canvas.glsl 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. #[vertex]
  2. #version 450
  3. #VERSION_DEFINES
  4. #ifdef USE_ATTRIBUTES
  5. layout(location = 0) in vec2 vertex_attrib;
  6. layout(location = 3) in vec4 color_attrib;
  7. layout(location = 4) in vec2 uv_attrib;
  8. layout(location = 10) in uvec4 bone_attrib;
  9. layout(location = 11) in vec4 weight_attrib;
  10. #endif
  11. #include "canvas_uniforms_inc.glsl"
  12. layout(location = 0) out vec2 uv_interp;
  13. layout(location = 1) out vec4 color_interp;
  14. layout(location = 2) out vec2 vertex_interp;
  15. #ifdef USE_NINEPATCH
  16. layout(location = 3) out vec2 pixel_size_interp;
  17. #endif
  18. #ifdef MATERIAL_UNIFORMS_USED
  19. layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
  20. #MATERIAL_UNIFORMS
  21. } material;
  22. #endif
  23. #GLOBALS
  24. #ifdef USE_ATTRIBUTES
  25. vec3 srgb_to_linear(vec3 color) {
  26. return mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
  27. }
  28. #endif
  29. void main() {
  30. vec4 instance_custom = vec4(0.0);
  31. #ifdef USE_PRIMITIVE
  32. //weird bug,
  33. //this works
  34. vec2 vertex;
  35. vec2 uv;
  36. vec4 color;
  37. if (gl_VertexIndex == 0) {
  38. vertex = draw_data.points[0];
  39. uv = draw_data.uvs[0];
  40. color = vec4(unpackHalf2x16(draw_data.colors[0]), unpackHalf2x16(draw_data.colors[1]));
  41. } else if (gl_VertexIndex == 1) {
  42. vertex = draw_data.points[1];
  43. uv = draw_data.uvs[1];
  44. color = vec4(unpackHalf2x16(draw_data.colors[2]), unpackHalf2x16(draw_data.colors[3]));
  45. } else {
  46. vertex = draw_data.points[2];
  47. uv = draw_data.uvs[2];
  48. color = vec4(unpackHalf2x16(draw_data.colors[4]), unpackHalf2x16(draw_data.colors[5]));
  49. }
  50. uvec4 bones = uvec4(0, 0, 0, 0);
  51. vec4 bone_weights = vec4(0.0);
  52. #elif defined(USE_ATTRIBUTES)
  53. vec2 vertex = vertex_attrib;
  54. vec4 color = color_attrib;
  55. if (bool(draw_data.flags & FLAGS_CONVERT_ATTRIBUTES_TO_LINEAR)) {
  56. color.rgb = srgb_to_linear(color.rgb);
  57. }
  58. color *= draw_data.modulation;
  59. vec2 uv = uv_attrib;
  60. uvec4 bones = bone_attrib;
  61. vec4 bone_weights = weight_attrib;
  62. #else
  63. vec2 vertex_base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
  64. vec2 vertex_base = vertex_base_arr[gl_VertexIndex];
  65. vec2 uv = draw_data.src_rect.xy + abs(draw_data.src_rect.zw) * ((draw_data.flags & FLAGS_TRANSPOSE_RECT) != 0 ? vertex_base.yx : vertex_base.xy);
  66. vec4 color = draw_data.modulation;
  67. vec2 vertex = draw_data.dst_rect.xy + abs(draw_data.dst_rect.zw) * mix(vertex_base, vec2(1.0, 1.0) - vertex_base, lessThan(draw_data.src_rect.zw, vec2(0.0, 0.0)));
  68. uvec4 bones = uvec4(0, 0, 0, 0);
  69. #endif
  70. mat4 model_matrix = mat4(vec4(draw_data.world_x, 0.0, 0.0), vec4(draw_data.world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(draw_data.world_ofs, 0.0, 1.0));
  71. #define FLAGS_INSTANCING_MASK 0x7F
  72. #define FLAGS_INSTANCING_HAS_COLORS (1 << 7)
  73. #define FLAGS_INSTANCING_HAS_CUSTOM_DATA (1 << 8)
  74. uint instancing = draw_data.flags & FLAGS_INSTANCING_MASK;
  75. #ifdef USE_ATTRIBUTES
  76. if (instancing > 1) {
  77. // trails
  78. uint stride = 2 + 1 + 1; //particles always uses this format
  79. uint trail_size = instancing;
  80. uint offset = trail_size * stride * gl_InstanceIndex;
