123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987 |
- /**************************************************************************/
- /* geometry_3d.cpp */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #include "geometry_3d.h"
- #include "thirdparty/misc/clipper.hpp"
- #include "thirdparty/misc/polypartition.h"
- void Geometry3D::get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt) {
- // Based on David Eberly's Computation of Distance Between Line Segments algorithm.
- Vector3 p = p_p1 - p_p0;
- Vector3 q = p_q1 - p_q0;
- Vector3 r = p_p0 - p_q0;
- real_t a = p.dot(p);
- real_t b = p.dot(q);
- real_t c = q.dot(q);
- real_t d = p.dot(r);
- real_t e = q.dot(r);
- real_t s = 0.0f;
- real_t t = 0.0f;
- real_t det = a * c - b * b;
- if (det > CMP_EPSILON) {
- // Non-parallel segments
- real_t bte = b * e;
- real_t ctd = c * d;
- if (bte <= ctd) {
- // s <= 0.0f
- if (e <= 0.0f) {
- // t <= 0.0f
- s = (-d >= a ? 1 : (-d > 0.0f ? -d / a : 0.0f));
- t = 0.0f;
- } else if (e < c) {
- // 0.0f < t < 1
- s = 0.0f;
- t = e / c;
- } else {
- // t >= 1
- s = (b - d >= a ? 1 : (b - d > 0.0f ? (b - d) / a : 0.0f));
- t = 1;
- }
- } else {
- // s > 0.0f
- s = bte - ctd;
- if (s >= det) {
- // s >= 1
- if (b + e <= 0.0f) {
- // t <= 0.0f
- s = (-d <= 0.0f ? 0.0f : (-d < a ? -d / a : 1));
- t = 0.0f;
- } else if (b + e < c) {
- // 0.0f < t < 1
- s = 1;
- t = (b + e) / c;
- } else {
- // t >= 1
- s = (b - d <= 0.0f ? 0.0f : (b - d < a ? (b - d) / a : 1));
- t = 1;
- }
- } else {
- // 0.0f < s < 1
- real_t ate = a * e;
- real_t btd = b * d;
- if (ate <= btd) {
- // t <= 0.0f
- s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a));
- t = 0.0f;
- } else {
- // t > 0.0f
- t = ate - btd;
- if (t >= det) {
- // t >= 1
- s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a));
- t = 1;
- } else {
- // 0.0f < t < 1
- s /= det;
- t /= det;
- }
- }
- }
- }
- } else {
- // Parallel segments
- if (e <= 0.0f) {
- s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a));
- t = 0.0f;
- } else if (e >= c) {
- s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a));
- t = 1;
- } else {
- s = 0.0f;
- t = e / c;
- }
- }
- r_ps = (1 - s) * p_p0 + s * p_p1;
- r_qt = (1 - t) * p_q0 + t * p_q1;
- }
- real_t Geometry3D::get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1) {
- Vector3 ps;
- Vector3 qt;
- get_closest_points_between_segments(p_p0, p_p1, p_q0, p_q1, ps, qt);
- Vector3 st = qt - ps;
- return st.length();
- }
- void Geometry3D::MeshData::optimize_vertices() {
- HashMap<int, int> vtx_remap;
- for (MeshData::Face &face : faces) {
- for (int &index : face.indices) {
- if (!vtx_remap.has(index)) {
- int ni = vtx_remap.size();
- vtx_remap[index] = ni;
- }
- index = vtx_remap[index];
- }
- }
- for (MeshData::Edge &edge : edges) {
- int a = edge.vertex_a;
- int b = edge.vertex_b;
- if (!vtx_remap.has(a)) {
- int ni = vtx_remap.size();
- vtx_remap[a] = ni;
- }
- if (!vtx_remap.has(b)) {
- int ni = vtx_remap.size();
- vtx_remap[b] = ni;
