
- {
- /**
- * @brief Construct from zero-initialized value.
- */
- ASTCENC_SIMD_INLINE vfloat4() = default;
- /**
- * @brief Construct from 4 values loaded from an unaligned address.
- *
- * Consider using loada() which is better with wider VLA vectors if data is
- * aligned to vector length.
- */
- ASTCENC_SIMD_INLINE explicit vfloat4(const float* p)
- {
- m[0] = p[0];
- m[1] = p[1];
- m[2] = p[2];
- m[3] = p[3];
- }
- /**
- * @brief Construct from 4 scalar values replicated across all lanes.
- *
- * Consider using zero() for constexpr zeros.
- */
- ASTCENC_SIMD_INLINE explicit vfloat4(float a)
- {
- m[0] = a;
- m[1] = a;
- m[2] = a;
- m[3] = a;
- }
- /**
- * @brief Construct from 4 scalar values.
- *
- * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
- {
- m[0] = a;
- m[1] = b;
- m[2] = c;
- m[3] = d;
- }
- /**
- * @brief Get the scalar value of a single lane.
- */
- template <int l> ASTCENC_SIMD_INLINE float lane() const
- {
- return m[l];
- }
- /**
- * @brief Set the scalar value of a single lane.
- */
- template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
- {
- m[l] = a;
- }
- /**
- * @brief Factory that returns a vector of zeros.
- */
- static ASTCENC_SIMD_INLINE vfloat4 zero()
- {
- return vfloat4(0.0f);
- }
- /**
- * @brief Factory that returns a replicated scalar loaded from memory.
- */
- static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
- {
- return vfloat4(*p);
- }
- /**
- * @brief Factory that returns a vector loaded from aligned memory.
- */
- static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
- {
- return vfloat4(p);
- }
- /**
- * @brief Factory that returns a vector containing the lane IDs.
- */
- static ASTCENC_SIMD_INLINE vfloat4 lane_id()
- {
- return vfloat4(0.0f, 1.0f, 2.0f, 3.0f);
- }
- /**
- * @brief Return a swizzled float 2.
- */
- template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
- {
- return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f);
- }
- /**
- * @brief Return a swizzled float 3.
- */
- template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
- {
- return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f);
- }
- /**
- * @brief Return a swizzled float 4.
- */
- template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
- {
- return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>());
- }
- /**
- * @brief The vector ...
- */
- float m[4];
- };
- // ============================================================================
- // vint4 data type
- // ============================================================================
- /**
- * @brief Data type for 4-wide ints.
- */
- struct vint4
- {
- /**
- * @brief Construct from zero-initialized value.
- */
- ASTCENC_SIMD_INLINE vint4() = default;
- /**
- * @brief Construct from 4 values loaded from an unaligned address.
- *
- * Consider using vint4::loada() which is better with wider VLA vectors
- * if data is aligned.
- */
- ASTCENC_SIMD_INLINE explicit vint4(const int* p)
- {
- m[0] = p[0];
- m[1] = p[1];
- m[2] = p[2];
- m[3] = p[3];
- }
- /**
- * @brief Construct from 4 uint8_t loaded from an unaligned address.
- */
- ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
- {
- m[0] = p[0];
- m[1] = p[1];
- m[2] = p[2];
- m[3] = p[3];
- }
- /**
- * @brief Construct from 4 scalar values.
- *
- * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
- {
- m[0] = a;
- m[1] = b;
- m[2] = c;
- m[3] = d;
- }
- /**
- * @brief Construct from 4 scalar values replicated across all lanes.
- *
- * Consider using vint4::zero() for constexpr zeros.
- */
- ASTCENC_SIMD_INLINE explicit vint4(int a)
- {
- m[0] = a;
- m[1] = a;
- m[2] = a;
- m[3] = a;
- }
- /**
- * @brief Get the scalar value of a single lane.
- */
- template <int l> ASTCENC_SIMD_INLINE int lane() const
- {
- return m[l];
- }
- /**
- * @brief Set the scalar value of a single lane.
