1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743 |
- #ifndef SSE2NEON_H
- #define SSE2NEON_H
- // This header file provides a simple API translation layer
- // between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
- //
- // This header file does not yet translate all of the SSE intrinsics.
- //
- // Contributors to this work are:
- // John W. Ratcliff <jratcliffscarab@gmail.com>
- // Brandon Rowlett <browlett@nvidia.com>
- // Ken Fast <kfast@gdeb.com>
- // Eric van Beurden <evanbeurden@nvidia.com>
- // Alexander Potylitsin <apotylitsin@nvidia.com>
- // Hasindu Gamaarachchi <hasindu2008@gmail.com>
- // Jim Huang <jserv@biilabs.io>
- // Mark Cheng <marktwtn@biilabs.io>
- // Malcolm James MacLeod <malcolm@gulden.com>
- // Devin Hussey (easyaspi314) <husseydevin@gmail.com>
- // Sebastian Pop <spop@amazon.com>
- // Developer Ecosystem Engineering <DeveloperEcosystemEngineering@apple.com>
- // Danila Kutenin <danilak@google.com>
- // François Turban (JishinMaster) <francois.turban@gmail.com>
- // Pei-Hsuan Hung <afcidk@gmail.com>
- // Yang-Hao Yuan <yanghau@biilabs.io>
- // Syoyo Fujita <syoyo@lighttransport.com>
- // Brecht Van Lommel <brecht@blender.org>
- /*
- * sse2neon is freely redistributable under the MIT License.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- /* Tunable configurations */
- /* Enable precise implementation of math operations
- * This would slow down the computation a bit, but gives consistent result with
- * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result)
- */
- /* _mm_min_ps and _mm_max_ps */
- #ifndef SSE2NEON_PRECISE_MINMAX
- #define SSE2NEON_PRECISE_MINMAX (0)
- #endif
- /* _mm_rcp_ps and _mm_div_ps */
- #ifndef SSE2NEON_PRECISE_DIV
- #define SSE2NEON_PRECISE_DIV (0)
- #endif
- /* _mm_sqrt_ps and _mm_rsqrt_ps */
- #ifndef SSE2NEON_PRECISE_SQRT
- #define SSE2NEON_PRECISE_SQRT (0)
- #endif
- /* _mm_dp_pd */
- #ifndef SSE2NEON_PRECISE_DP
- #define SSE2NEON_PRECISE_DP (0)
- #endif
- /* compiler specific definitions */
- #if defined(__GNUC__) || defined(__clang__)
- #pragma push_macro("FORCE_INLINE")
- #pragma push_macro("ALIGN_STRUCT")
- #define FORCE_INLINE static inline __attribute__((always_inline))
- #define ALIGN_STRUCT(x) __attribute__((aligned(x)))
- #define _sse2neon_likely(x) __builtin_expect(!!(x), 1)
- #define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0)
- #else /* non-GNU / non-clang compilers */
- #warning "Macro name collisions may happen with unsupported compiler."
- #ifndef FORCE_INLINE
- #define FORCE_INLINE static inline
- #endif
- #ifndef ALIGN_STRUCT
- #define ALIGN_STRUCT(x) __declspec(align(x))
- #endif
- #define _sse2neon_likely(x) (x)
- #define _sse2neon_unlikely(x) (x)
- #endif
- #include <stdint.h>
- #include <stdlib.h>
- /* Architecture-specific build options */
- /* FIXME: #pragma GCC push_options is only available on GCC */
- #if defined(__GNUC__)
- #if defined(__arm__) && __ARM_ARCH == 7
- /* According to ARM C Language Extensions Architecture specification,
- * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON)
- * architecture supported.
- */
- #if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
- #error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON."
- #endif
- #if !defined(__clang__)
- #pragma GCC push_options
- #pragma GCC target("fpu=neon")
- #endif
- #elif defined(__aarch64__)
- #if !defined(__clang__)
- #pragma GCC push_options
- #pragma GCC target("+simd")
- #endif
- #else
- #error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A."
- #endif
- #endif
- #include <arm_neon.h>
- /* Rounding functions require either Aarch64 instructions or libm failback */
- #if !defined(__aarch64__)
- #include <math.h>
- #endif
- /* "__has_builtin" can be used to query support for built-in functions
- * provided by gcc/clang and other compilers that support it.
- */
- #ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
- /* Compatibility with gcc <= 9 */
- #if __GNUC__ <= 9
- #define __has_builtin(x) HAS##x
- #define HAS__builtin_popcount 1
- #define HAS__builtin_popcountll 1
- #else
- #define __has_builtin(x) 0
- #endif
- #endif
- /**
- * MACRO for shuffle parameter for _mm_shuffle_ps().
- * Argument fp3 is a digit[0123] that represents the fp from argument "b"
- * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
- * for fp2 in result. fp1 is a digit[0123] that represents the fp from
- * argument "a" of mm_shuffle_ps that will be places in fp1 of result.
- * fp0 is the same for fp0 of result.
- */
- #if defined(__aarch64__)
- #define _MN_SHUFFLE(fp3,fp2,fp1,fp0) ( (uint8x16_t){ (((fp3)*4)+0), (((fp3)*4)+1), (((fp3)*4)+2), (((fp3)*4)+3), (((fp2)*4)+0), (((fp2)*4)+1), (((fp2)*4)+\
- 2), (((fp2)*4)+3), (((fp1)*4)+0), (((fp1)*4)+1), (((fp1)*4)+2), (((fp1)*4)+3), (((fp0)*4)+0), (((fp0)*4)+1), (((fp0)*4)+2), (((fp0)*4)+3) } )
- #define _MF_SHUFFLE(fp3,fp2,fp1,fp0) ( (uint8x16_t){ (((fp3)*4)+0), (((fp3)*4)+1), (((fp3)*4)+2), (((fp3)*4)+3), (((fp2)*4)+0), (((fp2)*4)+1), (((fp2)*4)+\
- 2), (((fp2)*4)+3), (((fp1)*4)+16+0), (((fp1)*4)+16+1), (((fp1)*4)+16+2), (((fp1)*4)+16+3), (((fp0)*4)+16+0), (((fp0)*4)+16+1), (((fp0)*4)+16+2), (((fp0)*\
- 4)+16+3) } )
- #endif
- #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
- (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
- /* Rounding mode macros. */
- #define _MM_FROUND_TO_NEAREST_INT 0x00
- #define _MM_FROUND_TO_NEG_INF 0x01
- #define _MM_FROUND_TO_POS_INF 0x02
- #define _MM_FROUND_TO_ZERO 0x03
- #define _MM_FROUND_CUR_DIRECTION 0x04
- #define _MM_FROUND_NO_EXC 0x08
- #define _MM_ROUND_NEAREST 0x0000
- #define _MM_ROUND_DOWN 0x2000
- #define _MM_ROUND_UP 0x4000
- #define _MM_ROUND_TOWARD_ZERO 0x6000
- /* Flush zero mode macros. */
- #define _MM_FLUSH_ZERO_MASK 0x8000
- #define _MM_FLUSH_ZERO_ON 0x8000
- #define _MM_FLUSH_ZERO_OFF 0x0000
- /* Denormals are zeros mode macros. */
- #define _MM_DENORMALS_ZERO_MASK 0x0040
- #define _MM_DENORMALS_ZERO_ON 0x0040
- #define _MM_DENORMALS_ZERO_OFF 0x0000
- /* indicate immediate constant argument in a given range */
- #define __constrange(a, b) const
- /* A few intrinsics accept traditional data types like ints or floats, but
- * most operate on data types that are specific to SSE.
- * If a vector type ends in d, it contains doubles, and if it does not have
- * a suffix, it contains floats. An integer vector type can contain any type
- * of integer, from chars to shorts to unsigned long longs.
- */
- typedef int64x1_t __m64;
- typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
- // On ARM 32-bit architecture, the float64x2_t is not supported.
- // The data type __m128d should be represented in a different way for related
- // intrinsic conversion.
- #if defined(__aarch64__)
- typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
- #else
- typedef float32x4_t __m128d;
- #endif
- // Note: upstream sse2neon declares __m128i as int64x2_t. However, there's
- // many places within embree that assume __m128i can be indexed as a
- // 4 element u32.
- typedef int32x4_t __m128i; /* 128-bit vector containing integers */
- /* type-safe casting between types */
- #define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
- #define vreinterpretq_m128_f32(x) (x)
- #define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)
- #define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
- #define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
- #define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
- #define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)
- #define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
- #define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
- #define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
- #define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)
- #define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
- #define vreinterpretq_f32_m128(x) (x)
- #define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)
- #define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
- #define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
- #define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
- #define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)
- #define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
- #define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
- #define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
- #define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
- #define vreinterpretq_m128i_s8(x) vreinterpretq_s32_s8(x)
- #define vreinterpretq_m128i_s16(x) vreinterpretq_s32_s16(x)
- #define vreinterpretq_m128i_s32(x) (x)
- #define vreinterpretq_m128i_s64(x) vreinterpretq_s32_s64(x)
- #define vreinterpretq_m128i_u8(x) vreinterpretq_s32_u8(x)
- #define vreinterpretq_m128i_u16(x) vreinterpretq_s32_u16(x)
- #define vreinterpretq_m128i_u32(x) vreinterpretq_s32_u32(x)
- #define vreinterpretq_m128i_u64(x) vreinterpretq_s32_u64(x)
- #define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s32(x)
- #define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s32(x)
- #define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s32(x)
- #define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s32(x)
- #define vreinterpretq_s32_m128i(x) (x)
- #define vreinterpretq_s64_m128i(x) vreinterpretq_s64_s32(x)
- #define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s32(x)
- #define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s32(x)
- #define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s32(x)
- #define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s32(x)
- #define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
- #define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
- #define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x)
- #define vreinterpret_m64_s64(x) (x)
- #define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x)
- #define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x)
- #define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x)
- #define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x)
- #define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x)
- #define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x)
- #define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x)
- #define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x)
- #define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x)
- #define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x)
- #define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x)
- #define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x)
- #define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x)
- #define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x)
- #define vreinterpret_s64_m64(x) (x)
- #define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x)
- #if defined(__aarch64__)
- #define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x)
- #define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x)
- #define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x)
- #define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x)
- #define vreinterpretq_m128d_f64(x) (x)
- #define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)
- #define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x)
- #define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x)
- #define vreinterpretq_f64_m128d(x) (x)
- #define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x)
- #else
- #define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x)
- #define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x)
- #define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x)
- #define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x)
- #define vreinterpretq_m128d_f32(x) (x)
- #define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x)
- #define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x)
- #define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x)
- #define vreinterpretq_f32_m128d(x) (x)
- #endif
- // A struct is defined in this header file called 'SIMDVec' which can be used
- // by applications which attempt to access the contents of an __m128 struct
- // directly. It is important to note that accessing the __m128 struct directly
- // is bad coding practice by Microsoft: @see:
- // https://docs.microsoft.com/en-us/cpp/cpp/m128
- //
- // However, some legacy source code may try to access the contents of an __m128
- // struct directly so the developer can use the SIMDVec as an alias for it. Any
- // casting must be done manually by the developer, as you cannot cast or
- // otherwise alias the base NEON data type for intrinsic operations.
- //
- // union intended to allow direct access to an __m128 variable using the names
- // that the MSVC compiler provides. This union should really only be used when
- // trying to access the members of the vector as integer values. GCC/clang
- // allow native access to the float members through a simple array access
- // operator (in C since 4.6, in C++ since 4.8).
- //
- // Ideally direct accesses to SIMD vectors should not be used since it can cause
- // a performance hit. If it really is needed however, the original __m128
- // variable can be aliased with a pointer to this union and used to access
- // individual components. The use of this union should be hidden behind a macro
- // that is used throughout the codebase to access the members instead of always
- // declaring this type of variable.
- typedef union ALIGN_STRUCT(16) SIMDVec {
- float m128_f32[4]; // as floats - DON'T USE. Added for convenience.
- int8_t m128_i8[16]; // as signed 8-bit integers.
- int16_t m128_i16[8]; // as signed 16-bit integers.
- int32_t m128_i32[4]; // as signed 32-bit integers.