- }
- edge.vertex_a = vtx_remap[a];
- edge.vertex_b = vtx_remap[b];
- }
- LocalVector<Vector3> new_vertices;
- new_vertices.resize(vtx_remap.size());
- for (uint32_t i = 0; i < vertices.size(); i++) {
- if (vtx_remap.has(i)) {
- new_vertices[vtx_remap[i]] = vertices[i];
- }
- }
- vertices = new_vertices;
- }
- struct _FaceClassify {
- struct _Link {
- int face = -1;
- int edge = -1;
- void clear() {
- face = -1;
- edge = -1;
- }
- _Link() {}
- };
- bool valid = false;
- int group = -1;
- _Link links[3];
- Face3 face;
- _FaceClassify() {}
- };
- /*** GEOMETRY WRAPPER ***/
- enum _CellFlags {
- _CELL_SOLID = 1,
- _CELL_EXTERIOR = 2,
- _CELL_STEP_MASK = 0x1C,
- _CELL_STEP_NONE = 0 << 2,
- _CELL_STEP_Y_POS = 1 << 2,
- _CELL_STEP_Y_NEG = 2 << 2,
- _CELL_STEP_X_POS = 3 << 2,
- _CELL_STEP_X_NEG = 4 << 2,
- _CELL_STEP_Z_POS = 5 << 2,
- _CELL_STEP_Z_NEG = 6 << 2,
- _CELL_STEP_DONE = 7 << 2,
- _CELL_PREV_MASK = 0xE0,
- _CELL_PREV_NONE = 0 << 5,
- _CELL_PREV_Y_POS = 1 << 5,
- _CELL_PREV_Y_NEG = 2 << 5,
- _CELL_PREV_X_POS = 3 << 5,
- _CELL_PREV_X_NEG = 4 << 5,
- _CELL_PREV_Z_POS = 5 << 5,
- _CELL_PREV_Z_NEG = 6 << 5,
- _CELL_PREV_FIRST = 7 << 5,
- };
- static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) {
- AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z));
- aabb.position = aabb.position * voxelsize;
- aabb.size = aabb.size * voxelsize;
- if (!p_face.intersects_aabb(aabb)) {
- return;
- }
- if (len_x == 1 && len_y == 1 && len_z == 1) {
- p_cell_status[x][y][z] = _CELL_SOLID;
- return;
- }
- int div_x = len_x > 1 ? 2 : 1;
- int div_y = len_y > 1 ? 2 : 1;
- int div_z = len_z > 1 ? 2 : 1;
- #define SPLIT_DIV(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \
- if (m_div == 1) { \
- m_new_v = m_v; \
- m_new_len_v = 1; \
- } else if (m_i == 0) { \
- m_new_v = m_v; \
- m_new_len_v = m_len_v / 2; \
- } else { \
- m_new_v = m_v + m_len_v / 2; \
- m_new_len_v = m_len_v - m_len_v / 2; \
- }
- int new_x;
- int new_len_x;
- int new_y;
- int new_len_y;
- int new_z;
- int new_len_z;
- for (int i = 0; i < div_x; i++) {
- SPLIT_DIV(i, div_x, x, len_x, new_x, new_len_x);
- for (int j = 0; j < div_y; j++) {
- SPLIT_DIV(j, div_y, y, len_y, new_y, new_len_y);
- for (int k = 0; k < div_z; k++) {
- SPLIT_DIV(k, div_z, z, len_z, new_z, new_len_z);
- _plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face);
- }
- }
- }
- #undef SPLIT_DIV
- }
- static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) {
- if (p_cell_status[x][y][z] & 3) {
- return; // Nothing to do, already used and/or visited.
- }
- p_cell_status[x][y][z] = _CELL_PREV_FIRST;
- while (true) {
- uint8_t &c = p_cell_status[x][y][z];
- if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) {
- // Haven't been in here, mark as outside.
- p_cell_status[x][y][z] |= _CELL_EXTERIOR;
- }
- if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) {
- // If not done, increase step.
- c += 1 << 2;
- }
- if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) {
- // Go back.