- */
- template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
- {
- m[l] = a;
- }
- /**
- * @brief Factory that returns a vector of zeros.
- */
- static ASTCENC_SIMD_INLINE vint4 zero()
- {
- return vint4(0);
- }
- /**
- * @brief Factory that returns a replicated scalar loaded from memory.
- */
- static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
- {
- return vint4(*p);
- }
- /**
- * @brief Factory that returns a vector loaded from unaligned memory.
- */
- static ASTCENC_SIMD_INLINE vint4 load(const uint8_t* p)
- {
- vint4 data;
- std::memcpy(&data.m, p, 4 * sizeof(int));
- return data;
- }
- /**
- * @brief Factory that returns a vector loaded from 16B aligned memory.
- */
- static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
- {
- return vint4(p);
- }
- /**
- * @brief Factory that returns a vector containing the lane IDs.
- */
- static ASTCENC_SIMD_INLINE vint4 lane_id()
- {
- return vint4(0, 1, 2, 3);
- }
- /**
- * @brief The vector ...
- */
- int m[4];
- };
- // ============================================================================
- // vmask4 data type
- // ============================================================================
- /**
- * @brief Data type for 4-wide control plane masks.
- */
- struct vmask4
- {
- /**
- * @brief Construct from an existing mask value.
- */
- ASTCENC_SIMD_INLINE explicit vmask4(int* p)
- {
- m[0] = p[0];
- m[1] = p[1];
- m[2] = p[2];
- m[3] = p[3];
- }
- /**
- * @brief Construct from 1 scalar value.
- */
- ASTCENC_SIMD_INLINE explicit vmask4(bool a)
- {
- m[0] = a == false ? 0 : -1;
- m[1] = a == false ? 0 : -1;
- m[2] = a == false ? 0 : -1;
- m[3] = a == false ? 0 : -1;
- }
- /**
- * @brief Construct from 4 scalar values.
- *
- * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
- {
- m[0] = a == false ? 0 : -1;
- m[1] = b == false ? 0 : -1;
- m[2] = c == false ? 0 : -1;
- m[3] = d == false ? 0 : -1;
- }
- /**
- * @brief Get the scalar value of a single lane.
- */
- template <int l> ASTCENC_SIMD_INLINE float lane() const
- {
- return m[l] != 0;
- }
- /**
- * @brief The vector ...
- */
- int m[4];
- };
- // ============================================================================
- // vmask4 operators and functions
- // ============================================================================
- /**
- * @brief Overload: mask union (or).
- */
- ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
- {
- return vmask4(a.m[0] | b.m[0],
- a.m[1] | b.m[1],
- a.m[2] | b.m[2],
- a.m[3] | b.m[3]);
- }
- /**
- * @brief Overload: mask intersect (and).
- */
- ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
- {
- return vmask4(a.m[0] & b.m[0],
- a.m[1] & b.m[1],
- a.m[2] & b.m[2],
- a.m[3] & b.m[3]);
- }
- /**
- * @brief Overload: mask difference (xor).
- */
- ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
- {
- return vmask4(a.m[0] ^ b.m[0],
- a.m[1] ^ b.m[1],
- a.m[2] ^ b.m[2],
- a.m[3] ^ b.m[3]);
- }
- /**
- * @brief Overload: mask invert (not).
- */
- ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
- {
- return vmask4(~a.m[0],
- ~a.m[1],
- ~a.m[2],
- ~a.m[3]);
- }
- /**
- * @brief Return a 1-bit mask code indicating mask status.
- *
- * bit0 = lane 0
- */
- ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
- {
- return ((a.m[0] >> 31) & 0x1) |
- ((a.m[1] >> 30) & 0x2) |
- ((a.m[2] >> 29) & 0x4) |
- ((a.m[3] >> 28) & 0x8);
- }
- // ============================================================================
- // vint4 operators and functions
- // ============================================================================
- /**
- * @brief Overload: vector by vector addition.