  81. vec4 pcolor;
  82. vec2 new_vertex;
  83. {
  84. uint boffset = offset + bone_attrib.x * stride;
  85. new_vertex = (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.x;
  86. pcolor = transforms.data[boffset + 2] * weight_attrib.x;
  87. }
  88. if (weight_attrib.y > 0.001) {
  89. uint boffset = offset + bone_attrib.y * stride;
  90. new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.y;
  91. pcolor += transforms.data[boffset + 2] * weight_attrib.y;
  92. }
  93. if (weight_attrib.z > 0.001) {
  94. uint boffset = offset + bone_attrib.z * stride;
  95. new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.z;
  96. pcolor += transforms.data[boffset + 2] * weight_attrib.z;
  97. }
  98. if (weight_attrib.w > 0.001) {
  99. uint boffset = offset + bone_attrib.w * stride;
  100. new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.w;
  101. pcolor += transforms.data[boffset + 2] * weight_attrib.w;
  102. }
  103. instance_custom = transforms.data[offset + 3];
  104. vertex = new_vertex;
  105. color *= pcolor;
  106. } else
  107. #endif // USE_ATTRIBUTES
  108. {
  109. if (instancing == 1) {
  110. uint stride = 2;
  111. {
  112. if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_COLORS)) {
  113. stride += 1;
  114. }
  115. if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
  116. stride += 1;
  117. }
  118. }
  119. uint offset = stride * gl_InstanceIndex;
  120. mat4 matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
  121. offset += 2;
  122. if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_COLORS)) {
  123. color *= transforms.data[offset];
  124. offset += 1;
  125. }
  126. if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
  127. instance_custom = transforms.data[offset];
  128. }
  129. matrix = transpose(matrix);
  130. model_matrix = model_matrix * matrix;
  131. }
  132. }
  133. #if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
  134. if (bool(draw_data.flags & FLAGS_USING_PARTICLES)) {
  135. //scale by texture size
  136. vertex /= draw_data.color_texture_pixel_size;
  137. }
  138. #endif
  139. #ifdef USE_POINT_SIZE
  140. float point_size = 1.0;
  141. #endif
  142. #ifdef USE_WORLD_VERTEX_COORDS
  143. vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy;
  144. #endif
  145. {
  146. #CODE : VERTEX
  147. }
  148. #ifdef USE_NINEPATCH
  149. pixel_size_interp = abs(draw_data.dst_rect.zw) * vertex_base;
  150. #endif
  151. #if !defined(SKIP_TRANSFORM_USED) && !defined(USE_WORLD_VERTEX_COORDS)
  152. vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy;
  153. #endif
  154. color_interp = color;
  155. if (canvas_data.use_pixel_snap) {
  156. vertex = floor(vertex + 0.5);
  157. // precision issue on some hardware creates artifacts within texture
  158. // offset uv by a small amount to avoid
  159. uv += 1e-5;
  160. }
  161. vertex = (canvas_data.canvas_transform * vec4(vertex, 0.0, 1.0)).xy;
  162. vertex_interp = vertex;
  163. uv_interp = uv;
  164. gl_Position = canvas_data.screen_transform * vec4(vertex, 0.0, 1.0);
  165. #ifdef USE_POINT_SIZE
  166. gl_PointSize = point_size;
  167. #endif
  168. }
  169. #[fragment]
  170. #version 450
  171. #VERSION_DEFINES
  172. #include "canvas_uniforms_inc.glsl"
  173. layout(location = 0) in vec2 uv_interp;
  174. layout(location = 1) in vec4 color_interp;
  175. layout(location = 2) in vec2 vertex_interp;