- switch (c & _CELL_PREV_MASK) {
- case _CELL_PREV_FIRST: {
- return;
- } break;
- case _CELL_PREV_Y_POS: {
- y++;
- ERR_FAIL_COND(y >= len_y);
- } break;
- case _CELL_PREV_Y_NEG: {
- y--;
- ERR_FAIL_COND(y < 0);
- } break;
- case _CELL_PREV_X_POS: {
- x++;
- ERR_FAIL_COND(x >= len_x);
- } break;
- case _CELL_PREV_X_NEG: {
- x--;
- ERR_FAIL_COND(x < 0);
- } break;
- case _CELL_PREV_Z_POS: {
- z++;
- ERR_FAIL_COND(z >= len_z);
- } break;
- case _CELL_PREV_Z_NEG: {
- z--;
- ERR_FAIL_COND(z < 0);
- } break;
- default: {
- ERR_FAIL();
- }
- }
- continue;
- }
- int next_x = x, next_y = y, next_z = z;
- uint8_t prev = 0;
- switch (c & _CELL_STEP_MASK) {
- case _CELL_STEP_Y_POS: {
- next_y++;
- prev = _CELL_PREV_Y_NEG;
- } break;
- case _CELL_STEP_Y_NEG: {
- next_y--;
- prev = _CELL_PREV_Y_POS;
- } break;
- case _CELL_STEP_X_POS: {
- next_x++;
- prev = _CELL_PREV_X_NEG;
- } break;
- case _CELL_STEP_X_NEG: {
- next_x--;
- prev = _CELL_PREV_X_POS;
- } break;
- case _CELL_STEP_Z_POS: {
- next_z++;
- prev = _CELL_PREV_Z_NEG;
- } break;
- case _CELL_STEP_Z_NEG: {
- next_z--;
- prev = _CELL_PREV_Z_POS;
- } break;
- default:
- ERR_FAIL();
- }
- if (next_x < 0 || next_x >= len_x) {
- continue;
- }
- if (next_y < 0 || next_y >= len_y) {
- continue;
- }
- if (next_z < 0 || next_z >= len_z) {
- continue;
- }
- if (p_cell_status[next_x][next_y][next_z] & 3) {
- continue;
- }
- x = next_x;
- y = next_y;
- z = next_z;
- p_cell_status[x][y][z] |= prev;
- }
- }
- static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, Vector<Face3> &p_faces) {
- ERR_FAIL_INDEX(x, len_x);
- ERR_FAIL_INDEX(y, len_y);
- ERR_FAIL_INDEX(z, len_z);
- if (p_cell_status[x][y][z] & _CELL_EXTERIOR) {
- return;
- }
- #define vert(m_idx) Vector3(((m_idx)&4) >> 2, ((m_idx)&2) >> 1, (m_idx)&1)
- static const uint8_t indices[6][4] = {
- { 7, 6, 4, 5 },
- { 7, 3, 2, 6 },
- { 7, 5, 1, 3 },
- { 0, 2, 3, 1 },
- { 0, 1, 5, 4 },
- { 0, 4, 6, 2 },
- };
- for (int i = 0; i < 6; i++) {
- Vector3 face_points[4];
- int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- bool plot = false;
- if (disp_x < 0 || disp_x >= len_x) {
- plot = true;
- }
- if (disp_y < 0 || disp_y >= len_y) {
- plot = true;
- }
- if (disp_z < 0 || disp_z >= len_z) {
- plot = true;
- }
- if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR)) {
- plot = true;
- }
- if (!plot) {
- continue;
- }
- for (int j = 0; j < 4; j++) {
- face_points[j] = vert(indices[i][j]) + Vector3(x, y, z);
- }
- p_faces.push_back(
- Face3(
- face_points[0],
- face_points[1],
- face_points[2]));
- p_faces.push_back(
- Face3(
- face_points[2],
- face_points[3],
- face_points[0]));
- }
- }
- Vector<Face3> Geometry3D::wrap_geometry(Vector<Face3> p_array, real_t *p_error) {
- int face_count = p_array.size();
- const Face3 *faces = p_array.ptr();
- constexpr double min_size = 1.0;
- constexpr int max_length = 20;
- AABB global_aabb;
- for (int i = 0; i < face_count; i++) {
- if (i == 0) {
- global_aabb = faces[i].get_aabb();
- } else {
- global_aabb.merge_with(faces[i].get_aabb());
- }
- }
- global_aabb.grow_by(0.01f); // Avoid numerical error.
- // Determine amount of cells in grid axis.
- int div_x, div_y, div_z;
- if (global_aabb.size.x / min_size < max_length) {
- div_x = (int)(global_aabb.size.x / min_size) + 1;
- } else {
- div_x = max_length;
- }
- if (global_aabb.size.y / min_size < max_length) {
- div_y = (int)(global_aabb.size.y / min_size) + 1;
- } else {
- div_y = max_length;
- }
- if (global_aabb.size.z / min_size < max_length) {
- div_z = (int)(global_aabb.size.z / min_size) + 1;
- } else {
- div_z = max_length;
- }
- Vector3 voxelsize = global_aabb.size;
- voxelsize.x /= div_x;
- voxelsize.y /= div_y;
- voxelsize.z /= div_z;
- // Create and initialize cells to zero.
- uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
- for (int i = 0; i < div_x; i++) {
- cell_status[i] = memnew_arr(uint8_t *, div_y);
- for (int j = 0; j < div_y; j++) {
- cell_status[i][j] = memnew_arr(uint8_t, div_z);
- for (int k = 0; k < div_z; k++) {
- cell_status[i][j][k] = 0;
- }
- }
- }
- // Plot faces into cells.
- for (int i = 0; i < face_count; i++) {
- Face3 f = faces[i];
- for (int j = 0; j < 3; j++) {
- f.vertex[j] -= global_aabb.position;
- }
- _plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
- }
- // Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking.
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- _mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
- _mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
- }
- }
- for (int i = 0; i < div_z; i++) {
- for (int j = 0; j < div_y; j++) {
- _mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
- _mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
- }
- }
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_z; j++) {
- _mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
- _mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
- }
- }
- // Build faces for the inside-outside cell divisors.
- Vector<Face3> wrapped_faces;
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- for (int k = 0; k < div_z; k++) {
- _build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
- }
- }
- }
- // Transform face vertices to global coords.
- int wrapped_faces_count = wrapped_faces.size();
- Face3 *wrapped_faces_ptr = wrapped_faces.ptrw();
- for (int i = 0; i < wrapped_faces_count; i++) {
- for (int j = 0; j < 3; j++) {
- Vector3 &v = wrapped_faces_ptr[i].vertex[j];
- v = v * voxelsize;
- v += global_aabb.position;
- }
- }
- // clean up grid
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- memdelete_arr(cell_status[i][j]);
- }
- memdelete_arr(cell_status[i]);
- }
- memdelete_arr(cell_status);
- if (p_error) {
- *p_error = voxelsize.length();
- }
- return wrapped_faces;
- }
- Geometry3D::MeshData Geometry3D::build_convex_mesh(const Vector<Plane> &p_planes) {
- MeshData mesh;
- #define SUBPLANE_SIZE 1024.0
- real_t subplane_size = 1024.0; // Should compute this from the actual plane.
- for (int i = 0; i < p_planes.size(); i++) {
- Plane p = p_planes[i];
- Vector3 ref = Vector3(0.0, 1.0, 0.0);
- if (ABS(p.normal.dot(ref)) > 0.95f) {
- ref = Vector3(0.0, 0.0, 1.0); // Change axis.
- }
- Vector3 right = p.normal.cross(ref).normalized();
- Vector3 up = p.normal.cross(right).normalized();
- Vector3 center = p.get_center();
- // make a quad clockwise
- LocalVector<Vector3> vertices = {
- center - up * subplane_size + right * subplane_size,
- center - up * subplane_size - right * subplane_size,
- center + up * subplane_size - right * subplane_size,
- center + up * subplane_size + right * subplane_size
- };
- for (int j = 0; j < p_planes.size(); j++) {
- if (j == i) {
- continue;
- }
- LocalVector<Vector3> new_vertices;
- Plane clip = p_planes[j];
- if (clip.normal.dot(p.normal) > 0.95f) {
- continue;
- }
- if (vertices.size() < 3) {
- break;
- }
- for (uint32_t k = 0; k < vertices.size(); k++) {
- int k_n = (k + 1) % vertices.size();
- Vector3 edge0_A = vertices[k];
- Vector3 edge1_A = vertices[k_n];
- real_t dist0 = clip.distance_to(edge0_A);
- real_t dist1 = clip.distance_to(edge1_A);
- if (dist0 <= 0) { // Behind plane.
- new_vertices.push_back(vertices[k]);
- }
- // Check for different sides and non coplanar.
- if ((dist0 * dist1) < 0) {
- // Calculate intersection.
- Vector3 rel = edge1_A - edge0_A;
- real_t den = clip.normal.dot(rel);
- if (Math::is_zero_approx(den)) {
- continue; // Point too short.
- }
- real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
- Vector3 inters = edge0_A + rel * dist;
- new_vertices.push_back(inters);
- }
- }
- vertices = new_vertices;
- }
- if (vertices.size() < 3) {
- continue;
- }
- // Result is a clockwise face.
- MeshData::Face face;
- // Add face indices.