- */
- ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
- {
- return vint4(a.m[0] + b.m[0],
- a.m[1] + b.m[1],
- a.m[2] + b.m[2],
- a.m[3] + b.m[3]);
- }
- /**
- * @brief Overload: vector by vector subtraction.
- */
- ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
- {
- return vint4(a.m[0] - b.m[0],
- a.m[1] - b.m[1],
- a.m[2] - b.m[2],
- a.m[3] - b.m[3]);
- }
- /**
- * @brief Overload: vector by vector multiplication.
- */
- ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
- {
- return vint4(a.m[0] * b.m[0],
- a.m[1] * b.m[1],
- a.m[2] * b.m[2],
- a.m[3] * b.m[3]);
- }
- /**
- * @brief Overload: vector bit invert.
- */
- ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
- {
- return vint4(~a.m[0],
- ~a.m[1],
- ~a.m[2],
- ~a.m[3]);
- }
- /**
- * @brief Overload: vector by vector bitwise or.
- */
- ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
- {
- return vint4(a.m[0] | b.m[0],
- a.m[1] | b.m[1],
- a.m[2] | b.m[2],
- a.m[3] | b.m[3]);
- }
- /**
- * @brief Overload: vector by vector bitwise and.
- */
- ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
- {
- return vint4(a.m[0] & b.m[0],
- a.m[1] & b.m[1],
- a.m[2] & b.m[2],
- a.m[3] & b.m[3]);
- }
- /**
- * @brief Overload: vector by vector bitwise xor.
- */
- ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
- {
- return vint4(a.m[0] ^ b.m[0],
- a.m[1] ^ b.m[1],
- a.m[2] ^ b.m[2],
- a.m[3] ^ b.m[3]);
- }
- /**
- * @brief Overload: vector by vector equality.
- */
- ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
- {
- return vmask4(a.m[0] == b.m[0],
- a.m[1] == b.m[1],
- a.m[2] == b.m[2],
- a.m[3] == b.m[3]);
- }
- /**
- * @brief Overload: vector by vector inequality.
- */
- ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
- {
- return vmask4(a.m[0] != b.m[0],
- a.m[1] != b.m[1],
- a.m[2] != b.m[2],
- a.m[3] != b.m[3]);
- }
- /**
- * @brief Overload: vector by vector less than.
- */
- ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
- {
- return vmask4(a.m[0] < b.m[0],
- a.m[1] < b.m[1],
- a.m[2] < b.m[2],
- a.m[3] < b.m[3]);
- }
- /**
- * @brief Overload: vector by vector greater than.
- */
- ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
- {
- return vmask4(a.m[0] > b.m[0],
- a.m[1] > b.m[1],
- a.m[2] > b.m[2],
- a.m[3] > b.m[3]);
- }
- /**
- * @brief Logical shift left.
- */
- template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
- {
- // Cast to unsigned to avoid shift in/out of sign bit undefined behavior
- unsigned int as0 = static_cast<unsigned int>(a.m[0]) << s;
- unsigned int as1 = static_cast<unsigned int>(a.m[1]) << s;
- unsigned int as2 = static_cast<unsigned int>(a.m[2]) << s;
- unsigned int as3 = static_cast<unsigned int>(a.m[3]) << s;
- return vint4(static_cast<int>(as0),
- static_cast<int>(as1),
- static_cast<int>(as2),
- static_cast<int>(as3));
- }
- /**
- * @brief Logical shift right.
- */
- template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
- {
- // Cast to unsigned to avoid shift in/out of sign bit undefined behavior
- unsigned int as0 = static_cast<unsigned int>(a.m[0]) >> s;
- unsigned int as1 = static_cast<unsigned int>(a.m[1]) >> s;
- unsigned int as2 = static_cast<unsigned int>(a.m[2]) >> s;
- unsigned int as3 = static_cast<unsigned int>(a.m[3]) >> s;
- return vint4(static_cast<int>(as0),
- static_cast<int>(as1),
- static_cast<int>(as2),
- static_cast<int>(as3));
- }
- /**
- * @brief Arithmetic shift right.
