123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832 |
- /**************************************************************************/
- /* geometry_3d.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef GEOMETRY_3D_H
- #define GEOMETRY_3D_H
- #include "core/math/face3.h"
- #include "core/object/object.h"
- #include "core/templates/local_vector.h"
- #include "core/templates/vector.h"
- class Geometry3D {
- public:
- static void get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt);
- static real_t get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1);
- static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) {
- Vector3 e1 = p_v1 - p_v0;
- Vector3 e2 = p_v2 - p_v0;
- Vector3 h = p_dir.cross(e2);
- real_t a = e1.dot(h);
- if (Math::is_zero_approx(a)) { // Parallel test.
- return false;
- }
- real_t f = 1.0f / a;
- Vector3 s = p_from - p_v0;
- real_t u = f * s.dot(h);
- if ((u < 0.0f) || (u > 1.0f)) {
- return false;
- }
- Vector3 q = s.cross(e1);
- real_t v = f * p_dir.dot(q);
- if ((v < 0.0f) || (u + v > 1.0f)) {
- return false;
- }
- // At this stage we can compute t to find out where
- // the intersection point is on the line.
- real_t t = f * e2.dot(q);
- if (t > 0.00001f) { // ray intersection
- if (r_res) {
- *r_res = p_from + p_dir * t;
- }
- return true;
- } else { // This means that there is a line intersection but not a ray intersection.
- return false;
- }
- }
- static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) {
- Vector3 rel = p_to - p_from;
- Vector3 e1 = p_v1 - p_v0;
- Vector3 e2 = p_v2 - p_v0;
- Vector3 h = rel.cross(e2);
- real_t a = e1.dot(h);
- if (Math::is_zero_approx(a)) { // Parallel test.
- return false;
- }
- real_t f = 1.0f / a;
- Vector3 s = p_from - p_v0;
- real_t u = f * s.dot(h);
- if ((u < 0.0f) || (u > 1.0f)) {
- return false;
- }
- Vector3 q = s.cross(e1);
- real_t v = f * rel.dot(q);
- if ((v < 0.0f) || (u + v > 1.0f)) {
- return false;
- }
- // At this stage we can compute t to find out where
- // the intersection point is on the line.
- real_t t = f * e2.dot(q);
- if (t > (real_t)CMP_EPSILON && t <= 1.0f) { // Ray intersection.
- if (r_res) {
- *r_res = p_from + rel * t;
- }
- return true;
- } else { // This means that there is a line intersection but not a ray intersection.
- return false;
- }
- }
- static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) {
- Vector3 sphere_pos = p_sphere_pos - p_from;
- Vector3 rel = (p_to - p_from);
- real_t rel_l = rel.length();
- if (rel_l < (real_t)CMP_EPSILON) {
- return false; // Both points are the same.
- }
- Vector3 normal = rel / rel_l;
- real_t sphere_d = normal.dot(sphere_pos);
- real_t ray_distance = sphere_pos.distance_to(normal * sphere_d);
- if (ray_distance >= p_sphere_radius) {
- return false;
- }
- real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance;
- real_t inters_d = sphere_d;
- if (inters_d2 >= (real_t)CMP_EPSILON) {
- inters_d -= Math::sqrt(inters_d2);
- }
- // Check in segment.
- if (inters_d < 0 || inters_d > rel_l) {
- return false;
- }
- Vector3 result = p_from + normal * inters_d;
- if (r_res) {
- *r_res = result;
- }
- if (r_norm) {
- *r_norm = (result - p_sphere_pos).normalized();
- }
- return true;
- }
- static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr, int p_cylinder_axis = 2) {
- Vector3 rel = (p_to - p_from);
- real_t rel_l = rel.length();
- if (rel_l < (real_t)CMP_EPSILON) {
- return false; // Both points are the same.
- }
- ERR_FAIL_COND_V(p_cylinder_axis < 0, false);
- ERR_FAIL_COND_V(p_cylinder_axis > 2, false);
- Vector3 cylinder_axis;
- cylinder_axis[p_cylinder_axis] = 1.0f;
- // First check if they are parallel.
- Vector3 normal = (rel / rel_l);
- Vector3 crs = normal.cross(cylinder_axis);
- real_t crs_l = crs.length();
- Vector3 axis_dir;
- if (crs_l < (real_t)CMP_EPSILON) {
- Vector3 side_axis;
- side_axis[(p_cylinder_axis + 1) % 3] = 1.0f; // Any side axis OK.