- int64_t m128_i64[2]; // as signed 64-bit integers.
- uint8_t m128_u8[16]; // as unsigned 8-bit integers.
- uint16_t m128_u16[8]; // as unsigned 16-bit integers.
- uint32_t m128_u32[4]; // as unsigned 32-bit integers.
- uint64_t m128_u64[2]; // as unsigned 64-bit integers.
- } SIMDVec;
- // casting using SIMDVec
- #define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
- #define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
- #define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])
- /* SSE macros */
- #define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode
- #define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode
- #define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode
- #define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode
- // Function declaration
- // SSE
- FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE();
- FORCE_INLINE __m128 _mm_move_ss(__m128, __m128);
- FORCE_INLINE __m128 _mm_or_ps(__m128, __m128);
- FORCE_INLINE __m128 _mm_set_ps1(float);
- FORCE_INLINE __m128 _mm_setzero_ps(void);
- // SSE2
- FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i);
- FORCE_INLINE __m128i _mm_castps_si128(__m128);
- FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i);
- FORCE_INLINE __m128i _mm_cvtps_epi32(__m128);
- FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d);
- FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i);
- FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int);
- FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t);
- FORCE_INLINE __m128d _mm_set_pd(double, double);
- FORCE_INLINE __m128i _mm_set1_epi32(int);
- FORCE_INLINE __m128i _mm_setzero_si128();
- // SSE4.1
- FORCE_INLINE __m128d _mm_ceil_pd(__m128d);
- FORCE_INLINE __m128 _mm_ceil_ps(__m128);
- FORCE_INLINE __m128d _mm_floor_pd(__m128d);
- FORCE_INLINE __m128 _mm_floor_ps(__m128);
- FORCE_INLINE __m128d _mm_round_pd(__m128d, int);
- FORCE_INLINE __m128 _mm_round_ps(__m128, int);
- // SSE4.2
- FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t);
- /* Backwards compatibility for compilers with lack of specific type support */
- // Older gcc does not define vld1q_u8_x4 type
- #if defined(__GNUC__) && !defined(__clang__) && \
- ((__GNUC__ <= 10 && defined(__arm__)) || \
- (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \
- (__GNUC__ <= 9 && defined(__aarch64__)))
- FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
- {
- uint8x16x4_t ret;
- ret.val[0] = vld1q_u8(p + 0);
- ret.val[1] = vld1q_u8(p + 16);
- ret.val[2] = vld1q_u8(p + 32);
- ret.val[3] = vld1q_u8(p + 48);
- return ret;
- }
- #else
- // Wraps vld1q_u8_x4
- FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
- {
- return vld1q_u8_x4(p);
- }
- #endif
- /* Function Naming Conventions
- * The naming convention of SSE intrinsics is straightforward. A generic SSE
- * intrinsic function is given as follows:
- * _mm_<name>_<data_type>
- *
- * The parts of this format are given as follows:
- * 1. <name> describes the operation performed by the intrinsic
- * 2. <data_type> identifies the data type of the function's primary arguments
- *
- * This last part, <data_type>, is a little complicated. It identifies the
- * content of the input values, and can be set to any of the following values:
- * + ps - vectors contain floats (ps stands for packed single-precision)
- * + pd - vectors cantain doubles (pd stands for packed double-precision)
- * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
- * signed integers
- * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
- * unsigned integers
- * + si128 - unspecified 128-bit vector or 256-bit vector
- * + m128/m128i/m128d - identifies input vector types when they are different
- * than the type of the returned vector
- *
- * For example, _mm_setzero_ps. The _mm implies that the function returns
- * a 128-bit vector. The _ps at the end implies that the argument vectors
- * contain floats.
- *
- * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
- * // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
- * __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
- * // Set packed 8-bit integers
- * // 128 bits, 16 chars, per 8 bits
- * __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11,
- * 4, 5, 12, 13, 6, 7, 14, 15);
- * // Shuffle packed 8-bit integers
- * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
- *
- * Data (Number, Binary, Byte Index):
- +------+------+-------------+------+------+-------------+
- | 1 | 2 | 3 | 4 | Number
- +------+------+------+------+------+------+------+------+
- | 0000 | 0001 | 0000 | 0010 | 0000 | 0011 | 0000 | 0100 | Binary
- +------+------+------+------+------+------+------+------+
- | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Index
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 5 | 6 | 7 | 8 | Number
- +------+------+------+------+------+------+------+------+
- | 0000 | 0101 | 0000 | 0110 | 0000 | 0111 | 0000 | 1000 | Binary
- +------+------+------+------+------+------+------+------+
- | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Index
- +------+------+------+------+------+------+------+------+
- * Index (Byte Index):
- +------+------+------+------+------+------+------+------+
- | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 |
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 |
- +------+------+------+------+------+------+------+------+
- * Result:
- +------+------+------+------+------+------+------+------+
- | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | Index
- +------+------+------+------+------+------+------+------+
- | 0001 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000 | 0110 | Binary
- +------+------+------+------+------+------+------+------+
- | 256 | 2 | 5 | 6 | Number
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | Index
- +------+------+------+------+------+------+------+------+
- | 0000 | 0011 | 0000 | 0111 | 0000 | 0100 | 0000 | 1000 | Binary
- +------+------+------+------+------+------+------+------+
- | 3 | 7 | 4 | 8 | Number
- +------+------+------+------+------+------+-------------+
- */
- /* Constants for use with _mm_prefetch. */
- enum _mm_hint {
- _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
- _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */
- _MM_HINT_T1 = 2, /* load data to L2 cache only */
- _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */
- _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */
- _MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */
- _MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */
- _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */
- };
- // The bit field mapping to the FPCR(floating-point control register)
- typedef struct {
- uint16_t res0;
- uint8_t res1 : 6;
- uint8_t bit22 : 1;
- uint8_t bit23 : 1;
- uint8_t bit24 : 1;
- uint8_t res2 : 7;
- #if defined(__aarch64__)
- uint32_t res3;
- #endif
- } fpcr_bitfield;
- // Takes the upper 64 bits of a and places it in the low end of the result
- // Takes the lower 64 bits of b and places it into the high end of the result.
- FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
- }
- // takes the lower two 32-bit values from a and swaps them and places in high
- // end of result takes the higher two 32 bit values from b and swaps them and
- // places in low end of result.
- FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
- {
- float32x2_t a21 = vget_high_f32(
- vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
- float32x2_t b03 = vget_low_f32(
- vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
- return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
- {
- float32x2_t a03 = vget_low_f32(
- vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
- float32x2_t b21 = vget_high_f32(
- vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
- return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
- }
- // keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
- // high
- FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
- {
- float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
- {
- float32x2_t a22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
- {
- float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t b22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
- {
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32x2_t a22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
- {
- float32x2_t a33 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
- float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
- return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32_t b2 = vgetq_lane_f32(b, 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32_t b2 = vgetq_lane_f32(b, 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
- }
- // Kahan summation for accurate summation of floating-point numbers.
- // http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html
- FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y)
- {
- y -= *c;
- float t = *sum + y;
- *c = (t - *sum) - y;
- *sum = t;
- }
- #if defined(__ARM_FEATURE_CRYPTO)
- // Wraps vmull_p64
- FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
- {
- poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
- poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
- return vreinterpretq_u64_p128(vmull_p64(a, b));
- }
- #else // ARMv7 polyfill
- // ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
- //
- // vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
- // 64-bit->128-bit polynomial multiply.
- //
- // It needs some work and is somewhat slow, but it is still faster than all
- // known scalar methods.
- //
- // Algorithm adapted to C from
- // https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
- // from "Fast Software Polynomial Multiplication on ARM Processors Using the
- // NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
- // (https://hal.inria.fr/hal-01506572)
- static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
- {
- poly8x8_t a = vreinterpret_p8_u64(_a);
- poly8x8_t b = vreinterpret_p8_u64(_b);
- // Masks
- uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
- vcreate_u8(0x00000000ffffffff));
- uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
- vcreate_u8(0x0000000000000000));
- // Do the multiplies, rotating with vext to get all combinations
- uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
- uint8x16_t e =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
- uint8x16_t f =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
- uint8x16_t g =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
- uint8x16_t h =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
- uint8x16_t i =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
- uint8x16_t j =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
- uint8x16_t k =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
- // Add cross products
- uint8x16_t l = veorq_u8(e, f); // L = E + F
- uint8x16_t m = veorq_u8(g, h); // M = G + H
- uint8x16_t n = veorq_u8(i, j); // N = I + J
- // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
- // instructions.
- #if defined(__aarch64__)
- uint8x16_t lm_p0 = vreinterpretq_u8_u64(
- vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
- uint8x16_t lm_p1 = vreinterpretq_u8_u64(
- vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
- uint8x16_t nk_p0 = vreinterpretq_u8_u64(
- vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
- uint8x16_t nk_p1 = vreinterpretq_u8_u64(
- vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
- #else
- uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
- uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
- uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
- uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
- #endif
- // t0 = (L) (P0 + P1) << 8
- // t1 = (M) (P2 + P3) << 16
- uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
- uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
- uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
- // t2 = (N) (P4 + P5) << 24
- // t3 = (K) (P6 + P7) << 32
- uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
- uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
- uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
- // De-interleave
- #if defined(__aarch64__)
- uint8x16_t t0 = vreinterpretq_u8_u64(
- vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
- uint8x16_t t1 = vreinterpretq_u8_u64(
- vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
- uint8x16_t t2 = vreinterpretq_u8_u64(
- vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
- uint8x16_t t3 = vreinterpretq_u8_u64(
- vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
- #else
- uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
- uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
- uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
- uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
- #endif
- // Shift the cross products
- uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
- uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
- uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
- uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
- // Accumulate the products
- uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
- uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
- uint8x16_t mix = veorq_u8(d, cross1);
- uint8x16_t r = veorq_u8(mix, cross2);
- return vreinterpretq_u64_u8(r);
- }
- #endif // ARMv7 polyfill
- // C equivalent:
- // __m128i _mm_shuffle_epi32_default(__m128i a,
- // __constrange(0, 255) int imm) {
- // __m128i ret;
- // ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
- // ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03];
- // return ret;
- // }
- #define _mm_shuffle_epi32_default(a, imm) \
- __extension__({ \
- int32x4_t ret; \
- ret = vmovq_n_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \
- ret, 1); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
- ret, 2); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
- ret, 3); \
- vreinterpretq_m128i_s32(ret); \
- })
- // Takes the upper 64 bits of a and places it in the low end of the result
- // Takes the lower 64 bits of a and places it into the high end of the result.
- FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
- {
- int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
- }
- // takes the lower two 32-bit values from a and swaps them and places in low end
- // of result takes the higher two 32 bit values from a and swaps them and places
- // in high end of result.
- FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
- }
- // rotates the least significant 32 bits into the most significant 32 bits, and
- // shifts the rest down
- FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
- {
- return vreinterpretq_m128i_s32(
- vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
- }
- // rotates the most significant 32 bits into the least significant 32 bits, and
- // shifts the rest up
- FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
- {
- return vreinterpretq_m128i_s32(
- vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
- }
- // gets the lower 64 bits of a, and places it in the upper 64 bits
- // gets the lower 64 bits of a and places it in the lower 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
- {
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
- }
- // gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
- // lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
- }
- // gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
- // upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
- // places it in the lower 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
- {
- int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
- int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
- return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
- {
- int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
- {
- int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
- return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
- }
- // FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
- // int imm)
- #if defined(__aarch64__)
- #define _mm_shuffle_epi32_splat(a, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
- })
- #else
- #define _mm_shuffle_epi32_splat(a, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
- })
- #endif
- // NEON does not support a general purpose permute intrinsic
- // Selects four specific single-precision, floating-point values from a and b,
- // based on the mask i.