- for (const Vector3 &vertex : vertices) {
- int idx = -1;
- for (uint32_t k = 0; k < mesh.vertices.size(); k++) {
- if (mesh.vertices[k].distance_to(vertex) < 0.001f) {
- idx = k;
- break;
- }
- }
- if (idx == -1) {
- idx = mesh.vertices.size();
- mesh.vertices.push_back(vertex);
- }
- face.indices.push_back(idx);
- }
- face.plane = p;
- mesh.faces.push_back(face);
- // Add edge.
- for (uint32_t j = 0; j < face.indices.size(); j++) {
- int a = face.indices[j];
- int b = face.indices[(j + 1) % face.indices.size()];
- bool found = false;
- int found_idx = -1;
- for (uint32_t k = 0; k < mesh.edges.size(); k++) {
- if (mesh.edges[k].vertex_a == a && mesh.edges[k].vertex_b == b) {
- found = true;
- found_idx = k;
- break;
- }
- if (mesh.edges[k].vertex_b == a && mesh.edges[k].vertex_a == b) {
- found = true;
- found_idx = k;
- break;
- }
- }
- if (found) {
- mesh.edges[found_idx].face_b = j;
- continue;
- }
- MeshData::Edge edge;
- edge.vertex_a = a;
- edge.vertex_b = b;
- edge.face_a = j;
- edge.face_b = -1;
- mesh.edges.push_back(edge);
- }
- }
- return mesh;
- }
- Vector<Plane> Geometry3D::build_box_planes(const Vector3 &p_extents) {
- Vector<Plane> planes = {
- Plane(Vector3(1, 0, 0), p_extents.x),
- Plane(Vector3(-1, 0, 0), p_extents.x),
- Plane(Vector3(0, 1, 0), p_extents.y),
- Plane(Vector3(0, -1, 0), p_extents.y),
- Plane(Vector3(0, 0, 1), p_extents.z),
- Plane(Vector3(0, 0, -1), p_extents.z)
- };
- return planes;
- }
- Vector<Plane> Geometry3D::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) {
- ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
- Vector<Plane> planes;
- const double sides_step = Math_TAU / p_sides;
- for (int i = 0; i < p_sides; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * sides_step);
- normal[(p_axis + 2) % 3] = Math::sin(i * sides_step);
- planes.push_back(Plane(normal, p_radius));
- }
- Vector3 axis;
- axis[p_axis] = 1.0;
- planes.push_back(Plane(axis, p_height * 0.5f));
- planes.push_back(Plane(-axis, p_height * 0.5f));
- return planes;
- }
- Vector<Plane> Geometry3D::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) {
- ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
- Vector<Plane> planes;
- Vector3 axis;
- axis[p_axis] = 1.0;
- Vector3 axis_neg;
- axis_neg[(p_axis + 1) % 3] = 1.0;
- axis_neg[(p_axis + 2) % 3] = 1.0;
- axis_neg[p_axis] = -1.0;
- const double lon_step = Math_TAU / p_lons;
- for (int i = 0; i < p_lons; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * lon_step);
- normal[(p_axis + 2) % 3] = Math::sin(i * lon_step);
- planes.push_back(Plane(normal, p_radius));
- for (int j = 1; j <= p_lats; j++) {
- Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized();
- planes.push_back(Plane(plane_normal, p_radius));
- planes.push_back(Plane(plane_normal * axis_neg, p_radius));
- }
- }
- return planes;
- }
- Vector<Plane> Geometry3D::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
- ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
- Vector<Plane> planes;
- Vector3 axis;
- axis[p_axis] = 1.0;
- Vector3 axis_neg;
- axis_neg[(p_axis + 1) % 3] = 1.0;
- axis_neg[(p_axis + 2) % 3] = 1.0;
- axis_neg[p_axis] = -1.0;
- const double sides_step = Math_TAU / p_sides;
- for (int i = 0; i < p_sides; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * sides_step);
- normal[(p_axis + 2) % 3] = Math::sin(i * sides_step);
- planes.push_back(Plane(normal, p_radius));
- for (int j = 1; j <= p_lats; j++) {
- Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized();
- Vector3 position = axis * p_height * 0.5f + plane_normal * p_radius;
- planes.push_back(Plane(plane_normal, position));
- planes.push_back(Plane(plane_normal * axis_neg, position * axis_neg));
- }
- }
- return planes;
- }
- Vector<Vector3> Geometry3D::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count) {
- Vector<Vector3> points;
- // Iterate through every unique combination of any three planes.