- axis_dir = side_axis;
- } else {
- axis_dir = crs / crs_l;
- }
- real_t dist = axis_dir.dot(p_from);
- if (dist >= p_radius) {
- return false; // Too far away.
- }
- // Convert to 2D.
- real_t w2 = p_radius * p_radius - dist * dist;
- if (w2 < (real_t)CMP_EPSILON) {
- return false; // Avoid numerical error.
- }
- Size2 size(Math::sqrt(w2), p_height * 0.5f);
- Vector3 side_dir = axis_dir.cross(cylinder_axis).normalized();
- Vector2 from2D(side_dir.dot(p_from), p_from[p_cylinder_axis]);
- Vector2 to2D(side_dir.dot(p_to), p_to[p_cylinder_axis]);
- real_t min = 0, max = 1;
- int axis = -1;
- for (int i = 0; i < 2; i++) {
- real_t seg_from = from2D[i];
- real_t seg_to = to2D[i];
- real_t box_begin = -size[i];
- real_t box_end = size[i];
- real_t cmin, cmax;
- if (seg_from < seg_to) {
- if (seg_from > box_end || seg_to < box_begin) {
- return false;
- }
- real_t length = seg_to - seg_from;
- cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
- cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
- } else {
- if (seg_to > box_end || seg_from < box_begin) {
- return false;
- }
- real_t length = seg_to - seg_from;
- cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
- cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
- }
- if (cmin > min) {
- min = cmin;
- axis = i;
- }
- if (cmax < max) {
- max = cmax;
- }
- if (max < min) {
- return false;
- }
- }
- // Convert to 3D again.
- Vector3 result = p_from + (rel * min);
- Vector3 res_normal = result;
- if (axis == 0) {
- res_normal[p_cylinder_axis] = 0;
- } else {
- int axis_side = (p_cylinder_axis + 1) % 3;
- res_normal[axis_side] = 0;
- axis_side = (axis_side + 1) % 3;
- res_normal[axis_side] = 0;
- }
- res_normal.normalize();
- if (r_res) {
- *r_res = result;
- }
- if (r_norm) {
- *r_norm = res_normal;
- }
- return true;
- }
- static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) {
- real_t min = -1e20, max = 1e20;
- Vector3 rel = p_to - p_from;
- real_t rel_l = rel.length();
- if (rel_l < (real_t)CMP_EPSILON) {
- return false;
- }
- Vector3 dir = rel / rel_l;
- int min_index = -1;
- for (int i = 0; i < p_plane_count; i++) {
- const Plane &p = p_planes[i];
- real_t den = p.normal.dot(dir);
- if (Math::abs(den) <= (real_t)CMP_EPSILON) {
- continue; // Ignore parallel plane.
- }
- real_t dist = -p.distance_to(p_from) / den;
- if (den > 0) {
- // Backwards facing plane.
- if (dist < max) {
- max = dist;
- }
- } else {
- // Front facing plane.
- if (dist > min) {
- min = dist;
- min_index = i;
- }
- }
- }
- if (max <= min || min < 0 || min > rel_l || min_index == -1) { // Exit conditions.
- return false; // No intersection.
- }
- if (p_res) {
- *p_res = p_from + dir * min;
- }
- if (p_norm) {
- *p_norm = p_planes[min_index].normal;
- }
- return true;
- }
- static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) {
- Vector3 p = p_point - p_segment[0];
- Vector3 n = p_segment[1] - p_segment[0];
- real_t l2 = n.length_squared();
- if (l2 < 1e-20f) {
- return p_segment[0]; // Both points are the same, just give any.
- }
- real_t d = n.dot(p) / l2;
- if (d <= 0.0f) {
- return p_segment[0]; // Before first point.
- } else if (d >= 1.0f) {
- return p_segment[1]; // After first point.
- } else {
- return p_segment[0] + n * d; // Inside.
- }
- }
- static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) {
- Vector3 p = p_point - p_segment[0];
- Vector3 n = p_segment[1] - p_segment[0];
- real_t l2 = n.length_squared();
- if (l2 < 1e-20f) {
- return p_segment[0]; // Both points are the same, just give any.
- }
- real_t d = n.dot(p) / l2;
- return p_segment[0] + n * d; // Inside.
- }
- static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) {
- Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2);
- Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2);
- if (face_n.dot(n1) < 0) {
- return false;
- }
- Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point);
- if (face_n.dot(n2) < 0) {
- return false;
- }
- Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2);
- if (face_n.dot(n3) < 0) {
- return false;
- }
- return true;
- }
- static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) {
- real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]);
- if (d > p_sphere_radius || d < -p_sphere_radius) {
- // Not touching the plane of the face, return.