  176. #ifdef USE_NINEPATCH
  177. layout(location = 3) in vec2 pixel_size_interp;
  178. #endif
  179. layout(location = 0) out vec4 frag_color;
  180. #ifdef MATERIAL_UNIFORMS_USED
  181. layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
  182. #MATERIAL_UNIFORMS
  183. } material;
  184. #endif
  185. vec2 screen_uv_to_sdf(vec2 p_uv) {
  186. return canvas_data.screen_to_sdf * p_uv;
  187. }
  188. float texture_sdf(vec2 p_sdf) {
  189. vec2 uv = p_sdf * canvas_data.sdf_to_tex.xy + canvas_data.sdf_to_tex.zw;
  190. float d = texture(sampler2D(sdf_texture, SAMPLER_LINEAR_CLAMP), uv).r;
  191. d *= SDF_MAX_LENGTH;
  192. return d * canvas_data.tex_to_sdf;
  193. }
  194. vec2 texture_sdf_normal(vec2 p_sdf) {
  195. vec2 uv = p_sdf * canvas_data.sdf_to_tex.xy + canvas_data.sdf_to_tex.zw;
  196. const float EPSILON = 0.001;
  197. return normalize(vec2(
  198. texture(sampler2D(sdf_texture, SAMPLER_LINEAR_CLAMP), uv + vec2(EPSILON, 0.0)).r - texture(sampler2D(sdf_texture, SAMPLER_LINEAR_CLAMP), uv - vec2(EPSILON, 0.0)).r,
  199. texture(sampler2D(sdf_texture, SAMPLER_LINEAR_CLAMP), uv + vec2(0.0, EPSILON)).r - texture(sampler2D(sdf_texture, SAMPLER_LINEAR_CLAMP), uv - vec2(0.0, EPSILON)).r));
  200. }
  201. vec2 sdf_to_screen_uv(vec2 p_sdf) {
  202. return p_sdf * canvas_data.sdf_to_screen;
  203. }
  204. #GLOBALS
  205. #ifdef LIGHT_CODE_USED
  206. vec4 light_compute(
  207. vec3 light_vertex,
  208. vec3 light_position,
  209. vec3 normal,
  210. vec4 light_color,
  211. float light_energy,
  212. vec4 specular_shininess,
  213. inout vec4 shadow_modulate,
  214. vec2 screen_uv,
  215. vec2 uv,
  216. vec4 color, bool is_directional) {
  217. vec4 light = vec4(0.0);
  218. vec3 light_direction = vec3(0.0);
  219. if (is_directional) {
  220. light_direction = normalize(mix(vec3(light_position.xy, 0.0), vec3(0, 0, 1), light_position.z));
  221. light_position = vec3(0.0);
  222. } else {
  223. light_direction = normalize(light_position - light_vertex);
  224. }
  225. #CODE : LIGHT
  226. return light;
  227. }
  228. #endif
  229. #ifdef USE_NINEPATCH
  230. float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) {
  231. float tex_size = 1.0 / tex_pixel_size;
  232. if (pixel < margin_begin) {
  233. return pixel * tex_pixel_size;
  234. } else if (pixel >= draw_size - margin_end) {
  235. return (tex_size - (draw_size - pixel)) * tex_pixel_size;
  236. } else {
  237. if (!bool(draw_data.flags & FLAGS_NINEPACH_DRAW_CENTER)) {
  238. draw_center--;
  239. }
  240. // np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum.
  241. if (np_repeat == 0) { // Stretch.
  242. // Convert to ratio.
  243. float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end);
  244. // Scale to source texture.
  245. return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
  246. } else if (np_repeat == 1) { // Tile.
  247. // Convert to offset.
  248. float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end);
  249. // Scale to source texture.
  250. return (margin_begin + ofs) * tex_pixel_size;
  251. } else if (np_repeat == 2) { // Tile Fit.
  252. // Calculate scale.
  253. float src_area = draw_size - margin_begin - margin_end;
  254. float dst_area = tex_size - margin_begin - margin_end;
  255. float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
  256. // Convert to ratio.