- for (int i = p_plane_count - 1; i >= 0; i--) {
- for (int j = i - 1; j >= 0; j--) {
- for (int k = j - 1; k >= 0; k--) {
- // Find the point where these planes all cross over (if they
- // do at all).
- Vector3 convex_shape_point;
- if (p_planes[i].intersect_3(p_planes[j], p_planes[k], &convex_shape_point)) {
- // See if any *other* plane excludes this point because it's
- // on the wrong side.
- bool excluded = false;
- for (int n = 0; n < p_plane_count; n++) {
- if (n != i && n != j && n != k) {
- real_t dp = p_planes[n].normal.dot(convex_shape_point);
- if (dp - p_planes[n].d > (real_t)CMP_EPSILON) {
- excluded = true;
- break;
- }
- }
- }
- // Only add the point if it passed all tests.
- if (!excluded) {
- points.push_back(convex_shape_point);
- }
- }
- }
- }
- }
- return points;
- }
- #define square(m_s) ((m_s) * (m_s))
- #define INF 1e20
- /* dt of 1d function using squared distance */
- static void edt(float *f, int stride, int n) {
- float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
- int *v = reinterpret_cast<int *>(&(d[n]));
- float *z = reinterpret_cast<float *>(&v[n]);
- int k = 0;
- v[0] = 0;
- z[0] = -INF;
- z[1] = +INF;
- for (int q = 1; q <= n - 1; q++) {
- float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
- while (s <= z[k]) {
- k--;
- s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
- }
- k++;
- v[k] = q;
- z[k] = s;
- z[k + 1] = +INF;
- }
- k = 0;
- for (int q = 0; q <= n - 1; q++) {
- while (z[k + 1] < q) {
- k++;
- }
- d[q] = square(q - v[k]) + f[v[k] * stride];
- }
- for (int i = 0; i < n; i++) {
- f[i * stride] = d[i];
- }
- }
- #undef square
- Vector<uint32_t> Geometry3D::generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative) {
- uint32_t float_count = p_size.x * p_size.y * p_size.z;
- ERR_FAIL_COND_V((uint32_t)p_voxels.size() != float_count, Vector<uint32_t>());
- float *work_memory = memnew_arr(float, float_count);
- for (uint32_t i = 0; i < float_count; i++) {
- work_memory[i] = INF;
- }
- uint32_t y_mult = p_size.x;
- uint32_t z_mult = y_mult * p_size.y;
- //plot solid cells
- {
- const bool *voxr = p_voxels.ptr();
- for (uint32_t i = 0; i < float_count; i++) {
- bool plot = voxr[i];
- if (p_negative) {
- plot = !plot;
- }
- if (plot) {
- work_memory[i] = 0;
- }
- }
- }
- //process in each direction
- //xy->z
- for (int i = 0; i < p_size.x; i++) {
- for (int j = 0; j < p_size.y; j++) {
- edt(&work_memory[i + j * y_mult], z_mult, p_size.z);
- }
- }
- //xz->y
- for (int i = 0; i < p_size.x; i++) {
- for (int j = 0; j < p_size.z; j++) {
- edt(&work_memory[i + j * z_mult], y_mult, p_size.y);
- }
- }
- //yz->x
- for (int i = 0; i < p_size.y; i++) {
- for (int j = 0; j < p_size.z; j++) {
- edt(&work_memory[i * y_mult + j * z_mult], 1, p_size.x);
- }
- }
- Vector<uint32_t> ret;
- ret.resize(float_count);
- {
- uint32_t *w = ret.ptrw();
- for (uint32_t i = 0; i < float_count; i++) {
- w[i] = uint32_t(Math::sqrt(work_memory[i]));
- }
- }
- memdelete_arr(work_memory);
- return ret;
- }
- Vector<int8_t> Geometry3D::generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative) {
- ERR_FAIL_COND_V(p_positive.size() != p_negative.size(), Vector<int8_t>());
- Vector<int8_t> sdf8;
- int s = p_positive.size();
- sdf8.resize(s);
- const uint32_t *rpos = p_positive.ptr();
- const uint32_t *rneg = p_negative.ptr();
- int8_t *wsdf = sdf8.ptrw();
- for (int i = 0; i < s; i++) {
- int32_t diff = int32_t(rpos[i]) - int32_t(rneg[i]);
- wsdf[i] = CLAMP(diff, -128, 127);
- }
- return sdf8;
- }
|