- return false;
- }
- Vector3 contact = p_sphere_pos - (p_normal * d);
- /** 2nd) TEST INSIDE TRIANGLE **/
- if (Geometry3D::point_in_projected_triangle(contact, p_triangle[0], p_triangle[1], p_triangle[2])) {
- r_triangle_contact = contact;
- r_sphere_contact = p_sphere_pos - p_normal * p_sphere_radius;
- //printf("solved inside triangle\n");
- return true;
- }
- /** 3rd TEST INSIDE EDGE CYLINDERS **/
- const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly
- for (int i = 0; i < 3; i++) {
- // Check edge cylinder.
- Vector3 n1 = verts[i] - verts[i + 1];
- Vector3 n2 = p_sphere_pos - verts[i + 1];
- ///@TODO Maybe discard by range here to make the algorithm quicker.
- // Check point within cylinder radius.
- Vector3 axis = n1.cross(n2).cross(n1);
- axis.normalize();
- real_t ad = axis.dot(n2);
- if (ABS(ad) > p_sphere_radius) {
- // No chance with this edge, too far away.
- continue;
- }
- // Check point within edge capsule cylinder.
- /** 4th TEST INSIDE EDGE POINTS **/
- real_t sphere_at = n1.dot(n2);
- if (sphere_at >= 0 && sphere_at < n1.dot(n1)) {
- r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2));
- r_sphere_contact = p_sphere_pos - axis * p_sphere_radius;
- // Point inside here.
- return true;
- }
- real_t r2 = p_sphere_radius * p_sphere_radius;
- if (n2.length_squared() < r2) {
- Vector3 n = (p_sphere_pos - verts[i + 1]).normalized();
- r_triangle_contact = verts[i + 1];
- r_sphere_contact = p_sphere_pos - n * p_sphere_radius;
- return true;
- }
- if (n2.distance_squared_to(n1) < r2) {
- Vector3 n = (p_sphere_pos - verts[i]).normalized();
- r_triangle_contact = verts[i];
- r_sphere_contact = p_sphere_pos - n * p_sphere_radius;
- return true;
- }
- break; // It's pointless to continue at this point, so save some CPU cycles.
- }
- return false;
- }
- static inline Vector<Vector3> clip_polygon(const Vector<Vector3> &polygon, const Plane &p_plane) {
- enum LocationCache {
- LOC_INSIDE = 1,
- LOC_BOUNDARY = 0,
- LOC_OUTSIDE = -1
- };
- if (polygon.size() == 0) {
- return polygon;
- }
- int *location_cache = (int *)alloca(sizeof(int) * polygon.size());
- int inside_count = 0;
- int outside_count = 0;
- for (int a = 0; a < polygon.size(); a++) {
- real_t dist = p_plane.distance_to(polygon[a]);
- if (dist < (real_t)-CMP_POINT_IN_PLANE_EPSILON) {
- location_cache[a] = LOC_INSIDE;
- inside_count++;
- } else {
- if (dist > (real_t)CMP_POINT_IN_PLANE_EPSILON) {
- location_cache[a] = LOC_OUTSIDE;
- outside_count++;
- } else {
- location_cache[a] = LOC_BOUNDARY;
- }
- }
- }
- if (outside_count == 0) {
- return polygon; // No changes.
- } else if (inside_count == 0) {
- return Vector<Vector3>(); // Empty.
- }
- long previous = polygon.size() - 1;
- Vector<Vector3> clipped;
- for (int index = 0; index < polygon.size(); index++) {
- int loc = location_cache[index];
- if (loc == LOC_OUTSIDE) {
- if (location_cache[previous] == LOC_INSIDE) {
- const Vector3 &v1 = polygon[previous];
- const Vector3 &v2 = polygon[index];
- Vector3 segment = v1 - v2;
- real_t den = p_plane.normal.dot(segment);
- real_t dist = p_plane.distance_to(v1) / den;
- dist = -dist;
- clipped.push_back(v1 + segment * dist);
- }
- } else {
- const Vector3 &v1 = polygon[index];
- if ((loc == LOC_INSIDE) && (location_cache[previous] == LOC_OUTSIDE)) {
- const Vector3 &v2 = polygon[previous];
- Vector3 segment = v1 - v2;
- real_t den = p_plane.normal.dot(segment);
- real_t dist = p_plane.distance_to(v1) / den;
- dist = -dist;
- clipped.push_back(v1 + segment * dist);
- }
- clipped.push_back(v1);
- }
- previous = index;
- }
- return clipped;
- }
- // Create a "wrap" that encloses the given geometry.