  257. float ratio = (pixel - margin_begin) / src_area;
  258. ratio = mod(ratio * scale, 1.0);
  259. // Scale to source texture.
  260. return (margin_begin + ratio * dst_area) * tex_pixel_size;
  261. } else { // Shouldn't happen, but silences compiler warning.
  262. return 0.0;
  263. }
  264. }
  265. }
  266. #endif
  267. #ifdef USE_LIGHTING
  268. vec3 light_normal_compute(vec3 light_vec, vec3 normal, vec3 base_color, vec3 light_color, vec4 specular_shininess, bool specular_shininess_used) {
  269. float cNdotL = max(0.0, dot(normal, light_vec));
  270. if (specular_shininess_used) {
  271. //blinn
  272. vec3 view = vec3(0.0, 0.0, 1.0); // not great but good enough
  273. vec3 half_vec = normalize(view + light_vec);
  274. float cNdotV = max(dot(normal, view), 0.0);
  275. float cNdotH = max(dot(normal, half_vec), 0.0);
  276. float cVdotH = max(dot(view, half_vec), 0.0);
  277. float cLdotH = max(dot(light_vec, half_vec), 0.0);
  278. float shininess = exp2(15.0 * specular_shininess.a + 1.0) * 0.25;
  279. float blinn = pow(cNdotH, shininess);
  280. blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
  281. float s = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
  282. return specular_shininess.rgb * light_color * s + light_color * base_color * cNdotL;
  283. } else {
  284. return light_color * base_color * cNdotL;
  285. }
  286. }
  287. //float distance = length(shadow_pos);
  288. vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv
  289. #ifdef LIGHT_CODE_USED
  290. ,
  291. vec3 shadow_modulate
  292. #endif
  293. ) {
  294. float shadow;
  295. uint shadow_mode = light_array.data[light_base].flags & LIGHT_FLAGS_FILTER_MASK;
  296. if (shadow_mode == LIGHT_FLAGS_SHADOW_NEAREST) {
  297. shadow = textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
  298. } else if (shadow_mode == LIGHT_FLAGS_SHADOW_PCF5) {
  299. vec4 shadow_pixel_size = vec4(light_array.data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0);
  300. shadow = 0.0;
  301. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 2.0, 0.0).x;
  302. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size, 0.0).x;
  303. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
  304. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size, 0.0).x;
  305. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 2.0, 0.0).x;
  306. shadow /= 5.0;
  307. } else { //PCF13
  308. vec4 shadow_pixel_size = vec4(light_array.data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0);
  309. shadow = 0.0;
  310. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 6.0, 0.0).x;
  311. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 5.0, 0.0).x;
  312. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 4.0, 0.0).x;
  313. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 3.0, 0.0).x;
  314. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 2.0, 0.0).x;
  315. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size, 0.0).x;
  316. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
  317. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size, 0.0).x;
  318. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 2.0, 0.0).x;
  319. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 3.0, 0.0).x;
  320. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 4.0, 0.0).x;
  321. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 5.0, 0.0).x;
  322. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 6.0, 0.0).x;
  323. shadow /= 13.0;
  324. }
  325. vec4 shadow_color = unpackUnorm4x8(light_array.data[light_base].shadow_color);
  326. #ifdef LIGHT_CODE_USED