- */
- template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
- {
- return vint4(a.m[0] >> s,
- a.m[1] >> s,
- a.m[2] >> s,
- a.m[3] >> s);
- }
- /**
- * @brief Return the min vector of two vectors.
- */
- ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
- {
- return vint4(a.m[0] < b.m[0] ? a.m[0] : b.m[0],
- a.m[1] < b.m[1] ? a.m[1] : b.m[1],
- a.m[2] < b.m[2] ? a.m[2] : b.m[2],
- a.m[3] < b.m[3] ? a.m[3] : b.m[3]);
- }
- /**
- * @brief Return the min vector of two vectors.
- */
- ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
- {
- return vint4(a.m[0] > b.m[0] ? a.m[0] : b.m[0],
- a.m[1] > b.m[1] ? a.m[1] : b.m[1],
- a.m[2] > b.m[2] ? a.m[2] : b.m[2],
- a.m[3] > b.m[3] ? a.m[3] : b.m[3]);
- }
- /**
- * @brief Return the horizontal minimum of a single vector.
- */
- ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
- {
- int b = std::min(a.m[0], a.m[1]);
- int c = std::min(a.m[2], a.m[3]);
- return vint4(std::min(b, c));
- }
- /**
- * @brief Return the horizontal maximum of a single vector.
- */
- ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
- {
- int b = std::max(a.m[0], a.m[1]);
- int c = std::max(a.m[2], a.m[3]);
- return vint4(std::max(b, c));
- }
- /**
- * @brief Return the horizontal sum of vector lanes as a scalar.
- */
- ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
- {
- return a.m[0] + a.m[1] + a.m[2] + a.m[3];
- }
- /**
- * @brief Store a vector to an aligned memory address.
- */
- ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
- {
- p[0] = a.m[0];
- p[1] = a.m[1];
- p[2] = a.m[2];
- p[3] = a.m[3];
- }
- /**
- * @brief Store a vector to an unaligned memory address.
- */
- ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
- {
- p[0] = a.m[0];
- p[1] = a.m[1];
- p[2] = a.m[2];
- p[3] = a.m[3];
- }
- /**
- * @brief Store a vector to an unaligned memory address.
- */
- ASTCENC_SIMD_INLINE void store(vint4 a, uint8_t* p)
- {
- std::memcpy(p, a.m, sizeof(int) * 4);
- }
- /**
- * @brief Store lowest N (vector width) bytes into an unaligned address.
- */
- ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
- {
- std::memcpy(p, a.m, sizeof(uint8_t) * 4);
- }
- /**
- * @brief Gather N (vector width) indices from the array.
- */
- ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
- {
- return vint4(base[indices.m[0]],
- base[indices.m[1]],
- base[indices.m[2]],
- base[indices.m[3]]);
- }
- /**
- * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
- */
- ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
- {
- int b0 = a.m[0] & 0xFF;
- int b1 = a.m[1] & 0xFF;
- int b2 = a.m[2] & 0xFF;
- int b3 = a.m[3] & 0xFF;
- int b = b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
- return vint4(b, 0, 0, 0);
- }
- /**
- * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
- */
- ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
- {
- return vint4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0],
- (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1],
- (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2],
- (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]);
- }
- // ============================================================================
- // vfloat4 operators and functions
- // ============================================================================
- /**
- * @brief Overload: vector by vector addition.
- */
- ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
- {
- return vfloat4(a.m[0] + b.m[0],
- a.m[1] + b.m[1],
- a.m[2] + b.m[2],
- a.m[3] + b.m[3]);
- }
- /**
- * @brief Overload: vector by vector subtraction.
- */
- ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
- {
- return vfloat4(a.m[0] - b.m[0],
- a.m[1] - b.m[1],
- a.m[2] - b.m[2],
- a.m[3] - b.m[3]);
- }
- /**
- * @brief Overload: vector by vector multiplication.