- //
- // C equivalent:
- // __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
- // __constrange(0, 255) int imm) {
- // __m128 ret;
- // ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
- // ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03];
- // return ret;
- // }
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
- #define _mm_shuffle_ps_default(a, b, imm) \
- __extension__({ \
- float32x4_t ret; \
- ret = vmovq_n_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
- ret, 1); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
- ret, 2); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
- ret, 3); \
- vreinterpretq_m128_f32(ret); \
- })
- // Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified
- // by imm.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100)
- // FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a,
- // __constrange(0,255) int
- // imm)
- #define _mm_shufflelo_epi16_function(a, imm) \
- __extension__({ \
- int16x8_t ret = vreinterpretq_s16_m128i(a); \
- int16x4_t lowBits = vget_low_s16(ret); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
- 1); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
- 2); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
- 3); \
- vreinterpretq_m128i_s16(ret); \
- })
- // Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified
- // by imm.
- // https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
- // FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
- // __constrange(0,255) int
- // imm)
- #define _mm_shufflehi_epi16_function(a, imm) \
- __extension__({ \
- int16x8_t ret = vreinterpretq_s16_m128i(a); \
- int16x4_t highBits = vget_high_s16(ret); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
- 5); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
- 6); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
- 7); \
- vreinterpretq_m128i_s16(ret); \
- })
- /* SSE */
- // Adds the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 + b0
- // r1 := a1 + b1
- // r2 := a2 + b2
- // r3 := a3 + b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(
- vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // adds the scalar single-precision floating point values of a and b.
- // https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
- {
- float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
- float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
- // the upper values in the result must be the remnants of <a>.
- return vreinterpretq_m128_f32(vaddq_f32(a, value));
- }
- // Computes the bitwise AND of the four single-precision, floating-point values
- // of a and b.
- //
- // r0 := a0 & b0
- // r1 := a1 & b1
- // r2 := a2 & b2
- // r3 := a3 & b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
- }
- // Computes the bitwise AND-NOT of the four single-precision, floating-point
- // values of a and b.
- //
- // r0 := ~a0 & b0
- // r1 := ~a1 & b1
- // r2 := ~a2 & b2
- // r3 := ~a3 & b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- vbicq_s32(vreinterpretq_s32_m128(b),
- vreinterpretq_s32_m128(a))); // *NOTE* argument swap
- }
- // Average packed unsigned 16-bit integers in a and b, and store the results in
- // dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16
- FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u16(
- vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
- }
- // Average packed unsigned 8-bit integers in a and b, and store the results in
- // dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8
- FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u8(
- vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
- }
- // Compares for equality.
- // https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for equality.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
- }
- // Compares for greater than or equal.
- // https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for greater than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpge_ps(a, b));
- }
- // Compares for greater than.
- //
- // r0 := (a0 > b0) ? 0xffffffff : 0x0
- // r1 := (a1 > b1) ? 0xffffffff : 0x0
- // r2 := (a2 > b2) ? 0xffffffff : 0x0
- // r3 := (a3 > b3) ? 0xffffffff : 0x0
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for greater than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
- }
- // Compares for less than or equal.
- //
- // r0 := (a0 <= b0) ? 0xffffffff : 0x0
- // r1 := (a1 <= b1) ? 0xffffffff : 0x0
- // r2 := (a2 <= b2) ? 0xffffffff : 0x0
- // r3 := (a3 <= b3) ? 0xffffffff : 0x0
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for less than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100)
- FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmple_ps(a, b));
- }
- // Compares for less than
- // https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for less than
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100)
- FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmplt_ps(a, b));
- }
- // Compares for inequality.
- // https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vmvnq_u32(
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
- }
- // Compares for inequality.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
- }
- // Compares for not greater than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vmvnq_u32(
- vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
- }
- // Compares for not greater than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpnge_ps(a, b));
- }
- // Compares for not greater than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vmvnq_u32(
- vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
- }
- // Compares for not greater than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpngt_ps(a, b));
- }
- // Compares for not less than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vmvnq_u32(
- vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
- }
- // Compares for not less than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpnle_ps(a, b));
- }
- // Compares for not less than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vmvnq_u32(
- vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
- }
- // Compares for not less than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpnlt_ps(a, b));
- }
- // Compares the four 32-bit floats in a and b to check if any values are NaN.
- // Ordered compare between each value returns true for "orderable" and false for
- // "not orderable" (NaN).
- // https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
- // also:
- // http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
- // http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
- FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
- {
- // Note: NEON does not have ordered compare builtin
- // Need to compare a eq a and b eq b to check for NaN
- // Do AND of results to get final
- uint32x4_t ceqaa =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t ceqbb =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
- }
- // Compares for ordered.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpord_ps(a, b));
- }
- // Compares for unordered.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
- {
- uint32x4_t f32a =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t f32b =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
- }
- // Compares for unordered.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using an equality operation. :
- // https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
- FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
- {
- uint32x4_t a_eq_b =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return vgetq_lane_u32(a_eq_b, 0) & 0x1;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a greater than or equal operation. :
- // https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
- FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
- {
- uint32x4_t a_ge_b =
- vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return vgetq_lane_u32(a_ge_b, 0) & 0x1;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a greater than operation. :
- // https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
- FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
- {
- uint32x4_t a_gt_b =
- vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return vgetq_lane_u32(a_gt_b, 0) & 0x1;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a less than or equal operation. :
- // https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
- FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
- {
- uint32x4_t a_le_b =
- vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return vgetq_lane_u32(a_le_b, 0) & 0x1;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a less than operation. :
- // https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
- // note!! The documentation on MSDN is incorrect! If either of the values is a
- // NAN the docs say you will get a one, but in fact, it will return a zero!!
- FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
- {
- uint32x4_t a_lt_b =
- vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return vgetq_lane_u32(a_lt_b, 0) & 0x1;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using an inequality operation. :
- // https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
- FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
- {
- return !_mm_comieq_ss(a, b);
- }
- // Convert packed signed 32-bit integers in b to packed single-precision
- // (32-bit) floating-point elements, store the results in the lower 2 elements
- // of dst, and copy the upper 2 packed elements from a to the upper elements of
- // dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(b[31:0])
- // dst[63:32] := Convert_Int32_To_FP32(b[63:32])
- // dst[95:64] := a[95:64]
- // dst[127:96] := a[127:96]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps
- FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
- vget_high_f32(vreinterpretq_f32_m128(a))));
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 32-bit integers, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi
- FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
- {
- #if defined(__aarch64__)
- return vreinterpret_m64_s32(
- vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a)))));
- #else
- return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32(
- vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)))));
- #endif
- }
- // Convert the signed 32-bit integer b to a single-precision (32-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper 3 packed elements from a to the upper elements of dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(b[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss
- FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
- {
- return vreinterpretq_m128_f32(
- vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
- }
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 32-bit integer, and store the result in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si
- FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
- {
- #if defined(__aarch64__)
- return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))),
- 0);
- #else
- float32_t data = vgetq_lane_f32(
- vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
- return (int32_t) data;
- #endif
- }
- // Convert packed 16-bit integers in a to packed single-precision (32-bit)
- // floating-point elements, and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // m := j*32
- // dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps
- FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
- {
- return vreinterpretq_m128_f32(
- vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
- }
- // Convert packed 32-bit integers in b to packed single-precision (32-bit)
- // floating-point elements, store the results in the lower 2 elements of dst,
- // and copy the upper 2 packed elements from a to the upper elements of dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(b[31:0])
- // dst[63:32] := Convert_Int32_To_FP32(b[63:32])
- // dst[95:64] := a[95:64]
- // dst[127:96] := a[127:96]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps
- FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
- vget_high_f32(vreinterpretq_f32_m128(a))));
- }
- // Convert packed signed 32-bit integers in a to packed single-precision
- // (32-bit) floating-point elements, store the results in the lower 2 elements
- // of dst, then covert the packed signed 32-bit integers in b to
- // single-precision (32-bit) floating-point element, and store the results in
- // the upper 2 elements of dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(a[31:0])
- // dst[63:32] := Convert_Int32_To_FP32(a[63:32])
- // dst[95:64] := Convert_Int32_To_FP32(b[31:0])
- // dst[127:96] := Convert_Int32_To_FP32(b[63:32])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps
- FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
- {
- return vreinterpretq_m128_f32(vcvtq_f32_s32(
- vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
- }
- // Convert the lower packed 8-bit integers in a to packed single-precision
- // (32-bit) floating-point elements, and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*8
- // m := j*32
- // dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps
- FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
- {
- return vreinterpretq_m128_f32(vcvtq_f32_s32(
- vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 16-bit integers, and store the results in dst. Note: this intrinsic
- // will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
- // 0x7FFFFFFF.
- //
- // FOR j := 0 to 3
- // i := 16*j
- // k := 32*j
- // IF a[k+31:k] >= FP32(0x7FFF) && a[k+31:k] <= FP32(0x7FFFFFFF)
- // dst[i+15:i] := 0x7FFF
- // ELSE
- // dst[i+15:i] := Convert_FP32_To_Int16(a[k+31:k])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16
- FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
- {
- const __m128 i16Min = _mm_set_ps1((float) INT16_MIN);
- const __m128 i16Max = _mm_set_ps1((float) INT16_MAX);
- const __m128 i32Max = _mm_set_ps1((float) INT32_MAX);
- const __m128i maxMask = _mm_castps_si128(
- _mm_and_ps(_mm_cmpge_ps(a, i16Max), _mm_cmple_ps(a, i32Max)));
- const __m128i betweenMask = _mm_castps_si128(
- _mm_and_ps(_mm_cmpgt_ps(a, i16Min), _mm_cmplt_ps(a, i16Max)));
- const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask),
- _mm_setzero_si128());
- __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT16_MAX));
- __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT16_MIN));
- __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a));
- __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt);
- return vreinterpret_m64_s16(vmovn_s32(vreinterpretq_s32_m128i(res32)));
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 32-bit integers, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32
- #define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 8-bit integers, and store the results in lower 4 elements of dst.
- // Note: this intrinsic will generate 0x7F, rather than 0x80, for input values
- // between 0x7F and 0x7FFFFFFF.
- //
- // FOR j := 0 to 3
- // i := 8*j
- // k := 32*j
- // IF a[k+31:k] >= FP32(0x7F) && a[k+31:k] <= FP32(0x7FFFFFFF)
- // dst[i+7:i] := 0x7F
- // ELSE
- // dst[i+7:i] := Convert_FP32_To_Int8(a[k+31:k])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8
- FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
- {
- const __m128 i8Min = _mm_set_ps1((float) INT8_MIN);
- const __m128 i8Max = _mm_set_ps1((float) INT8_MAX);
- const __m128 i32Max = _mm_set_ps1((float) INT32_MAX);
- const __m128i maxMask = _mm_castps_si128(
- _mm_and_ps(_mm_cmpge_ps(a, i8Max), _mm_cmple_ps(a, i32Max)));
- const __m128i betweenMask = _mm_castps_si128(
- _mm_and_ps(_mm_cmpgt_ps(a, i8Min), _mm_cmplt_ps(a, i8Max)));
- const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask),
- _mm_setzero_si128());
- __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT8_MAX));
- __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT8_MIN));
- __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a));
- __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt);
- int16x4_t res16 = vmovn_s32(vreinterpretq_s32_m128i(res32));
- int8x8_t res8 = vmovn_s16(vcombine_s16(res16, res16));
- uint32_t bitMask[2] = {0xFFFFFFFF, 0};
- int8x8_t mask = vreinterpret_s8_u32(vld1_u32(bitMask));
- return vreinterpret_m64_s8(vorr_s8(vand_s8(mask, res8), vdup_n_s8(0)));
- }
- // Convert packed unsigned 16-bit integers in a to packed single-precision
- // (32-bit) floating-point elements, and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // m := j*32
- // dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps
- FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
- {
- return vreinterpretq_m128_f32(
- vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
- }
- // Convert the lower packed unsigned 8-bit integers in a to packed
- // single-precision (32-bit) floating-point elements, and store the results in
- // dst.
- //
- // FOR j := 0 to 3
- // i := j*8
- // m := j*32
- // dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps
- FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
- {
- return vreinterpretq_m128_f32(vcvtq_f32_u32(
- vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
- }
- // Convert the signed 32-bit integer b to a single-precision (32-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper 3 packed elements from a to the upper elements of dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(b[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss
- #define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
- // Convert the signed 64-bit integer b to a single-precision (32-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper 3 packed elements from a to the upper elements of dst.