- static Vector<Face3> wrap_geometry(Vector<Face3> p_array, real_t *p_error = nullptr);
- struct MeshData {
- struct Face {
- Plane plane;
- LocalVector<int> indices;
- };
- LocalVector<Face> faces;
- struct Edge {
- int vertex_a, vertex_b;
- int face_a, face_b;
- };
- LocalVector<Edge> edges;
- LocalVector<Vector3> vertices;
- void optimize_vertices();
- };
- static MeshData build_convex_mesh(const Vector<Plane> &p_planes);
- static Vector<Plane> build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis = Vector3::AXIS_Z);
- static Vector<Plane> build_box_planes(const Vector3 &p_extents);
- static Vector<Plane> build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis = Vector3::AXIS_Z);
- static Vector<Plane> build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis = Vector3::AXIS_Z);
- static Vector<Vector3> compute_convex_mesh_points(const Plane *p_planes, int p_plane_count);
- #define FINDMINMAX(x0, x1, x2, min, max) \
- min = max = x0; \
- if (x1 < min) { \
- min = x1; \
- } \
- if (x1 > max) { \
- max = x1; \
- } \
- if (x2 < min) { \
- min = x2; \
- } \
- if (x2 > max) { \
- max = x2; \
- }
- _FORCE_INLINE_ static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
- int q;
- Vector3 vmin, vmax;
- for (q = 0; q <= 2; q++) {
- if (normal[q] > 0.0f) {
- vmin[q] = -maxbox[q];
- vmax[q] = maxbox[q];
- } else {
- vmin[q] = maxbox[q];
- vmax[q] = -maxbox[q];
- }
- }
- if (normal.dot(vmin) + d > 0.0f) {
- return false;
- }
- if (normal.dot(vmax) + d >= 0.0f) {
- return true;
- }
- return false;
- }
- /*======================== X-tests ========================*/
- #define AXISTEST_X01(a, b, fa, fb) \
- p0 = a * v0.y - b * v0.z; \
- p2 = a * v2.y - b * v2.z; \
- if (p0 < p2) { \
- min = p0; \
- max = p2; \
- } else { \
- min = p2; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) { \
- return false; \
- }
- #define AXISTEST_X2(a, b, fa, fb) \
- p0 = a * v0.y - b * v0.z; \
- p1 = a * v1.y - b * v1.z; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) { \
- return false; \
- }
- /*======================== Y-tests ========================*/
- #define AXISTEST_Y02(a, b, fa, fb) \
- p0 = -a * v0.x + b * v0.z; \
- p2 = -a * v2.x + b * v2.z; \
- if (p0 < p2) { \
- min = p0; \
- max = p2; \
- } else { \
- min = p2; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) { \
- return false; \
- }
- #define AXISTEST_Y1(a, b, fa, fb) \
- p0 = -a * v0.x + b * v0.z; \
- p1 = -a * v1.x + b * v1.z; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if (min > rad || max < -rad) { \
- return false; \
- }
- /*======================== Z-tests ========================*/
- #define AXISTEST_Z12(a, b, fa, fb) \
- p1 = a * v1.x - b * v1.y; \
- p2 = a * v2.x - b * v2.y; \
- if (p2 < p1) { \
- min = p2; \
- max = p1; \
- } else { \
- min = p1; \
- max = p2; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if (min > rad || max < -rad) { \
- return false; \
- }
- #define AXISTEST_Z0(a, b, fa, fb) \
- p0 = a * v0.x - b * v0.y; \
- p1 = a * v1.x - b * v1.y; \
- if (p0 < p1) { \
- min = p0; \
- max = p1; \
- } else { \
- min = p1; \
- max = p0; \
- } \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if (min > rad || max < -rad) { \
- return false; \
- }
- _FORCE_INLINE_ static bool triangle_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
- /* use separating axis theorem to test overlap between triangle and box */
- /* need to test for overlap in these directions: */
- /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
- /* we do not even need to test these) */
- /* 2) normal of the triangle */
- /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
- /* this gives 3x3=9 more tests */
- Vector3 v0, v1, v2;
- float min, max, d, p0, p1, p2, rad, fex, fey, fez;
- Vector3 normal, e0, e1, e2;