- */
- ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
- {
- return vfloat4(a.m[0] * b.m[0],
- a.m[1] * b.m[1],
- a.m[2] * b.m[2],
- a.m[3] * b.m[3]);
- }
- /**
- * @brief Overload: vector by vector division.
- */
- ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
- {
- return vfloat4(a.m[0] / b.m[0],
- a.m[1] / b.m[1],
- a.m[2] / b.m[2],
- a.m[3] / b.m[3]);
- }
- /**
- * @brief Overload: vector by vector equality.
- */
- ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
- {
- return vmask4(a.m[0] == b.m[0],
- a.m[1] == b.m[1],
- a.m[2] == b.m[2],
- a.m[3] == b.m[3]);
- }
- /**
- * @brief Overload: vector by vector inequality.
- */
- ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
- {
- return vmask4(a.m[0] != b.m[0],
- a.m[1] != b.m[1],
- a.m[2] != b.m[2],
- a.m[3] != b.m[3]);
- }
- /**
- * @brief Overload: vector by vector less than.
- */
- ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
- {
- return vmask4(a.m[0] < b.m[0],
- a.m[1] < b.m[1],
- a.m[2] < b.m[2],
- a.m[3] < b.m[3]);
- }
- /**
- * @brief Overload: vector by vector greater than.
- */
- ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
- {
- return vmask4(a.m[0] > b.m[0],
- a.m[1] > b.m[1],
- a.m[2] > b.m[2],
- a.m[3] > b.m[3]);
- }
- /**
- * @brief Overload: vector by vector less than or equal.
- */
- ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
- {
- return vmask4(a.m[0] <= b.m[0],
- a.m[1] <= b.m[1],
- a.m[2] <= b.m[2],
- a.m[3] <= b.m[3]);
- }
- /**
- * @brief Overload: vector by vector greater than or equal.
- */
- ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
- {
- return vmask4(a.m[0] >= b.m[0],
- a.m[1] >= b.m[1],
- a.m[2] >= b.m[2],
- a.m[3] >= b.m[3]);
- }
- /**
- * @brief Return the min vector of two vectors.
- *
- * If either lane value is NaN, @c b will be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
- {
- return vfloat4(a.m[0] < b.m[0] ? a.m[0] : b.m[0],
- a.m[1] < b.m[1] ? a.m[1] : b.m[1],
- a.m[2] < b.m[2] ? a.m[2] : b.m[2],
- a.m[3] < b.m[3] ? a.m[3] : b.m[3]);
- }
- /**
- * @brief Return the max vector of two vectors.
- *
- * If either lane value is NaN, @c b will be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
- {
- return vfloat4(a.m[0] > b.m[0] ? a.m[0] : b.m[0],
- a.m[1] > b.m[1] ? a.m[1] : b.m[1],
- a.m[2] > b.m[2] ? a.m[2] : b.m[2],
- a.m[3] > b.m[3] ? a.m[3] : b.m[3]);
- }
- /**
- * @brief Return the absolute value of the float vector.
- */
- ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
- {
- return vfloat4(std::abs(a.m[0]),
- std::abs(a.m[1]),
- std::abs(a.m[2]),
- std::abs(a.m[3]));
- }
- /**
- * @brief Return a float rounded to the nearest integer value.
- */
- ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
- {
- assert(std::fegetround() == FE_TONEAREST);
- return vfloat4(std::nearbyint(a.m[0]),
- std::nearbyint(a.m[1]),
- std::nearbyint(a.m[2]),
- std::nearbyint(a.m[3]));
- }
- /**
- * @brief Return the horizontal minimum of a vector.
- */
- ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
- {
- float tmp1 = std::min(a.m[0], a.m[1]);
- float tmp2 = std::min(a.m[2], a.m[3]);
- return vfloat4(std::min(tmp1, tmp2));
- }
- /**
- * @brief Return the horizontal maximum of a vector.