- //
- // dst[31:0] := Convert_Int64_To_FP32(b[63:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss
- FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
- {
- return vreinterpretq_m128_f32(
- vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
- }
- // Copy the lower single-precision (32-bit) floating-point element of a to dst.
- //
- // dst[31:0] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32
- FORCE_INLINE float _mm_cvtss_f32(__m128 a)
- {
- return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- }
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 32-bit integer, and store the result in dst.
- //
- // dst[31:0] := Convert_FP32_To_Int32(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32
- #define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 64-bit integer, and store the result in dst.
- //
- // dst[63:0] := Convert_FP32_To_Int64(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64
- FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
- {
- #if defined(__aarch64__)
- return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0);
- #else
- float32_t data = vgetq_lane_f32(
- vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
- return (int64_t) data;
- #endif
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 32-bit integers with truncation, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi
- FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
- {
- return vreinterpret_m64_s32(
- vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
- }
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 32-bit integer with truncation, and store the result in dst.
- //
- // dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si
- FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
- {
- return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 32-bit integers with truncation, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32
- #define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 32-bit integer with truncation, and store the result in dst.
- //
- // dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32
- #define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 64-bit integer with truncation, and store the result in dst.
- //
- // dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64
- FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
- {
- return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- }
- // Divides the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 / b0
- // r1 := a1 / b1
- // r2 := a2 / b2
- // r3 := a3 / b3
- //
- // https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV
- return vreinterpretq_m128_f32(
- vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #else
- float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
- #if SSE2NEON_PRECISE_DIV
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
- #endif
- return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
- #endif
- }
- // Divides the scalar single-precision floating point value of a by b.
- // https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
- {
- float32_t value =
- vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Extract a 16-bit integer from a, selected with imm8, and store the result in
- // the lower element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16
- #define _mm_extract_pi16(a, imm) \
- (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm))
- // Free aligned memory that was allocated with _mm_malloc.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free
- FORCE_INLINE void _mm_free(void *addr)
- {
- free(addr);
- }
- // Macro: Get the flush zero bits from the MXCSR control and status register.
- // The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or
- // _MM_FLUSH_ZERO_OFF
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE
- FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode()
- {
- union {
- fpcr_bitfield field;
- #if defined(__aarch64__)
- uint64_t value;
- #else
- uint32_t value;
- #endif
- } r;
- #if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
- #else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
- #endif
- return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF;
- }
- // Macro: Get the rounding mode bits from the MXCSR control and status register.
- // The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST,
- // _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE
- FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE()
- {
- union {
- fpcr_bitfield field;
- #if defined(__aarch64__)
- uint64_t value;
- #else
- uint32_t value;
- #endif
- } r;
- #if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
- #else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
- #endif
- if (r.field.bit22) {
- return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP;
- } else {
- return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST;
- }
- }
- // Copy a to dst, and insert the 16-bit integer i into dst at the location
- // specified by imm8.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16
- #define _mm_insert_pi16(a, b, imm) \
- __extension__({ \
- vreinterpret_m64_s16( \
- vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \
- })
- // Loads four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_load_ps(const float *p)
- {
- return vreinterpretq_m128_f32(vld1q_f32(p));
- }
- // Load a single-precision (32-bit) floating-point element from memory into all
- // elements of dst.
- //
- // dst[31:0] := MEM[mem_addr+31:mem_addr]
- // dst[63:32] := MEM[mem_addr+31:mem_addr]
- // dst[95:64] := MEM[mem_addr+31:mem_addr]
- // dst[127:96] := MEM[mem_addr+31:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1
- #define _mm_load_ps1 _mm_load1_ps
- // Loads an single - precision, floating - point value into the low word and
- // clears the upper three words.
- // https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_load_ss(const float *p)
- {
- return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
- }
- // Loads a single single-precision, floating-point value, copying it into all
- // four words
- // https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_load1_ps(const float *p)
- {
- return vreinterpretq_m128_f32(vld1q_dup_f32(p));
- }
- // Sets the upper two single-precision, floating-point values with 64
- // bits of data loaded from the address p; the lower two values are passed
- // through from a.
- //
- // r0 := a0
- // r1 := a1
- // r2 := *p0
- // r3 := *p1
- //
- // https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx
- FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
- }
- // Sets the lower two single-precision, floating-point values with 64
- // bits of data loaded from the address p; the upper two values are passed
- // through from a.
- //
- // Return Value
- // r0 := *p0
- // r1 := *p1
- // r2 := a2
- // r3 := a3
- //
- // https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
- }
- // Load 4 single-precision (32-bit) floating-point elements from memory into dst
- // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // dst[31:0] := MEM[mem_addr+127:mem_addr+96]
- // dst[63:32] := MEM[mem_addr+95:mem_addr+64]
- // dst[95:64] := MEM[mem_addr+63:mem_addr+32]
- // dst[127:96] := MEM[mem_addr+31:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps
- FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
- {
- float32x4_t v = vrev64q_f32(vld1q_f32(p));
- return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
- }
- // Loads four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
- {
- // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
- // equivalent for neon
- return vreinterpretq_m128_f32(vld1q_f32(p));
- }
- // Load unaligned 16-bit integer from memory into the first element of dst.
- //
- // dst[15:0] := MEM[mem_addr+15:mem_addr]
- // dst[MAX:16] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16
- FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
- {
- return vreinterpretq_m128i_s16(
- vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
- }
- // Load unaligned 64-bit integer from memory into the first element of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[MAX:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64
- FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
- {
- return vreinterpretq_m128i_s64(
- vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
- }
- // Allocate aligned blocks of memory.
- // https://software.intel.com/en-us/
- // cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks
- FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
- {
- void *ptr;
- if (align == 1)
- return malloc(size);
- if (align == 2 || (sizeof(void *) == 8 && align == 4))
- align = sizeof(void *);
- if (!posix_memalign(&ptr, align, size))
- return ptr;
- return NULL;
- }
- // Conditionally store 8-bit integer elements from a into memory using mask
- // (elements are not stored when the highest bit is not set in the corresponding
- // element) and a non-temporal memory hint.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64
- FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
- {
- int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7);
- __m128 b = _mm_load_ps((const float *) mem_addr);
- int8x8_t masked =
- vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a),
- vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b))));
- vst1_s8((int8_t *) mem_addr, masked);
- }
- // Conditionally store 8-bit integer elements from a into memory using mask
- // (elements are not stored when the highest bit is not set in the corresponding
- // element) and a non-temporal memory hint.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq
- #define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr)
- // Compare packed signed 16-bit integers in a and b, and store packed maximum
- // values in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
- FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s16(
- vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
- }
- // Computes the maximums of the four single-precision, floating-point values of
- // a and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
- {
- #if SSE2NEON_PRECISE_MINMAX
- float32x4_t _a = vreinterpretq_f32_m128(a);
- float32x4_t _b = vreinterpretq_f32_m128(b);
- return vbslq_f32(vcltq_f32(_b, _a), _a, _b);
- #else
- return vreinterpretq_m128_f32(
- vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #endif
- }
- // Compare packed unsigned 8-bit integers in a and b, and store packed maximum
- // values in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
- FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u8(
- vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
- }
- // Computes the maximum of the two lower scalar single-precision floating point
- // values of a and b.
- // https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
- {
- float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Compare packed signed 16-bit integers in a and b, and store packed minimum
- // values in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
- FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s16(
- vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
- }
- // Computes the minima of the four single-precision, floating-point values of a
- // and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
- {
- #if SSE2NEON_PRECISE_MINMAX
- float32x4_t _a = vreinterpretq_f32_m128(a);
- float32x4_t _b = vreinterpretq_f32_m128(b);
- return vbslq_f32(vcltq_f32(_a, _b), _a, _b);
- #else
- return vreinterpretq_m128_f32(
- vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #endif
- }
- // Compare packed unsigned 8-bit integers in a and b, and store packed minimum
- // values in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
- FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u8(
- vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
- }
- // Computes the minimum of the two lower scalar single-precision floating point
- // values of a and b.
- // https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
- {
- float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Sets the low word to the single-precision, floating-point value of b
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100)
- FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
- vreinterpretq_f32_m128(a), 0));
- }
- // Moves the upper two values of B into the lower two values of A.
- //
- // r3 := a3
- // r2 := a2
- // r1 := b3
- // r0 := b2
- FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B));
- return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
- }
- // Moves the lower two values of B into the upper two values of A.
- //
- // r3 := b1
- // r2 := b0
- // r1 := a1
- // r0 := a0
- FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
- }
- // Create mask from the most significant bit of each 8-bit element in a, and
- // store the result in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8
- FORCE_INLINE int _mm_movemask_pi8(__m64 a)
- {
- uint8x8_t input = vreinterpret_u8_m64(a);
- #if defined(__aarch64__)
- static const int8x8_t shift = {0, 1, 2, 3, 4, 5, 6, 7};
- uint8x8_t tmp = vshr_n_u8(input, 7);
- return vaddv_u8(vshl_u8(tmp, shift));
- #else
- // Refer the implementation of `_mm_movemask_epi8`
- uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7));
- uint32x2_t paired16 =
- vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7));
- uint8x8_t paired32 =
- vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14));
- return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4);
- #endif
- }
- // NEON does not provide this method
- // Creates a 4-bit mask from the most significant bits of the four
- // single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
- FORCE_INLINE int _mm_movemask_ps(__m128 a)
- {
- uint32x4_t input = vreinterpretq_u32_m128(a);
- #if defined(__aarch64__)
- static const int32x4_t shift = {0, 1, 2, 3};
- uint32x4_t tmp = vshrq_n_u32(input, 31);
- return vaddvq_u32(vshlq_u32(tmp, shift));
- #else
- // Uses the exact same method as _mm_movemask_epi8, see that for details.
- // Shift out everything but the sign bits with a 32-bit unsigned shift
- // right.
- uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
- // Merge the two pairs together with a 64-bit unsigned shift right + add.
- uint8x16_t paired =
- vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
- // Extract the result.
- return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
- #endif
- }
- // Multiplies the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 * b0
- // r1 := a1 * b1
- // r2 := a2 * b2
- // r3 := a3 * b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(
- vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Multiply the lower single-precision (32-bit) floating-point element in a and
- // b, store the result in the lower element of dst, and copy the upper 3 packed
- // elements from a to the upper elements of dst.
- //
- // dst[31:0] := a[31:0] * b[31:0]
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss
- FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_mul_ps(a, b));
- }
- // Multiply the packed unsigned 16-bit integers in a and b, producing
- // intermediate 32-bit integers, and store the high 16 bits of the intermediate
- // integers in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16
- FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u16(vshrn_n_u32(
- vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
- }
- // Computes the bitwise OR of the four single-precision, floating-point values
- // of a and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
- }
- // Average packed unsigned 8-bit integers in a and b, and store the results in
- // dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb
- #define _m_pavgb(a, b) _mm_avg_pu8(a, b)
- // Average packed unsigned 16-bit integers in a and b, and store the results in
- // dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw
- #define _m_pavgw(a, b) _mm_avg_pu16(a, b)
- // Extract a 16-bit integer from a, selected with imm8, and store the result in
- // the lower element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw
- #define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
- // Copy a to dst, and insert the 16-bit integer i into dst at the location
- // specified by imm8.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw
- #define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
- // Compare packed signed 16-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw
- #define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
- // Compare packed unsigned 8-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub
- #define _m_pmaxub(a, b) _mm_max_pu8(a, b)
- // Compare packed signed 16-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw
- #define _m_pminsw(a, b) _mm_min_pi16(a, b)
- // Compare packed unsigned 8-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub
- #define _m_pminub(a, b) _mm_min_pu8(a, b)
- // Create mask from the most significant bit of each 8-bit element in a, and
- // store the result in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb
- #define _m_pmovmskb(a) _mm_movemask_pi8(a)
- // Multiply the packed unsigned 16-bit integers in a and b, producing
- // intermediate 32-bit integers, and store the high 16 bits of the intermediate
- // integers in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw
- #define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
- // Loads one cache line of data from address p to a location closer to the
- // processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
- FORCE_INLINE void _mm_prefetch(const void *p, int i)
- {
- (void) i;
- __builtin_prefetch(p);
- }
- // Compute the absolute differences of packed unsigned 8-bit integers in a and
- // b, then horizontally sum each consecutive 8 differences to produce four
- // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
- // 16 bits of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw
- #define _m_psadbw(a, b) _mm_sad_pu8(a, b)
- // Shuffle 16-bit integers in a using the control in imm8, and store the results
- // in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw
- #define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm)
- // Compute the approximate reciprocal of packed single-precision (32-bit)
- // floating-point elements in a, and store the results in dst. The maximum
- // relative error for this approximation is less than 1.5*2^-12.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps
- FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
- {
- float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
- #if SSE2NEON_PRECISE_DIV
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
- #endif
- return vreinterpretq_m128_f32(recip);
- }
- // Compute the approximate reciprocal of the lower single-precision (32-bit)
- // floating-point element in a, store the result in the lower element of dst,
- // and copy the upper 3 packed elements from a to the upper elements of dst. The
- // maximum relative error for this approximation is less than 1.5*2^-12.
