123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- #[compute]
- #version 450
- #VERSION_DEFINES
- layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
- #define DENSITY_SCALE 1024.0
- #include "../cluster_data_inc.glsl"
- #include "../light_data_inc.glsl"
- #define M_PI 3.14159265359
- #include "../samplers_inc.glsl"
- layout(set = 0, binding = 2, std430) restrict readonly buffer GlobalShaderUniformData {
- vec4 data[];
- }
- global_shader_uniforms;
- layout(push_constant, std430) uniform Params {
- vec3 position;
- float pad;
- vec3 size;
- float pad2;
- ivec3 corner;
- uint shape;
- mat4 transform;
- }
- params;
- #ifdef MOLTENVK_USED
- layout(set = 1, binding = 1) volatile buffer emissive_only_map_buffer {
- uint emissive_only_map[];
- };
- #else
- layout(r32ui, set = 1, binding = 1) uniform volatile uimage3D emissive_only_map;
- #endif
- layout(set = 1, binding = 2, std140) uniform SceneParams {
- vec2 fog_frustum_size_begin;
- vec2 fog_frustum_size_end;
- float fog_frustum_end;
- float z_near; //
- float z_far; //
- float time;
- ivec3 fog_volume_size;
- uint directional_light_count; //
- bool use_temporal_reprojection;
- uint temporal_frame;
- float detail_spread;
- float temporal_blend;
- mat4 to_prev_view;
- mat4 transform;
- }
- scene_params;
- #ifdef MOLTENVK_USED
- layout(set = 1, binding = 3) volatile buffer density_only_map_buffer {
- uint density_only_map[];
- };
- layout(set = 1, binding = 4) volatile buffer light_only_map_buffer {
- uint light_only_map[];
- };
- #else
- layout(r32ui, set = 1, binding = 3) uniform volatile uimage3D density_only_map;
- layout(r32ui, set = 1, binding = 4) uniform volatile uimage3D light_only_map;
- #endif
- #ifdef MATERIAL_UNIFORMS_USED
- layout(set = 2, binding = 0, std140) uniform MaterialUniforms{
- #MATERIAL_UNIFORMS
- } material;
- #endif
- #GLOBALS
- float get_depth_at_pos(float cell_depth_size, int z) {
- float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels
- d = pow(d, scene_params.detail_spread);
- return scene_params.fog_frustum_end * d;
- }
- #define TEMPORAL_FRAMES 16
- const vec3 halton_map[TEMPORAL_FRAMES] = vec3[](
- vec3(0.5, 0.33333333, 0.2),
- vec3(0.25, 0.66666667, 0.4),
- vec3(0.75, 0.11111111, 0.6),
- vec3(0.125, 0.44444444, 0.8),
- vec3(0.625, 0.77777778, 0.04),
- vec3(0.375, 0.22222222, 0.24),
- vec3(0.875, 0.55555556, 0.44),
- vec3(0.0625, 0.88888889, 0.64),
- vec3(0.5625, 0.03703704, 0.84),
- vec3(0.3125, 0.37037037, 0.08),
- vec3(0.8125, 0.7037037, 0.28),
- vec3(0.1875, 0.14814815, 0.48),
- vec3(0.6875, 0.48148148, 0.68),
- vec3(0.4375, 0.81481481, 0.88),
- vec3(0.9375, 0.25925926, 0.12),
- vec3(0.03125, 0.59259259, 0.32));
- void main() {
- vec3 fog_cell_size = 1.0 / vec3(scene_params.fog_volume_size);
- ivec3 pos = ivec3(gl_GlobalInvocationID.xyz) + params.corner;
- if (any(greaterThanEqual(pos, scene_params.fog_volume_size))) {
- return; //do not compute
- }
- #ifdef MOLTENVK_USED
- uint lpos = pos.z * scene_params.fog_volume_size.x * scene_params.fog_volume_size.y + pos.y * scene_params.fog_volume_size.x + pos.x;
- #endif
- vec3 posf = vec3(pos);
- vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels
- fog_unit_pos.z = pow(fog_unit_pos.z, scene_params.detail_spread);
- vec3 view_pos;
- view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(fog_unit_pos.z));
- view_pos.z = -scene_params.fog_frustum_end * fog_unit_pos.z;
- view_pos.y = -view_pos.y;
- if (scene_params.use_temporal_reprojection) {
- vec3 prev_view = (scene_params.to_prev_view * vec4(view_pos, 1.0)).xyz;
- //undo transform into prev view
- prev_view.y = -prev_view.y;
- //z back to unit size
- prev_view.z /= -scene_params.fog_frustum_end;
- //xy back to unit size
- prev_view.xy /= mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(prev_view.z));
- prev_view.xy = prev_view.xy * 0.5 + 0.5;
- //z back to unspread value
- prev_view.z = pow(prev_view.z, 1.0 / scene_params.detail_spread);
- if (all(greaterThan(prev_view, vec3(0.0))) && all(lessThan(prev_view, vec3(1.0)))) {
- //reprojectinon fits
- // Since we can reproject, now we must jitter the current view pos.