- */
- ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
- {
- float tmp1 = std::max(a.m[0], a.m[1]);
- float tmp2 = std::max(a.m[2], a.m[3]);
- return vfloat4(std::max(tmp1, tmp2));
- }
- /**
- * @brief Return the horizontal sum of a vector.
- */
- ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
- {
- // Use halving add, gives invariance with SIMD versions
- return (a.m[0] + a.m[2]) + (a.m[1] + a.m[3]);
- }
- /**
- * @brief Return the sqrt of the lanes in the vector.
- */
- ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
- {
- return vfloat4(std::sqrt(a.m[0]),
- std::sqrt(a.m[1]),
- std::sqrt(a.m[2]),
- std::sqrt(a.m[3]));
- }
- /**
- * @brief Return lanes from @c b if @c cond is set, else @c a.
- */
- ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
- {
- return vfloat4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0],
- (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1],
- (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2],
- (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]);
- }
- /**
- * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
- */
- ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
- {
- return vfloat4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0],
- (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1],
- (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2],
- (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]);
- }
- /**
- * @brief Load a vector of gathered results from an array;
- */
- ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
- {
- return vfloat4(base[indices.m[0]],
- base[indices.m[1]],
- base[indices.m[2]],
- base[indices.m[3]]);
- }
- /**
- * @brief Store a vector to an unaligned memory address.
- */
- ASTCENC_SIMD_INLINE void store(vfloat4 a, float* ptr)
- {
- ptr[0] = a.m[0];
- ptr[1] = a.m[1];
- ptr[2] = a.m[2];
- ptr[3] = a.m[3];
- }
- /**
- * @brief Store a vector to an aligned memory address.
- */
- ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* ptr)
- {
- ptr[0] = a.m[0];
- ptr[1] = a.m[1];
- ptr[2] = a.m[2];
- ptr[3] = a.m[3];
- }
- /**
- * @brief Return a integer value for a float vector, using truncation.
- */
- ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
- {
- return vint4(static_cast<int>(a.m[0]),
- static_cast<int>(a.m[1]),
- static_cast<int>(a.m[2]),
- static_cast<int>(a.m[3]));
- }
- /**f
- * @brief Return a integer value for a float vector, using round-to-nearest.
- */
- ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
- {
- a = a + vfloat4(0.5f);
- return vint4(static_cast<int>(a.m[0]),
- static_cast<int>(a.m[1]),
- static_cast<int>(a.m[2]),
- static_cast<int>(a.m[3]));
- }
- /**
- * @brief Return a float value for a integer vector.
- */
- ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
- {
- return vfloat4(static_cast<float>(a.m[0]),
- static_cast<float>(a.m[1]),
- static_cast<float>(a.m[2]),
- static_cast<float>(a.m[3]));
- }
- /**
- * @brief Return a float16 value for a float vector, using round-to-nearest.
- */
- ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
- {
- return vint4(
- float_to_sf16(a.lane<0>()),
- float_to_sf16(a.lane<1>()),
- float_to_sf16(a.lane<2>()),
- float_to_sf16(a.lane<3>()));
- }
- /**
- * @brief Return a float16 value for a float scalar, using round-to-nearest.
- */
- static inline uint16_t float_to_float16(float a)
- {
- return float_to_sf16(a);
- }
- /**
- * @brief Return a float value for a float16 vector.
- */
- ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
- {
- return vfloat4(
- sf16_to_float(static_cast<uint16_t>(a.lane<0>())),
- sf16_to_float(static_cast<uint16_t>(a.lane<1>())),
- sf16_to_float(static_cast<uint16_t>(a.lane<2>())),
- sf16_to_float(static_cast<uint16_t>(a.lane<3>())));
- }
- /**
- * @brief Return a float value for a float16 scalar.
- */
- ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
- {
- return sf16_to_float(a);
- }
- /**
- * @brief Return a float value as an integer bit pattern (i.e. no conversion).