- //
- // dst[31:0] := (1.0 / a[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss
- FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
- {
- return _mm_move_ss(a, _mm_rcp_ps(a));
- }
- // Computes the approximations of the reciprocal square roots of the four
- // single-precision floating point values of in.
- // The current precision is 1% error.
- // https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
- {
- float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
- #if SSE2NEON_PRECISE_SQRT
- // Additional Netwon-Raphson iteration for accuracy
- out = vmulq_f32(
- out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
- out = vmulq_f32(
- out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
- #endif
- return vreinterpretq_m128_f32(out);
- }
- // Compute the approximate reciprocal square root of the lower single-precision
- // (32-bit) floating-point element in a, store the result in the lower element
- // of dst, and copy the upper 3 packed elements from a to the upper elements of
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss
- FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
- {
- return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
- }
- // Compute the absolute differences of packed unsigned 8-bit integers in a and
- // b, then horizontally sum each consecutive 8 differences to produce four
- // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
- // 16 bits of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8
- FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
- {
- uint64x1_t t = vpaddl_u32(vpaddl_u16(
- vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)))));
- return vreinterpret_m64_u16(
- vset_lane_u16(vget_lane_u64(t, 0), vdup_n_u16(0), 0));
- }
- // Macro: Set the flush zero bits of the MXCSR control and status register to
- // the value in unsigned 32-bit integer a. The flush zero may contain any of the
- // following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE
- FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
- {
- // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
- // regardless of the value of the FZ bit.
- union {
- fpcr_bitfield field;
- #if defined(__aarch64__)
- uint64_t value;
- #else
- uint32_t value;
- #endif
- } r;
- #if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
- #else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
- #endif
- r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON;
- #if defined(__aarch64__)
- asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
- #else
- asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
- #endif
- }
- // Sets the four single-precision, floating-point values to the four inputs.
- // https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
- {
- float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Sets the four single-precision, floating-point values to w.
- // https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set_ps1(float _w)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(_w));
- }
- // Macro: Set the rounding mode bits of the MXCSR control and status register to
- // the value in unsigned 32-bit integer a. The rounding mode may contain any of
- // the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
- // _MM_ROUND_TOWARD_ZERO
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE
- FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
- {
- union {
- fpcr_bitfield field;
- #if defined(__aarch64__)
- uint64_t value;
- #else
- uint32_t value;
- #endif
- } r;
- #if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
- #else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
- #endif
- switch (rounding) {
- case _MM_ROUND_TOWARD_ZERO:
- r.field.bit22 = 1;
- r.field.bit23 = 1;
- break;
- case _MM_ROUND_DOWN:
- r.field.bit22 = 0;
- r.field.bit23 = 1;
- break;
- case _MM_ROUND_UP:
- r.field.bit22 = 1;
- r.field.bit23 = 0;
- break;
- default: //_MM_ROUND_NEAREST
- r.field.bit22 = 0;
- r.field.bit23 = 0;
- }
- #if defined(__aarch64__)
- asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
- #else
- asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
- #endif
- }
- // Copy single-precision (32-bit) floating-point element a to the lower element
- // of dst, and zero the upper 3 elements.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss
- FORCE_INLINE __m128 _mm_set_ss(float a)
- {
- float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Sets the four single-precision, floating-point values to w.
- //
- // r0 := r1 := r2 := r3 := w
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set1_ps(float _w)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(_w));
- }
- FORCE_INLINE void _mm_setcsr(unsigned int a)
- {
- _MM_SET_ROUNDING_MODE(a);
- }
- // Sets the four single-precision, floating-point values to the four inputs in
- // reverse order.
- // https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
- {
- float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Clears the four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_setzero_ps(void)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(0));
- }
- // Shuffle 16-bit integers in a using the control in imm8, and store the results
- // in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_pi16(a, imm) \
- __extension__({ \
- vreinterpret_m64_s16(__builtin_shufflevector( \
- vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \
- ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \
- })
- #else
- #define _mm_shuffle_pi16(a, imm) \
- __extension__({ \
- int16x4_t ret; \
- ret = \
- vmov_n_s16(vget_lane_s16(vreinterpret_s16_m64(a), (imm) & (0x3))); \
- ret = vset_lane_s16( \
- vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 2) & 0x3), ret, \
- 1); \
- ret = vset_lane_s16( \
- vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 4) & 0x3), ret, \
- 2); \
- ret = vset_lane_s16( \
- vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 6) & 0x3), ret, \
- 3); \
- vreinterpret_m64_s16(ret); \
- })
- #endif
- // Guarantees that every preceding store is globally visible before any
- // subsequent store.
- // https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_sfence(void)
- {
- __sync_synchronize();
- }
- // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
- // int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_ps(a, b, imm) \
- __extension__({ \
- float32x4_t _input1 = vreinterpretq_f32_m128(a); \
- float32x4_t _input2 = vreinterpretq_f32_m128(b); \
- float32x4_t _shuf = __builtin_shufflevector( \
- _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128_f32(_shuf); \
- })
- #else // generic
- #define _mm_shuffle_ps(a, b, imm) \
- __extension__({ \
- __m128 ret; \
- switch (imm) { \
- case _MM_SHUFFLE(1, 0, 3, 2): \
- ret = _mm_shuffle_ps_1032((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 3, 0, 1): \
- ret = _mm_shuffle_ps_2301((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 3, 2, 1): \
- ret = _mm_shuffle_ps_0321((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 1, 0, 3): \
- ret = _mm_shuffle_ps_2103((a), (b)); \
- break; \
- case _MM_SHUFFLE(1, 0, 1, 0): \
- ret = _mm_movelh_ps((a), (b)); \
- break; \
- case _MM_SHUFFLE(1, 0, 0, 1): \
- ret = _mm_shuffle_ps_1001((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 1, 0, 1): \
- ret = _mm_shuffle_ps_0101((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 1, 0): \
- ret = _mm_shuffle_ps_3210((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 0, 1, 1): \
- ret = _mm_shuffle_ps_0011((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 0, 2, 2): \
- ret = _mm_shuffle_ps_0022((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 2, 0, 0): \
- ret = _mm_shuffle_ps_2200((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 0, 2): \
- ret = _mm_shuffle_ps_3202((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 3, 2): \
- ret = _mm_movehl_ps((b), (a)); \
- break; \
- case _MM_SHUFFLE(1, 1, 3, 3): \
- ret = _mm_shuffle_ps_1133((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 1, 0): \
- ret = _mm_shuffle_ps_2010((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 0, 1): \
- ret = _mm_shuffle_ps_2001((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 3, 2): \
- ret = _mm_shuffle_ps_2032((a), (b)); \
- break; \
- default: \
- ret = _mm_shuffle_ps_default((a), (b), (imm)); \
- break; \
- } \
- ret; \
- })
- #endif
- // Computes the approximations of square roots of the four single-precision,
- // floating-point values of a. First computes reciprocal square roots and then
- // reciprocals of the four values.
- //
- // r0 := sqrt(a0)
- // r1 := sqrt(a1)
- // r2 := sqrt(a2)
- // r3 := sqrt(a3)
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
- {
- #if SSE2NEON_PRECISE_SQRT
- float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
- // Test for vrsqrteq_f32(0) -> positive infinity case.
- // Change to zero, so that s * 1/sqrt(s) result is zero too.
- const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
- const uint32x4_t div_by_zero =
- vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
- recip = vreinterpretq_f32_u32(
- vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(
- vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
- recip);
- recip = vmulq_f32(
- vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
- recip);
- // sqrt(s) = s * 1/sqrt(s)
- return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
- #elif defined(__aarch64__)
- return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
- #else
- float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
- float32x4_t sq = vrecpeq_f32(recipsq);
- return vreinterpretq_m128_f32(sq);
- #endif
- }
- // Computes the approximation of the square root of the scalar single-precision
- // floating point value of in.
- // https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
- {
- float32_t value =
- vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
- }
- // Stores four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
- FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
- {
- vst1q_f32(p, vreinterpretq_f32_m128(a));
- }
- // Store the lower single-precision (32-bit) floating-point element from a into
- // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
- // boundary or a general-protection exception may be generated.
- //
- // MEM[mem_addr+31:mem_addr] := a[31:0]
- // MEM[mem_addr+63:mem_addr+32] := a[31:0]
- // MEM[mem_addr+95:mem_addr+64] := a[31:0]
- // MEM[mem_addr+127:mem_addr+96] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1
- FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
- {
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- vst1q_f32(p, vdupq_n_f32(a0));
- }
- // Stores the lower single - precision, floating - point value.
- // https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
- FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
- {
- vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
- }
- // Store the lower single-precision (32-bit) floating-point element from a into
- // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
- // boundary or a general-protection exception may be generated.
- //
- // MEM[mem_addr+31:mem_addr] := a[31:0]
- // MEM[mem_addr+63:mem_addr+32] := a[31:0]
- // MEM[mem_addr+95:mem_addr+64] := a[31:0]
- // MEM[mem_addr+127:mem_addr+96] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps
- #define _mm_store1_ps _mm_store_ps1
- // Stores the upper two single-precision, floating-point values of a to the
- // address p.
- //
- // *p0 := a2
- // *p1 := a3
- //
- // https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx
- FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
- {
- *p = vreinterpret_m64_f32(vget_high_f32(a));
- }
- // Stores the lower two single-precision floating point values of a to the
- // address p.
- //
- // *p0 := a0
- // *p1 := a1
- //
- // https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
- FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
- {
- *p = vreinterpret_m64_f32(vget_low_f32(a));
- }
- // Store 4 single-precision (32-bit) floating-point elements from a into memory
- // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // MEM[mem_addr+31:mem_addr] := a[127:96]
- // MEM[mem_addr+63:mem_addr+32] := a[95:64]
- // MEM[mem_addr+95:mem_addr+64] := a[63:32]
- // MEM[mem_addr+127:mem_addr+96] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps
- FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
- {
- float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
- float32x4_t rev = vextq_f32(tmp, tmp, 2);
- vst1q_f32(p, rev);
- }
- // Stores four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
- FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
- {
- vst1q_f32(p, vreinterpretq_f32_m128(a));
- }
- // Stores 16-bits of integer data a at the address p.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16
- FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a)
- {
- vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0);
- }
- // Stores 64-bits of integer data a at the address p.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64
- FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
- {
- vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0);
- }
- // Store 64-bits of integer data from a into memory using a non-temporal memory
- // hint.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi
- FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
- {
- vst1_s64((int64_t *) p, vreinterpret_s64_m64(a));
- }
- // Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
- // point elements) from a into memory using a non-temporal memory hint.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps
- FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
- {
- #if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, (float32x4_t *) p);
- #else
- vst1q_f32(p, vreinterpretq_f32_m128(a));
- #endif
- }
- // Subtracts the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 - b0
- // r1 := a1 - b1
- // r2 := a2 - b2
- // r3 := a3 - b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(
- vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Subtract the lower single-precision (32-bit) floating-point element in b from
- // the lower single-precision (32-bit) floating-point element in a, store the
- // result in the lower element of dst, and copy the upper 3 packed elements from
- // a to the upper elements of dst.