- // This is done here because cells that can't reproject should not jitter.
- fog_unit_pos = posf * fog_cell_size + fog_cell_size * halton_map[scene_params.temporal_frame]; //center of voxels, offset by halton table
- fog_unit_pos.z = pow(fog_unit_pos.z, scene_params.detail_spread);
- view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(fog_unit_pos.z));
- view_pos.z = -scene_params.fog_frustum_end * fog_unit_pos.z;
- view_pos.y = -view_pos.y;
- }
- }
- float density = 0.0;
- vec3 emission = vec3(0.0);
- vec3 albedo = vec3(0.0);
- float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1));
- vec4 world = scene_params.transform * vec4(view_pos, 1.0);
- world.xyz /= world.w;
- vec3 uvw = fog_unit_pos;
- vec4 local_pos = params.transform * world;
- local_pos.xyz /= local_pos.w;
- vec3 half_size = params.size / 2.0;
- float sdf = -1.0;
- if (params.shape == 0) {
- // Ellipsoid
- // https://www.shadertoy.com/view/tdS3DG
- float k0 = length(local_pos.xyz / half_size);
- float k1 = length(local_pos.xyz / (half_size * half_size));
- sdf = k0 * (k0 - 1.0) / k1;
- } else if (params.shape == 1) {
- // Cone
- // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
- // Compute the cone angle automatically to fit within the volume's size.
- float inv_height = 1.0 / max(0.001, half_size.y);
- float radius = 1.0 / max(0.001, (min(half_size.x, half_size.z) * 0.5));
- float hypotenuse = sqrt(radius * radius + inv_height * inv_height);
- float rsin = radius / hypotenuse;
- float rcos = inv_height / hypotenuse;
- vec2 c = vec2(rsin, rcos);
- float q = length(local_pos.xz);
- sdf = max(dot(c, vec2(q, local_pos.y - half_size.y)), -half_size.y - local_pos.y);
- } else if (params.shape == 2) {
- // Cylinder
- // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
- vec2 d = abs(vec2(length(local_pos.xz), local_pos.y)) - vec2(min(half_size.x, half_size.z), half_size.y);
- sdf = min(max(d.x, d.y), 0.0) + length(max(d, 0.0));
- } else if (params.shape == 3) {
- // Box
- // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
- vec3 q = abs(local_pos.xyz) - half_size;
- sdf = length(max(q, 0.0)) + min(max(q.x, max(q.y, q.z)), 0.0);
- }
- float cull_mask = 1.0; //used to cull cells that do not contribute
- if (params.shape <= 3) {
- #ifndef SDF_USED
- cull_mask = 1.0 - smoothstep(-0.1, 0.0, sdf);
- #endif
- uvw = clamp((local_pos.xyz + half_size) / params.size, 0.0, 1.0);
- }
- if (cull_mask > 0.0) {
- {
- #CODE : FOG
- }
- #ifdef DENSITY_USED
- density *= cull_mask;
- if (abs(density) > 0.001) {
- int final_density = int(density * DENSITY_SCALE);
- #ifdef MOLTENVK_USED
- atomicAdd(density_only_map[lpos], uint(final_density));
- #else
- imageAtomicAdd(density_only_map, pos, uint(final_density));
- #endif
- #ifdef EMISSION_USED