- /* This is the fastest branch on Sun */
- /* move everything so that the boxcenter is in (0,0,0) */
- v0 = triverts[0] - boxcenter;
- v1 = triverts[1] - boxcenter;
- v2 = triverts[2] - boxcenter;
- /* compute triangle edges */
- e0 = v1 - v0; /* tri edge 0 */
- e1 = v2 - v1; /* tri edge 1 */
- e2 = v0 - v2; /* tri edge 2 */
- /* Bullet 3: */
- /* test the 9 tests first (this was faster) */
- fex = Math::abs(e0.x);
- fey = Math::abs(e0.y);
- fez = Math::abs(e0.z);
- AXISTEST_X01(e0.z, e0.y, fez, fey);
- AXISTEST_Y02(e0.z, e0.x, fez, fex);
- AXISTEST_Z12(e0.y, e0.x, fey, fex);
- fex = Math::abs(e1.x);
- fey = Math::abs(e1.y);
- fez = Math::abs(e1.z);
- AXISTEST_X01(e1.z, e1.y, fez, fey);
- AXISTEST_Y02(e1.z, e1.x, fez, fex);
- AXISTEST_Z0(e1.y, e1.x, fey, fex);
- fex = Math::abs(e2.x);
- fey = Math::abs(e2.y);
- fez = Math::abs(e2.z);
- AXISTEST_X2(e2.z, e2.y, fez, fey);
- AXISTEST_Y1(e2.z, e2.x, fez, fex);
- AXISTEST_Z12(e2.y, e2.x, fey, fex);
- /* Bullet 1: */
- /* first test overlap in the {x,y,z}-directions */
- /* find min, max of the triangle each direction, and test for overlap in */
- /* that direction -- this is equivalent to testing a minimal AABB around */
- /* the triangle against the AABB */
- /* test in X-direction */
- FINDMINMAX(v0.x, v1.x, v2.x, min, max);
- if (min > boxhalfsize.x || max < -boxhalfsize.x) {
- return false;
- }
- /* test in Y-direction */
- FINDMINMAX(v0.y, v1.y, v2.y, min, max);
- if (min > boxhalfsize.y || max < -boxhalfsize.y) {
- return false;
- }
- /* test in Z-direction */
- FINDMINMAX(v0.z, v1.z, v2.z, min, max);
- if (min > boxhalfsize.z || max < -boxhalfsize.z) {
- return false;
- }
- /* Bullet 2: */
- /* test if the box intersects the plane of the triangle */
- /* compute plane equation of triangle: normal*x+d=0 */
- normal = e0.cross(e1);
- d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
- return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */
- }
- static Vector<uint32_t> generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative);
- static Vector<int8_t> generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative);
- static Vector3 triangle_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_pos) {
- Vector3 v0 = p_b - p_a;
- Vector3 v1 = p_c - p_a;
- Vector3 v2 = p_pos - p_a;
- float d00 = v0.dot(v0);
- float d01 = v0.dot(v1);
- float d11 = v1.dot(v1);
- float d20 = v2.dot(v0);
- float d21 = v2.dot(v1);
- float denom = (d00 * d11 - d01 * d01);
- if (denom == 0) {
- return Vector3(); //invalid triangle, return empty
- }
- float v = (d11 * d20 - d01 * d21) / denom;
- float w = (d00 * d21 - d01 * d20) / denom;
- float u = 1.0f - v - w;
- return Vector3(u, v, w);
- }
- static Color tetrahedron_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_d, const Vector3 &p_pos) {
- Vector3 vap = p_pos - p_a;
- Vector3 vbp = p_pos - p_b;
- Vector3 vab = p_b - p_a;
- Vector3 vac = p_c - p_a;
- Vector3 vad = p_d - p_a;
- Vector3 vbc = p_c - p_b;
- Vector3 vbd = p_d - p_b;
- // ScTP computes the scalar triple product
- #define STP(m_a, m_b, m_c) ((m_a).dot((m_b).cross((m_c))))
- float va6 = STP(vbp, vbd, vbc);
- float vb6 = STP(vap, vac, vad);
- float vc6 = STP(vap, vad, vab);
- float vd6 = STP(vap, vab, vac);
- float v6 = 1 / STP(vab, vac, vad);
- return Color(va6 * v6, vb6 * v6, vc6 * v6, vd6 * v6);
- #undef STP
- }
- _FORCE_INLINE_ static Vector3 octahedron_map_decode(const Vector2 &p_uv) {
- // https://twitter.com/Stubbesaurus/status/937994790553227264
- Vector2 f = p_uv * 2.0f - Vector2(1.0f, 1.0f);
- Vector3 n = Vector3(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y));
- float t = CLAMP(-n.z, 0.0f, 1.0f);
- n.x += n.x >= 0 ? -t : t;
- n.y += n.y >= 0 ? -t : t;
- return n.normalized();
- }
- };
- #endif // GEOMETRY_3D_H
|