- //
- // dst[31:0] := a[31:0] - b[31:0]
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss
- FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_sub_ps(a, b));
- }
- // Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
- // (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
- // transposed matrix in these vectors (row0 now contains column 0, etc.).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS
- #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
- do { \
- float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \
- float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \
- row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \
- vget_low_f32(ROW23.val[0])); \
- row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \
- vget_low_f32(ROW23.val[1])); \
- row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \
- vget_high_f32(ROW23.val[0])); \
- row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \
- vget_high_f32(ROW23.val[1])); \
- } while (0)
- // according to the documentation, these intrinsics behave the same as the
- // non-'u' versions. We'll just alias them here.
- #define _mm_ucomieq_ss _mm_comieq_ss
- #define _mm_ucomige_ss _mm_comige_ss
- #define _mm_ucomigt_ss _mm_comigt_ss
- #define _mm_ucomile_ss _mm_comile_ss
- #define _mm_ucomilt_ss _mm_comilt_ss
- #define _mm_ucomineq_ss _mm_comineq_ss
- // Return vector of type __m128i with undefined elements.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128
- FORCE_INLINE __m128i _mm_undefined_si128(void)
- {
- #if defined(__GNUC__) || defined(__clang__)
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wuninitialized"
- #endif
- __m128i a;
- return a;
- #if defined(__GNUC__) || defined(__clang__)
- #pragma GCC diagnostic pop
- #endif
- }
- // Return vector of type __m128 with undefined elements.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps
- FORCE_INLINE __m128 _mm_undefined_ps(void)
- {
- #if defined(__GNUC__) || defined(__clang__)
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wuninitialized"
- #endif
- __m128 a;
- return a;
- #if defined(__GNUC__) || defined(__clang__)
- #pragma GCC diagnostic pop
- #endif
- }
- // Selects and interleaves the upper two single-precision, floating-point values
- // from a and b.
- //
- // r0 := a2
- // r1 := b2
- // r2 := a3
- // r3 := b3
- //
- // https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
- float32x2x2_t result = vzip_f32(a1, b1);
- return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
- #endif
- }
- // Selects and interleaves the lower two single-precision, floating-point values
- // from a and b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- //
- // https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
- float32x2x2_t result = vzip_f32(a1, b1);
- return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
- #endif
- }
- // Computes bitwise EXOR (exclusive-or) of the four single-precision,
- // floating-point values of a and b.
- // https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
- }
- /* SSE2 */
- // Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
- // unsigned 16-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
- // unsigned 32-bit integers in b.
- //
- // r0 := a0 + b0
- // r1 := a1 + b1
- // r2 := a2 + b2
- // r3 := a3 + b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
- // unsigned 32-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s64(
- vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
- }
- // Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
- // unsigned 8-bit integers in b.
- // https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
- FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Add packed double-precision (64-bit) floating-point elements in a and b, and
- // store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd
- FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] + db[0];
- c[1] = da[1] + db[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Add the lower double-precision (64-bit) floating-point element in a and b,
- // store the result in the lower element of dst, and copy the upper element from
- // a to the upper element of dst.
- //
- // dst[63:0] := a[63:0] + b[63:0]
- // dst[127:64] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd
- FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_add_pd(a, b));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] + db[0];
- c[1] = da[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Add 64-bit integers a and b, and store the result in dst.
- //
- // dst[63:0] := a[63:0] + b[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64
- FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s64(
- vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
- }
- // Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
- // and saturates.
- //
- // r0 := SignedSaturate(a0 + b0)
- // r1 := SignedSaturate(a1 + b1)
- // ...
- // r7 := SignedSaturate(a7 + b7)
- //
- // https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Add packed signed 8-bit integers in a and b using saturation, and store the
- // results in dst.
- //
- // FOR j := 0 to 15
- // i := j*8
- // dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] )
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8
- FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Add packed unsigned 16-bit integers in a and b using saturation, and store
- // the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16
- FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
- }
- // Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
- // b and saturates..
- // https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Compute the bitwise AND of packed double-precision (64-bit) floating-point
- // elements in a and b, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // dst[i+63:i] := a[i+63:i] AND b[i+63:i]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd
- FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
- {
- return vreinterpretq_m128d_s64(
- vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
- }
- // Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
- // b.
- //
- // r := a & b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compute the bitwise NOT of packed double-precision (64-bit) floating-point
- // elements in a and then AND with b, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd
- FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
- {
- // *NOTE* argument swap
- return vreinterpretq_m128d_s64(
- vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
- }
- // Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
- // 128-bit value in a.
- //
- // r := (~a) & b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vbicq_s32(vreinterpretq_s32_m128i(b),
- vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
- }
- // Computes the average of the 8 unsigned 16-bit integers in a and the 8
- // unsigned 16-bit integers in b and rounds.
- //
- // r0 := (a0 + b0) / 2
- // r1 := (a1 + b1) / 2
- // ...
- // r7 := (a7 + b7) / 2
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
- {
- return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
- vreinterpretq_u16_m128i(b));
- }
- // Computes the average of the 16 unsigned 8-bit integers in a and the 16
- // unsigned 8-bit integers in b and rounds.
- //
- // r0 := (a0 + b0) / 2
- // r1 := (a1 + b1) / 2
- // ...
- // r15 := (a15 + b15) / 2
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Shift a left by imm8 bytes while shifting in zeros, and store the results in
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128
- #define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm)
- // Shift a right by imm8 bytes while shifting in zeros, and store the results in
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128
- #define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm)
- // Cast vector of type __m128d to type __m128. This intrinsic is only used for
- // compilation and does not generate any instructions, thus it has zero latency.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps
- FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
- {
- return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
- }
- // Cast vector of type __m128d to type __m128i. This intrinsic is only used for
- // compilation and does not generate any instructions, thus it has zero latency.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128
- FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
- {
- return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
- }
- // Cast vector of type __m128 to type __m128d. This intrinsic is only used for
- // compilation and does not generate any instructions, thus it has zero latency.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd
- FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
- {
- return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
- }
- // Applies a type cast to reinterpret four 32-bit floating point values passed
- // in as a 128-bit parameter as packed 32-bit integers.
- // https://msdn.microsoft.com/en-us/library/bb514099.aspx
- FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
- {
- return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
- }
- // Cast vector of type __m128i to type __m128d. This intrinsic is only used for
- // compilation and does not generate any instructions, thus it has zero latency.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd
- FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
- #else
- return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
- #endif
- }
- // Applies a type cast to reinterpret four 32-bit integers passed in as a
- // 128-bit parameter as packed 32-bit floating point values.
- // https://msdn.microsoft.com/en-us/library/bb514029.aspx
- FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
- {
- return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
- }
- // Cache line containing p is flushed and invalidated from all caches in the
- // coherency domain. :
- // https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
- FORCE_INLINE void _mm_clflush(void const *p)
- {
- (void) p;
- // no corollary for Neon?
- }
- // Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
- // unsigned 16-bit integers in b for equality.
- // https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Compare packed 32-bit integers in a and b for equality, and store the results
- // in dst
- FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
- // unsigned 8-bit integers in b for equality.
- // https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for equality, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd
- FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(
- vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
- uint32x4_t cmp =
- vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
- uint32x4_t swapped = vrev64q_u32(cmp);
- return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for equality, store the result in the lower element of dst, and copy the
- // upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd
- FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_cmpeq_pd(a, b));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for greater-than-or-equal, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd
- FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(
- vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for greater-than-or-equal, store the result in the lower element of dst,
- // and copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd
- FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_cmpge_pd(a, b));
- #else
- // expand "_mm_cmpge_pd()" to reduce unnecessary operations
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] = a1;
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
- // in b for greater than.
- //
- // r0 := (a0 > b0) ? 0xffff : 0x0
- // r1 := (a1 > b1) ? 0xffff : 0x0
- // ...
- // r7 := (a7 > b7) ? 0xffff : 0x0
- //
- // https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
- // in b for greater than.
- // https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
- // in b for greater than.
- //
- // r0 := (a0 > b0) ? 0xff : 0x0
- // r1 := (a1 > b1) ? 0xff : 0x0
- // ...
- // r15 := (a15 > b15) ? 0xff : 0x0
- //
- // https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for greater-than, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd
- FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(
- vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for greater-than, store the result in the lower element of dst, and copy
- // the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd
- FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_cmpgt_pd(a, b));
- #else
- // expand "_mm_cmpge_pd()" to reduce unnecessary operations
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] = a1;
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for less-than-or-equal, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd
- FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(
- vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for less-than-or-equal, store the result in the lower element of dst, and
- // copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd
- FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_cmple_pd(a, b));
- #else
- // expand "_mm_cmpge_pd()" to reduce unnecessary operations
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] = a1;
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
- // in b for less than.
- //
- // r0 := (a0 < b0) ? 0xffff : 0x0
- // r1 := (a1 < b1) ? 0xffff : 0x0
- // ...
- // r7 := (a7 < b7) ? 0xffff : 0x0
- //
- // https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
- // in b for less than.
- // https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
- // in b for lesser than.
- // https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for less-than, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd
- FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(
- vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for less-than, store the result in the lower element of dst, and copy the
- // upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd
- FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_cmplt_pd(a, b));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] = a1;
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for not-equal, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd
- FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64(
- vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)))));
- #else
- // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
- uint32x4_t cmp =
- vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
- uint32x4_t swapped = vrev64q_u32(cmp);
- return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped)));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for not-equal, store the result in the lower element of dst, and copy the
- // upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd
- FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_cmpneq_pd(a, b));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for not-greater-than-or-equal, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd
- FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(veorq_u64(
- vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
- vdupq_n_u64(UINT64_MAX)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] =
- !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] =
- !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for not-greater-than-or-equal, store the result in the lower element of
- // dst, and copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd
- FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_cmpnge_pd(a, b));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for not-greater-than, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd
- FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(veorq_u64(
- vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
- vdupq_n_u64(UINT64_MAX)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] =
- !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] =
- !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for not-greater-than, store the result in the lower element of dst, and
- // copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd
- FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_cmpngt_pd(a, b));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for not-less-than-or-equal, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd
- FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(veorq_u64(
- vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
- vdupq_n_u64(UINT64_MAX)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] =
- !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] =
- !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for not-less-than-or-equal, store the result in the lower element of dst,
- // and copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd
- FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_cmpnle_pd(a, b));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for not-less-than, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd
- FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(veorq_u64(
- vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
- vdupq_n_u64(UINT64_MAX)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] =
- !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
- d[1] =
- !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b for not-less-than, store the result in the lower element of dst, and copy
- // the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd
- FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_cmpnlt_pd(a, b));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // to see if neither is NaN, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd
- FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- // Excluding NaNs, any two floating point numbers can be compared.
- uint64x2_t not_nan_a =
- vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
- uint64x2_t not_nan_b =
- vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
- return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
- (*(double *) &b0) == (*(double *) &b0))
- ? ~UINT64_C(0)
- : UINT64_C(0);
- d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
- (*(double *) &b1) == (*(double *) &b1))
- ? ~UINT64_C(0)
- : UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b to see if neither is NaN, store the result in the lower element of dst, and
- // copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd
- FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_cmpord_pd(a, b));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t d[2];
- d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
- (*(double *) &b0) == (*(double *) &b0))
- ? ~UINT64_C(0)
- : UINT64_C(0);
- d[1] = a1;
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // to see if either is NaN, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd
- FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- // Two NaNs are not equal in comparison operation.