  327. shadow_color.rgb *= shadow_modulate;
  328. #endif
  329. shadow_color.a *= light_color.a; //respect light alpha
  330. return mix(light_color, shadow_color, shadow);
  331. }
  332. void light_blend_compute(uint light_base, vec4 light_color, inout vec3 color) {
  333. uint blend_mode = light_array.data[light_base].flags & LIGHT_FLAGS_BLEND_MASK;
  334. switch (blend_mode) {
  335. case LIGHT_FLAGS_BLEND_MODE_ADD: {
  336. color.rgb += light_color.rgb * light_color.a;
  337. } break;
  338. case LIGHT_FLAGS_BLEND_MODE_SUB: {
  339. color.rgb -= light_color.rgb * light_color.a;
  340. } break;
  341. case LIGHT_FLAGS_BLEND_MODE_MIX: {
  342. color.rgb = mix(color.rgb, light_color.rgb, light_color.a);
  343. } break;
  344. }
  345. }
  346. #endif
  347. float msdf_median(float r, float g, float b, float a) {
  348. return min(max(min(r, g), min(max(r, g), b)), a);
  349. }
  350. void main() {
  351. vec4 color = color_interp;
  352. vec2 uv = uv_interp;
  353. vec2 vertex = vertex_interp;
  354. #if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
  355. #ifdef USE_NINEPATCH
  356. int draw_center = 2;
  357. uv = vec2(
  358. map_ninepatch_axis(pixel_size_interp.x, abs(draw_data.dst_rect.z), draw_data.color_texture_pixel_size.x, draw_data.ninepatch_margins.x, draw_data.ninepatch_margins.z, int(draw_data.flags >> FLAGS_NINEPATCH_H_MODE_SHIFT) & 0x3, draw_center),
  359. map_ninepatch_axis(pixel_size_interp.y, abs(draw_data.dst_rect.w), draw_data.color_texture_pixel_size.y, draw_data.ninepatch_margins.y, draw_data.ninepatch_margins.w, int(draw_data.flags >> FLAGS_NINEPATCH_V_MODE_SHIFT) & 0x3, draw_center));
  360. if (draw_center == 0) {
  361. color.a = 0.0;
  362. }
  363. uv = uv * draw_data.src_rect.zw + draw_data.src_rect.xy; //apply region if needed
  364. #endif
  365. if (bool(draw_data.flags & FLAGS_CLIP_RECT_UV)) {
  366. uv = clamp(uv, draw_data.src_rect.xy, draw_data.src_rect.xy + abs(draw_data.src_rect.zw));
  367. }
  368. #endif
  369. #ifndef USE_PRIMITIVE
  370. if (bool(draw_data.flags & FLAGS_USE_MSDF)) {
  371. float px_range = draw_data.ninepatch_margins.x;
  372. float outline_thickness = draw_data.ninepatch_margins.y;
  373. //float reserved1 = draw_data.ninepatch_margins.z;
  374. //float reserved2 = draw_data.ninepatch_margins.w;
  375. vec4 msdf_sample = texture(sampler2D(color_texture, texture_sampler), uv);
  376. vec2 msdf_size = vec2(textureSize(sampler2D(color_texture, texture_sampler), 0));
  377. vec2 dest_size = vec2(1.0) / fwidth(uv);
  378. float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0);
  379. float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5;
  380. if (outline_thickness > 0) {
  381. float cr = clamp(outline_thickness, 0.0, px_range / 2) / px_range;
  382. float a = clamp((d + cr) * px_size, 0.0, 1.0);
  383. color.a = a * color.a;
  384. } else {
  385. float a = clamp(d * px_size + 0.5, 0.0, 1.0);
  386. color.a = a * color.a;
  387. }
  388. } else if (bool(draw_data.flags & FLAGS_USE_LCD)) {
  389. vec4 lcd_sample = texture(sampler2D(color_texture, texture_sampler), uv);
  390. if (lcd_sample.a == 1.0) {
  391. color.rgb = lcd_sample.rgb * color.a;
  392. } else {
  393. color = vec4(0.0, 0.0, 0.0, 0.0);
  394. }
  395. } else {
  396. #else
  397. {
  398. #endif
  399. color *= texture(sampler2D(color_texture, texture_sampler), uv);
  400. }
  401. uint light_count = (draw_data.flags >> FLAGS_LIGHT_COUNT_SHIFT) & 0xF; //max 16 lights
  402. bool using_light = light_count > 0 || canvas_data.directional_light_count > 0;
  403. vec3 normal;
  404. #if defined(NORMAL_USED)
  405. bool normal_used = true;