- {
- emission *= clamp(density, 0.0, 1.0);
- emission = clamp(emission, vec3(0.0), vec3(4.0));
- // Scale to fit into R11G11B10 with a range of 0-4
- uvec3 emission_u = uvec3(emission.r * 511.0, emission.g * 511.0, emission.b * 255.0);
- // R and G have 11 bits each and B has 10. Then pack them into a 32 bit uint
- uint final_emission = emission_u.r << 21 | emission_u.g << 10 | emission_u.b;
- #ifdef MOLTENVK_USED
- uint prev_emission = atomicAdd(emissive_only_map[lpos], final_emission);
- #else
- uint prev_emission = imageAtomicAdd(emissive_only_map, pos, final_emission);
- #endif
- // Adding can lead to colors overflowing, so validate
- uvec3 prev_emission_u = uvec3(prev_emission >> 21, (prev_emission << 11) >> 21, prev_emission % 1024);
- uint add_emission = final_emission + prev_emission;
- uvec3 add_emission_u = uvec3(add_emission >> 21, (add_emission << 11) >> 21, add_emission % 1024);
- bvec3 overflowing = lessThan(add_emission_u, prev_emission_u + emission_u);
- if (any(overflowing)) {
- uvec3 overflow_factor = mix(uvec3(0), uvec3(2047 << 21, 2047 << 10, 1023), overflowing);
- uint force_max = overflow_factor.r | overflow_factor.g | overflow_factor.b;
- #ifdef MOLTENVK_USED
- atomicOr(emissive_only_map[lpos], force_max);
- #else
- imageAtomicOr(emissive_only_map, pos, force_max);
- #endif
- }
- }
- #endif
- #ifdef ALBEDO_USED
- {
- vec3 scattering = albedo * clamp(density, 0.0, 1.0);
- scattering = clamp(scattering, vec3(0.0), vec3(1.0));
- uvec3 scattering_u = uvec3(scattering.r * 2047.0, scattering.g * 2047.0, scattering.b * 1023.0);
- // R and G have 11 bits each and B has 10. Then pack them into a 32 bit uint
- uint final_scattering = scattering_u.r << 21 | scattering_u.g << 10 | scattering_u.b;
- #ifdef MOLTENVK_USED
- uint prev_scattering = atomicAdd(light_only_map[lpos], final_scattering);
- #else
- uint prev_scattering = imageAtomicAdd(light_only_map, pos, final_scattering);
- #endif
- // Adding can lead to colors overflowing, so validate
- uvec3 prev_scattering_u = uvec3(prev_scattering >> 21, (prev_scattering << 11) >> 21, prev_scattering % 1024);
- uint add_scattering = final_scattering + prev_scattering;
- uvec3 add_scattering_u = uvec3(add_scattering >> 21, (add_scattering << 11) >> 21, add_scattering % 1024);
- bvec3 overflowing = lessThan(add_scattering_u, prev_scattering_u + scattering_u);
- if (any(overflowing)) {
- uvec3 overflow_factor = mix(uvec3(0), uvec3(2047 << 21, 2047 << 10, 1023), overflowing);
- uint force_max = overflow_factor.r | overflow_factor.g | overflow_factor.b;
- #ifdef MOLTENVK_USED
- atomicOr(light_only_map[lpos], force_max);
- #else
- imageAtomicOr(light_only_map, pos, force_max);
- #endif
- }
- }
- #endif // ALBEDO_USED
- }
- #endif // DENSITY_USED
- }
- }
|