- uint64x2_t not_nan_a =
- vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
- uint64x2_t not_nan_b =
- vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
- return vreinterpretq_m128d_s32(
- vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b))));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
- (*(double *) &b0) == (*(double *) &b0))
- ? UINT64_C(0)
- : ~UINT64_C(0);
- d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
- (*(double *) &b1) == (*(double *) &b1))
- ? UINT64_C(0)
- : ~UINT64_C(0);
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b to see if either is NaN, store the result in the lower element of dst, and
- // copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd
- FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_cmpunord_pd(a, b));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t d[2];
- d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
- (*(double *) &b0) == (*(double *) &b0))
- ? UINT64_C(0)
- : ~UINT64_C(0);
- d[1] = a1;
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point element in a and b
- // for greater-than-or-equal, and return the boolean result (0 or 1).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd
- FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1;
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- return (*(double *) &a0 >= *(double *) &b0);
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point element in a and b
- // for greater-than, and return the boolean result (0 or 1).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd
- FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1;
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- return (*(double *) &a0 > *(double *) &b0);
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point element in a and b
- // for less-than-or-equal, and return the boolean result (0 or 1).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd
- FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1;
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- return (*(double *) &a0 <= *(double *) &b0);
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point element in a and b
- // for less-than, and return the boolean result (0 or 1).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd
- FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1;
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- return (*(double *) &a0 < *(double *) &b0);
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point element in a and b
- // for equality, and return the boolean result (0 or 1).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd
- FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1;
- #else
- uint32x4_t a_not_nan =
- vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a));
- uint32x4_t b_not_nan =
- vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_eq_b =
- vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
- uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan),
- vreinterpretq_u64_u32(a_eq_b));
- return vgetq_lane_u64(and_results, 0) & 0x1;
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point element in a and b
- // for not-equal, and return the boolean result (0 or 1).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd
- FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
- {
- return !_mm_comieq_sd(a, b);
- }
- // Convert packed signed 32-bit integers in a to packed double-precision
- // (64-bit) floating-point elements, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*32
- // m := j*64
- // dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd
- FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))));
- #else
- double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
- double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1);
- return _mm_set_pd(a1, a0);
- #endif
- }
- // Converts the four signed 32-bit integer values of a to single-precision,
- // floating-point values
- // https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
- {
- return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
- }
- // Convert packed double-precision (64-bit) floating-point elements in a to
- // packed 32-bit integers, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // k := 64*j
- // dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32
- FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a)
- {
- __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
- double d0 = ((double *) &rnd)[0];
- double d1 = ((double *) &rnd)[1];
- return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0);
- }
- // Convert packed double-precision (64-bit) floating-point elements in a to
- // packed 32-bit integers, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // k := 64*j
- // dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32
- FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a)
- {
- __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
- double d0 = ((double *) &rnd)[0];
- double d1 = ((double *) &rnd)[1];
- int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1};
- return vreinterpret_m64_s32(vld1_s32(data));
- }
- // Convert packed double-precision (64-bit) floating-point elements in a to
- // packed single-precision (32-bit) floating-point elements, and store the
- // results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // k := 64*j
- // dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k])
- // ENDFOR
- // dst[127:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps
- FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
- {
- #if defined(__aarch64__)
- float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
- return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
- #else
- float a0 = (float) ((double *) &a)[0];
- float a1 = (float) ((double *) &a)[1];
- return _mm_set_ps(0, 0, a1, a0);
- #endif
- }
- // Convert packed signed 32-bit integers in a to packed double-precision
- // (64-bit) floating-point elements, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*32
- // m := j*64
- // dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd
- FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a))));
- #else
- double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0);
- double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1);
- return _mm_set_pd(a1, a0);
- #endif
- }
- // Converts the four single-precision, floating-point values of a to signed
- // 32-bit integer values.
- //
- // r0 := (int) a0
- // r1 := (int) a1
- // r2 := (int) a2
- // r3 := (int) a3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
- // *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
- // does not support! It is supported on ARMv8-A however.
- FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
- {
- #if defined(__aarch64__)
- switch (_MM_GET_ROUNDING_MODE()) {
- case _MM_ROUND_NEAREST:
- return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
- case _MM_ROUND_DOWN:
- return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a));
- case _MM_ROUND_UP:
- return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a));
- default: // _MM_ROUND_TOWARD_ZERO
- return vreinterpretq_m128i_s32(vcvtq_s32_f32(a));
- }
- #else
- float *f = (float *) &a;
- switch (_MM_GET_ROUNDING_MODE()) {
- case _MM_ROUND_NEAREST: {
- uint32x4_t signmask = vdupq_n_u32(0x80000000);
- float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
- vdupq_n_f32(0.5f)); /* +/- 0.5 */
- int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
- vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
- int32x4_t r_trunc = vcvtq_s32_f32(
- vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
- int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
- vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
- int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
- vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
- float32x4_t delta = vsubq_f32(
- vreinterpretq_f32_m128(a),
- vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
- uint32x4_t is_delta_half =
- vceqq_f32(delta, half); /* delta == +/- 0.5 */
- return vreinterpretq_m128i_s32(
- vbslq_s32(is_delta_half, r_even, r_normal));
- }
- case _MM_ROUND_DOWN:
- return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]),
- floorf(f[0]));
- case _MM_ROUND_UP:
- return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]),
- ceilf(f[0]));
- default: // _MM_ROUND_TOWARD_ZERO
- return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1],
- (int32_t) f[0]);
- }
- #endif
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed double-precision (64-bit) floating-point elements, and store the
- // results in dst.
- //
- // FOR j := 0 to 1
- // i := 64*j
- // k := 32*j
- // dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd
- FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
- #else
- double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
- return _mm_set_pd(a1, a0);
- #endif
- }
- // Copy the lower double-precision (64-bit) floating-point element of a to dst.
- //
- // dst[63:0] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64
- FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
- {
- #if defined(__aarch64__)
- return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
- #else
- return ((double *) &a)[0];
- #endif
- }
- // Convert the lower double-precision (64-bit) floating-point element in a to a
- // 32-bit integer, and store the result in dst.
- //
- // dst[31:0] := Convert_FP64_To_Int32(a[63:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32
- FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
- {
- #if defined(__aarch64__)
- return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
- #else
- __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
- double ret = ((double *) &rnd)[0];
- return (int32_t) ret;
- #endif
- }
- // Convert the lower double-precision (64-bit) floating-point element in a to a
- // 64-bit integer, and store the result in dst.
- //
- // dst[63:0] := Convert_FP64_To_Int64(a[63:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64
- FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
- {
- #if defined(__aarch64__)
- return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
- #else
- __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
- double ret = ((double *) &rnd)[0];
- return (int64_t) ret;
- #endif
- }
- // Convert the lower double-precision (64-bit) floating-point element in a to a
- // 64-bit integer, and store the result in dst.
- //
- // dst[63:0] := Convert_FP64_To_Int64(a[63:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x
- #define _mm_cvtsd_si64x _mm_cvtsd_si64
- // Convert the lower double-precision (64-bit) floating-point element in b to a
- // single-precision (32-bit) floating-point element, store the result in the
- // lower element of dst, and copy the upper 3 packed elements from a to the
- // upper elements of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss
- FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vsetq_lane_f32(
- vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0),
- vreinterpretq_f32_m128(a), 0));
- #else
- return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0],
- vreinterpretq_f32_m128(a), 0));
- #endif
- }
- // Copy the lower 32-bit integer in a to dst.
- //
- // dst[31:0] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32
- FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
- {
- return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
- }
- // Copy the lower 64-bit integer in a to dst.
- //
- // dst[63:0] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64
- FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
- {
- return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
- }
- // Copy the lower 64-bit integer in a to dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
- #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
- // Convert the signed 32-bit integer b to a double-precision (64-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd
- FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
- #else
- double bf = (double) b;
- return vreinterpretq_m128d_s64(
- vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
- #endif
- }
- // Copy the lower 64-bit integer in a to dst.
- //
- // dst[63:0] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
- #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
- // Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
- // zero extending the upper bits.
- //
- // r0 := a
- // r1 := 0x0
- // r2 := 0x0
- // r3 := 0x0
- //
- // https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
- {
- return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
- }
- // Convert the signed 64-bit integer b to a double-precision (64-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd
- FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
- #else
- double bf = (double) b;
- return vreinterpretq_m128d_s64(
- vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
- #endif
- }
- // Moves 64-bit integer a to the least significant 64 bits of an __m128 object,
- // zero extending the upper bits.
- //
- // r0 := a
- // r1 := 0x0
- FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
- {
- return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
- }
- // Copy 64-bit integer a to the lower element of dst, and zero the upper
- // element.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128
- #define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a)
- // Convert the signed 64-bit integer b to a double-precision (64-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd
- #define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b)
- // Convert the lower single-precision (32-bit) floating-point element in b to a
- // double-precision (64-bit) floating-point element, store the result in the
- // lower element of dst, and copy the upper element from a to the upper element
- // of dst.
- //
- // dst[63:0] := Convert_FP32_To_FP64(b[31:0])
- // dst[127:64] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd
- FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
- {
- double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
- #else
- return vreinterpretq_m128d_s64(
- vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0));
- #endif
- }
- // Convert packed double-precision (64-bit) floating-point elements in a to
- // packed 32-bit integers with truncation, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32
- FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
- {
- double a0 = ((double *) &a)[0];
- double a1 = ((double *) &a)[1];
- return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0);
- }
- // Convert packed double-precision (64-bit) floating-point elements in a to
- // packed 32-bit integers with truncation, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32
- FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a)
- {
- double a0 = ((double *) &a)[0];
- double a1 = ((double *) &a)[1];
- int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1};
- return vreinterpret_m64_s32(vld1_s32(data));
- }
- // Converts the four single-precision, floating-point values of a to signed
- // 32-bit integer values using truncate.
- // https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
- {
- return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
- }
- // Convert the lower double-precision (64-bit) floating-point element in a to a
- // 32-bit integer with truncation, and store the result in dst.
- //
- // dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32
- FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
- {
- double ret = *((double *) &a);
- return (int32_t) ret;
- }
- // Convert the lower double-precision (64-bit) floating-point element in a to a
- // 64-bit integer with truncation, and store the result in dst.
- //
- // dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64
- FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
- {
- #if defined(__aarch64__)
- return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
- #else
- double ret = *((double *) &a);
- return (int64_t) ret;
- #endif
- }
- // Convert the lower double-precision (64-bit) floating-point element in a to a
- // 64-bit integer with truncation, and store the result in dst.
- //
- // dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x
- #define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
- // Divide packed double-precision (64-bit) floating-point elements in a by
- // packed elements in b, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 64*j
- // dst[i+63:i] := a[i+63:i] / b[i+63:i]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd
- FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] / db[0];
- c[1] = da[1] / db[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Divide the lower double-precision (64-bit) floating-point element in a by the
- // lower double-precision (64-bit) floating-point element in b, store the result
- // in the lower element of dst, and copy the upper element from a to the upper
- // element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd
- FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- float64x2_t tmp =
- vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b));
- return vreinterpretq_m128d_f64(
- vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1));
- #else
- return _mm_move_sd(a, _mm_div_pd(a, b));
- #endif
- }
- // Extracts the selected signed or unsigned 16-bit integer from a and zero
- // extends.
- // https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
- // FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
- #define _mm_extract_epi16(a, imm) \
- vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
- // Inserts the least significant 16 bits of b into the selected 16-bit integer
- // of a.
- // https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
- // FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
- // __constrange(0,8) int imm)
- #define _mm_insert_epi16(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s16( \
- vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
- })
- // Loads two double-precision from 16-byte aligned memory, floating-point
- // values.
- //
- // dst[127:0] := MEM[mem_addr+127:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd
- FORCE_INLINE __m128d _mm_load_pd(const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_f64(p));
- #else
- const float *fp = (const float *) p;
- float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
- return vreinterpretq_m128d_f32(vld1q_f32(data));
- #endif
- }
- // Load a double-precision (64-bit) floating-point element from memory into both
- // elements of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
- #define _mm_load_pd1 _mm_load1_pd
- // Load a double-precision (64-bit) floating-point element from memory into the
- // lower of dst, and zero the upper element. mem_addr does not need to be
- // aligned on any particular boundary.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd
- FORCE_INLINE __m128d _mm_load_sd(const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
- #else
- const float *fp = (const float *) p;
- float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
- return vreinterpretq_m128d_f32(vld1q_f32(data));
- #endif
- }
- // Loads 128-bit value. :
- // https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
- FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
- {
- return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
- }
- // Load a double-precision (64-bit) floating-point element from memory into both
- // elements of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd
- FORCE_INLINE __m128d _mm_load1_pd(const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
- #else
- return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
- #endif
- }
- // Load a double-precision (64-bit) floating-point element from memory into the
- // upper element of dst, and copy the lower element from a to dst. mem_addr does
- // not need to be aligned on any particular boundary.
- //
- // dst[63:0] := a[63:0]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd
- FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
- #else
- return vreinterpretq_m128d_f32(vcombine_f32(
- vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
- #endif
- }
- // Load 64-bit integer from memory into the first element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64
- FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
- {
- /* Load the lower 64 bits of the value pointed to by p into the
- * lower 64 bits of the result, zeroing the upper 64 bits of the result.