  406. #else
  407. bool normal_used = false;
  408. #endif
  409. if (normal_used || (using_light && bool(draw_data.flags & FLAGS_DEFAULT_NORMAL_MAP_USED))) {
  410. normal.xy = texture(sampler2D(normal_texture, texture_sampler), uv).xy * vec2(2.0, -2.0) - vec2(1.0, -1.0);
  411. if (bool(draw_data.flags & FLAGS_TRANSPOSE_RECT)) {
  412. normal.xy = normal.yx;
  413. }
  414. if (bool(draw_data.flags & FLAGS_FLIP_H)) {
  415. normal.x = -normal.x;
  416. }
  417. if (bool(draw_data.flags & FLAGS_FLIP_V)) {
  418. normal.y = -normal.y;
  419. }
  420. normal.z = sqrt(max(0.0, 1.0 - dot(normal.xy, normal.xy)));
  421. normal_used = true;
  422. } else {
  423. normal = vec3(0.0, 0.0, 1.0);
  424. }
  425. vec4 specular_shininess;
  426. #if defined(SPECULAR_SHININESS_USED)
  427. bool specular_shininess_used = true;
  428. #else
  429. bool specular_shininess_used = false;
  430. #endif
  431. if (specular_shininess_used || (using_light && normal_used && bool(draw_data.flags & FLAGS_DEFAULT_SPECULAR_MAP_USED))) {
  432. specular_shininess = texture(sampler2D(specular_texture, texture_sampler), uv);
  433. specular_shininess *= unpackUnorm4x8(draw_data.specular_shininess);
  434. specular_shininess_used = true;
  435. } else {
  436. specular_shininess = vec4(1.0);
  437. }
  438. #if defined(SCREEN_UV_USED)
  439. vec2 screen_uv = gl_FragCoord.xy * canvas_data.screen_pixel_size;
  440. #else
  441. vec2 screen_uv = vec2(0.0);
  442. #endif
  443. vec3 light_vertex = vec3(vertex, 0.0);
  444. vec2 shadow_vertex = vertex;
  445. {
  446. float normal_map_depth = 1.0;
  447. #if defined(NORMAL_MAP_USED)
  448. vec3 normal_map = vec3(0.0, 0.0, 1.0);
  449. normal_used = true;
  450. #endif
  451. #CODE : FRAGMENT
  452. #if defined(NORMAL_MAP_USED)
  453. normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth);
  454. #endif
  455. }
  456. if (normal_used) {
  457. //convert by item transform
  458. normal.xy = mat2(normalize(draw_data.world_x), normalize(draw_data.world_y)) * normal.xy;
  459. //convert by canvas transform
  460. normal = normalize((canvas_data.canvas_normal_transform * vec4(normal, 0.0)).xyz);
  461. }
  462. vec4 base_color = color;
  463. #ifdef MODE_LIGHT_ONLY
  464. float light_only_alpha = 0.0;
  465. #elif !defined(MODE_UNSHADED)
  466. color *= canvas_data.canvas_modulation;
  467. #endif
  468. #if defined(USE_LIGHTING) && !defined(MODE_UNSHADED)
  469. // Directional Lights
  470. for (uint i = 0; i < canvas_data.directional_light_count; i++) {
  471. uint light_base = i;
  472. vec2 direction = light_array.data[light_base].position;
  473. vec4 light_color = light_array.data[light_base].color;
  474. #ifdef LIGHT_CODE_USED
  475. vec4 shadow_modulate = vec4(1.0);
  476. light_color = light_compute(light_vertex, vec3(direction, light_array.data[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, true);
  477. #else
  478. if (normal_used) {
  479. vec3 light_vec = normalize(mix(vec3(direction, 0.0), vec3(0, 0, 1), light_array.data[light_base].height));
  480. light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
  481. } else {
  482. light_color.rgb *= base_color.rgb;
  483. }
  484. #endif
  485. if (bool(light_array.data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
  486. vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array.data[light_base].shadow_matrix[0], light_array.data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
  487. vec4 shadow_uv = vec4(shadow_pos.x, light_array.data[light_base].shadow_y_ofs, shadow_pos.y * light_array.data[light_base].shadow_zfar_inv, 1.0);