- *
- * It is a common trick to convert floats into integer bit patterns, perform
- * some bit hackery based on knowledge they are IEEE 754 layout, and then
- * convert them back again. This is the first half of that flip.
- */
- ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
- {
- vint4 r;
- std::memcpy(r.m, a.m, 4 * 4);
- return r;
- }
- /**
- * @brief Return a integer value as a float bit pattern (i.e. no conversion).
- *
- * It is a common trick to convert floats into integer bit patterns, perform
- * some bit hackery based on knowledge they are IEEE 754 layout, and then
- * convert them back again. This is the second half of that flip.
- */
- ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 a)
- {
- vfloat4 r;
- std::memcpy(r.m, a.m, 4 * 4);
- return r;
- }
- /**
- * @brief Prepare a vtable lookup table for use with the native SIMD size.
- */
- ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
- {
- t0p = t0;
- }
- /**
- * @brief Prepare a vtable lookup table for use with the native SIMD size.
- */
- ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
- {
- t0p = t0;
- t1p = t1;
- }
- /**
- * @brief Prepare a vtable lookup table for use with the native SIMD size.
- */
- ASTCENC_SIMD_INLINE void vtable_prepare(
- vint4 t0, vint4 t1, vint4 t2, vint4 t3,
- vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
- {
- t0p = t0;
- t1p = t1;
- t2p = t2;
- t3p = t3;
- }
- /**
- * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
- */
- ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
- {
- uint8_t table[16];
- std::memcpy(table + 0, t0.m, 4 * sizeof(int));
- return vint4(table[idx.lane<0>()],
- table[idx.lane<1>()],
- table[idx.lane<2>()],
- table[idx.lane<3>()]);
- }
- /**
- * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
- */
- ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
- {
- uint8_t table[32];
- std::memcpy(table + 0, t0.m, 4 * sizeof(int));
- std::memcpy(table + 16, t1.m, 4 * sizeof(int));
- return vint4(table[idx.lane<0>()],
- table[idx.lane<1>()],
- table[idx.lane<2>()],
- table[idx.lane<3>()]);
- }
- /**
- * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
- */
- ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
- {
- uint8_t table[64];
- std::memcpy(table + 0, t0.m, 4 * sizeof(int));
- std::memcpy(table + 16, t1.m, 4 * sizeof(int));
- std::memcpy(table + 32, t2.m, 4 * sizeof(int));
- std::memcpy(table + 48, t3.m, 4 * sizeof(int));
- return vint4(table[idx.lane<0>()],
- table[idx.lane<1>()],
- table[idx.lane<2>()],
- table[idx.lane<3>()]);
- }
- /**
- * @brief Return a vector of interleaved RGBA data.
- *
- * Input vectors have the value stored in the bottom 8 bits of each lane,
- * with high bits set to zero.
- *
- * Output vector stores a single RGBA texel packed in each lane.
- */
- ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
- {
- return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
- }
- /**
- * @brief Store a single vector lane to an unaligned address.
- */
- ASTCENC_SIMD_INLINE void store_lane(uint8_t* base, int data)
- {
- std::memcpy(base, &data, sizeof(int));
- }
- /**
- * @brief Store a vector, skipping masked lanes.
- *
- * All masked lanes must be at the end of vector, after all non-masked lanes.
- * Input is a byte array of at least 4 bytes per unmasked entry.
- */
- ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint4 data, vmask4 mask)
- {
- if (mask.m[3])
- {
- store(data, base);
- }
- else if (mask.m[2])
- {
- store_lane(base + 0, data.lane<0>());
- store_lane(base + 4, data.lane<1>());
- store_lane(base + 8, data.lane<2>());
- }
- else if (mask.m[1])
- {
- store_lane(base + 0, data.lane<0>());
- store_lane(base + 4, data.lane<1>());
- }
- else if (mask.m[0])
- {
- store_lane(base + 0, data.lane<0>());
- }
- }
- #endif // #ifndef ASTC_VECMATHLIB_NONE_4_H_INCLUDED
|