  488. light_color = light_shadow_compute(light_base, light_color, shadow_uv
  489. #ifdef LIGHT_CODE_USED
  490. ,
  491. shadow_modulate.rgb
  492. #endif
  493. );
  494. }
  495. light_blend_compute(light_base, light_color, color.rgb);
  496. #ifdef MODE_LIGHT_ONLY
  497. light_only_alpha += light_color.a;
  498. #endif
  499. }
  500. // Positional Lights
  501. for (uint i = 0; i < MAX_LIGHTS_PER_ITEM; i++) {
  502. if (i >= light_count) {
  503. break;
  504. }
  505. uint light_base = draw_data.lights[i >> 2];
  506. light_base >>= (i & 3) * 8;
  507. light_base &= 0xFF;
  508. vec2 tex_uv = (vec4(vertex, 0.0, 1.0) * mat4(light_array.data[light_base].texture_matrix[0], light_array.data[light_base].texture_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
  509. vec2 tex_uv_atlas = tex_uv * light_array.data[light_base].atlas_rect.zw + light_array.data[light_base].atlas_rect.xy;
  510. vec4 light_color = textureLod(sampler2D(atlas_texture, texture_sampler), tex_uv_atlas, 0.0);
  511. vec4 light_base_color = light_array.data[light_base].color;
  512. #ifdef LIGHT_CODE_USED
  513. vec4 shadow_modulate = vec4(1.0);
  514. vec3 light_position = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
  515. light_color.rgb *= light_base_color.rgb;
  516. light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, false);
  517. #else
  518. light_color.rgb *= light_base_color.rgb * light_base_color.a;
  519. if (normal_used) {
  520. vec3 light_pos = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
  521. vec3 pos = light_vertex;
  522. vec3 light_vec = normalize(light_pos - pos);
  523. light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
  524. } else {
  525. light_color.rgb *= base_color.rgb;
  526. }
  527. #endif
  528. if (any(lessThan(tex_uv, vec2(0.0, 0.0))) || any(greaterThanEqual(tex_uv, vec2(1.0, 1.0)))) {
  529. //if outside the light texture, light color is zero
  530. light_color.a = 0.0;
  531. }
  532. if (bool(light_array.data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
  533. vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array.data[light_base].shadow_matrix[0], light_array.data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
  534. vec2 pos_norm = normalize(shadow_pos);
  535. vec2 pos_abs = abs(pos_norm);
  536. vec2 pos_box = pos_norm / max(pos_abs.x, pos_abs.y);
  537. vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot?
  538. float tex_ofs;
  539. float distance;
  540. if (pos_rot.y > 0) {
  541. if (pos_rot.x > 0) {
  542. tex_ofs = pos_box.y * 0.125 + 0.125;
  543. distance = shadow_pos.x;
  544. } else {
  545. tex_ofs = pos_box.x * -0.125 + (0.25 + 0.125);
  546. distance = shadow_pos.y;
  547. }
  548. } else {
  549. if (pos_rot.x < 0) {
  550. tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125);
  551. distance = -shadow_pos.x;
  552. } else {
  553. tex_ofs = pos_box.x * 0.125 + (0.75 + 0.125);
  554. distance = -shadow_pos.y;
  555. }
  556. }
  557. distance *= light_array.data[light_base].shadow_zfar_inv;
  558. //float distance = length(shadow_pos);
  559. vec4 shadow_uv = vec4(tex_ofs, light_array.data[light_base].shadow_y_ofs, distance, 1.0);
  560. light_color = light_shadow_compute(light_base, light_color, shadow_uv
  561. #ifdef LIGHT_CODE_USED
  562. ,
  563. shadow_modulate.rgb
  564. #endif
  565. );
  566. }
  567. light_blend_compute(light_base, light_color, color.rgb);
  568. #ifdef MODE_LIGHT_ONLY
  569. light_only_alpha += light_color.a;
  570. #endif
  571. }
  572. #endif
  573. #ifdef MODE_LIGHT_ONLY
  574. color.a *= light_only_alpha;
  575. #endif
  576. frag_color = color;
  577. }