- */
- return vreinterpretq_m128i_s32(
- vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
- }
- // Load a double-precision (64-bit) floating-point element from memory into the
- // lower element of dst, and copy the upper element from a to dst. mem_addr does
- // not need to be aligned on any particular boundary.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd
- FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
- #else
- return vreinterpretq_m128d_f32(
- vcombine_f32(vld1_f32((const float *) p),
- vget_high_f32(vreinterpretq_f32_m128d(a))));
- #endif
- }
- // Load 2 double-precision (64-bit) floating-point elements from memory into dst
- // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // dst[63:0] := MEM[mem_addr+127:mem_addr+64]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd
- FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
- {
- #if defined(__aarch64__)
- float64x2_t v = vld1q_f64(p);
- return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
- #else
- int64x2_t v = vld1q_s64((const int64_t *) p);
- return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
- #endif
- }
- // Loads two double-precision from unaligned memory, floating-point values.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd
- FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
- {
- return _mm_load_pd(p);
- }
- // Loads 128-bit value. :
- // https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
- {
- return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
- }
- // Load unaligned 32-bit integer from memory into the first element of dst.
- //
- // dst[31:0] := MEM[mem_addr+31:mem_addr]
- // dst[MAX:32] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32
- FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
- {
- return vreinterpretq_m128i_s32(
- vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
- }
- // Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
- // integers from b.
- //
- // r0 := (a0 * b0) + (a1 * b1)
- // r1 := (a2 * b2) + (a3 * b3)
- // r2 := (a4 * b4) + (a5 * b5)
- // r3 := (a6 * b6) + (a7 * b7)
- // https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
- {
- int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
- vget_low_s16(vreinterpretq_s16_m128i(b)));
- int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
- vget_high_s16(vreinterpretq_s16_m128i(b)));
- int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
- int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
- return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
- }
- // Conditionally store 8-bit integer elements from a into memory using mask
- // (elements are not stored when the highest bit is not set in the corresponding
- // element) and a non-temporal memory hint. mem_addr does not need to be aligned
- // on any particular boundary.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128
- FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr)
- {
- int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7);
- __m128 b = _mm_load_ps((const float *) mem_addr);
- int8x16_t masked =
- vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a),
- vreinterpretq_s8_m128(b));
- vst1q_s8((int8_t *) mem_addr, masked);
- }
- // Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
- // signed 16-bit integers from b.
- // https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
- // 16 unsigned 8-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b,
- // and store packed maximum values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd
- FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0;
- d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1;
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b, store the maximum value in the lower element of dst, and copy the upper
- // element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd
- FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_max_pd(a, b));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2] = {fmax(da[0], db[0]), da[1]};
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
- // signed 16-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
- // 16 unsigned 8-bit integers from b.
- // https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
- FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b,
- // and store packed minimum values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd
- FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
- uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
- uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
- uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
- uint64_t d[2];
- d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0;
- d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1;
- return vreinterpretq_m128d_u64(vld1q_u64(d));
- #endif
- }
- // Compare the lower double-precision (64-bit) floating-point elements in a and
- // b, store the minimum value in the lower element of dst, and copy the upper
- // element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd
- FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_min_pd(a, b));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2] = {fmin(da[0], db[0]), da[1]};
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Copy the lower 64-bit integer in a to the lower element of dst, and zero the
- // upper element.
- //
- // dst[63:0] := a[63:0]
- // dst[127:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64
- FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
- {
- return vreinterpretq_m128i_s64(
- vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
- }
- // Move the lower double-precision (64-bit) floating-point element from b to the
- // lower element of dst, and copy the upper element from a to the upper element
- // of dst.
- //
- // dst[63:0] := b[63:0]
- // dst[127:64] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd
- FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
- {
- return vreinterpretq_m128d_f32(
- vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
- vget_high_f32(vreinterpretq_f32_m128d(a))));
- }
- // NEON does not provide a version of this function.
- // Creates a 16-bit mask from the most significant bits of the 16 signed or
- // unsigned 8-bit integers in a and zero extends the upper bits.
- // https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
- FORCE_INLINE int _mm_movemask_epi8(__m128i a)
- {
- // Use increasingly wide shifts+adds to collect the sign bits
- // together.
- // Since the widening shifts would be rather confusing to follow in little
- // endian, everything will be illustrated in big endian order instead. This
- // has a different result - the bits would actually be reversed on a big
- // endian machine.
- // Starting input (only half the elements are shown):
- // 89 ff 1d c0 00 10 99 33
- uint8x16_t input = vreinterpretq_u8_m128i(a);
- // Shift out everything but the sign bits with an unsigned shift right.
- //
- // Bytes of the vector::
- // 89 ff 1d c0 00 10 99 33
- // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7)
- // | | | | | | | |
- // 01 01 00 01 00 00 01 00
- //
- // Bits of first important lane(s):
- // 10001001 (89)
- // \______
- // |
- // 00000001 (01)
- uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
- // Merge the even lanes together with a 16-bit unsigned shift right + add.
- // 'xx' represents garbage data which will be ignored in the final result.
- // In the important bytes, the add functions like a binary OR.
- //
- // 01 01 00 01 00 00 01 00
- // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7))
- // \| \| \| \|
- // xx 03 xx 01 xx 00 xx 02
- //
- // 00000001 00000001 (01 01)
- // \_______ |
- // \|
- // xxxxxxxx xxxxxx11 (xx 03)
- uint32x4_t paired16 =
- vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
- // Repeat with a wider 32-bit shift + add.
- // xx 03 xx 01 xx 00 xx 02
- // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >>
- // 14))
- // \| \|
- // xx xx xx 0d xx xx xx 02
- //
- // 00000011 00000001 (03 01)
- // \\_____ ||
- // '----.\||
- // xxxxxxxx xxxx1101 (xx 0d)
- uint64x2_t paired32 =
- vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
- // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
- // lanes. xx xx xx 0d xx xx xx 02
- // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >>
- // 28))
- // \|
- // xx xx xx xx xx xx xx d2
- //
- // 00001101 00000010 (0d 02)
- // \ \___ | |
- // '---. \| |
- // xxxxxxxx 11010010 (xx d2)
- uint8x16_t paired64 =
- vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
- // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
- // xx xx xx xx xx xx xx d2
- // || return paired64[0]
- // d2
- // Note: Little endian would return the correct value 4b (01001011) instead.
- return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
- }
- // Set each bit of mask dst based on the most significant bit of the
- // corresponding packed double-precision (64-bit) floating-point element in a.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pd
- FORCE_INLINE int _mm_movemask_pd(__m128d a)
- {
- uint64x2_t input = vreinterpretq_u64_m128d(a);
- uint64x2_t high_bits = vshrq_n_u64(input, 63);
- return vgetq_lane_u64(high_bits, 0) | (vgetq_lane_u64(high_bits, 1) << 1);
- }
- // Copy the lower 64-bit integer in a to dst.
- //
- // dst[63:0] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64
- FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
- {
- return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
- }
- // Copy the 64-bit integer a to the lower element of dst, and zero the upper
- // element.
- //
- // dst[63:0] := a[63:0]
- // dst[127:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64
- FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
- {
- return vreinterpretq_m128i_s64(
- vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
- }
- // Multiply the low unsigned 32-bit integers from each packed 64-bit element in
- // a and b, and store the unsigned 64-bit results in dst.
- //
- // r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF)
- // r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF)
- FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
- {
- // vmull_u32 upcasts instead of masking, so we downcast.
- uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
- uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
- return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
- }
- // Multiply packed double-precision (64-bit) floating-point elements in a and b,
- // and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd
- FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] * db[0];
- c[1] = da[1] * db[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Multiply the lower double-precision (64-bit) floating-point element in a and
- // b, store the result in the lower element of dst, and copy the upper element
- // from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd
- FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_mul_pd(a, b));
- }
- // Multiply the low unsigned 32-bit integers from a and b, and store the
- // unsigned 64-bit result in dst.
- //
- // dst[63:0] := a[31:0] * b[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32
- FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u64(vget_low_u64(
- vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
- }
- // Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
- // integers from b.
- //
- // r0 := (a0 * b0)[31:16]
- // r1 := (a1 * b1)[31:16]
- // ...
- // r7 := (a7 * b7)[31:16]
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
- {
- /* FIXME: issue with large values because of result saturation */
- // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
- // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
- // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
- int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
- int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
- int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
- int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
- uint16x8x2_t r =
- vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
- return vreinterpretq_m128i_u16(r.val[1]);
- }
- // Multiply the packed unsigned 16-bit integers in a and b, producing
- // intermediate 32-bit integers, and store the high 16 bits of the intermediate
- // integers in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16
- FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
- {
- uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a));
- uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b));
- uint32x4_t ab3210 = vmull_u16(a3210, b3210);
- #if defined(__aarch64__)
- uint32x4_t ab7654 =
- vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
- uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210),
- vreinterpretq_u16_u32(ab7654));
- return vreinterpretq_m128i_u16(r);
- #else
- uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a));
- uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b));
- uint32x4_t ab7654 = vmull_u16(a7654, b7654);
- uint16x8x2_t r =
- vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654));
- return vreinterpretq_m128i_u16(r.val[1]);
- #endif
- }
- // Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
- // unsigned 16-bit integers from b.
- //
- // r0 := (a0 * b0)[15:0]
- // r1 := (a1 * b1)[15:0]
- // ...
- // r7 := (a7 * b7)[15:0]
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Compute the bitwise OR of packed double-precision (64-bit) floating-point
- // elements in a and b, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd
- FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
- {
- return vreinterpretq_m128d_s64(
- vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
- }
- // Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
- //
- // r := a | b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
- // saturates.
- // https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
- vqmovn_s16(vreinterpretq_s16_m128i(b))));
- }
- // Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
- // and saturates.
- //
- // r0 := SignedSaturate(a0)
- // r1 := SignedSaturate(a1)
- // r2 := SignedSaturate(a2)
- // r3 := SignedSaturate(a3)
- // r4 := SignedSaturate(b0)
- // r5 := SignedSaturate(b1)
- // r6 := SignedSaturate(b2)
- // r7 := SignedSaturate(b3)
- //
- // https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
- vqmovn_s32(vreinterpretq_s32_m128i(b))));
- }
- // Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
- // integers and saturates.
- //
- // r0 := UnsignedSaturate(a0)
- // r1 := UnsignedSaturate(a1)
- // ...
- // r7 := UnsignedSaturate(a7)
- // r8 := UnsignedSaturate(b0)
- // r9 := UnsignedSaturate(b1)
- // ...
- // r15 := UnsignedSaturate(b7)
- //
- // https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
- vqmovun_s16(vreinterpretq_s16_m128i(b))));
- }
- // Pause the processor. This is typically used in spin-wait loops and depending
- // on the x86 processor typical values are in the 40-100 cycle range. The
- // 'yield' instruction isn't a good fit beacuse it's effectively a nop on most
- // Arm cores. Experience with several databases has shown has shown an 'isb' is
- // a reasonable approximation.
- FORCE_INLINE void _mm_pause()
- {
- __asm__ __volatile__("isb\n");
- }
- // Compute the absolute differences of packed unsigned 8-bit integers in a and
- // b, then horizontally sum each consecutive 8 differences to produce two
- // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
- // 16 bits of 64-bit elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8
- FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
- {
- uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
- return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t)));
- }
- // Sets the 8 signed 16-bit integer values.
- // https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_set_epi16(short i7,
- short i6,
- short i5,
- short i4,
- short i3,
- short i2,
- short i1,
- short i0)
- {
- int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
- return vreinterpretq_m128i_s16(vld1q_s16(data));
- }
- // Sets the 4 signed 32-bit integer values.
- // https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
- {
- int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
- return vreinterpretq_m128i_s32(vld1q_s32(data));
- }
- // Returns the __m128i structure with its two 64-bit integer values
- // initialized to the values of the two 64-bit integers passed in.
- // https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
- FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
- {
- return _mm_set_epi64x((int64_t) i1, (int64_t) i2);
- }
- // Returns the __m128i structure with its two 64-bit integer values
- // initialized to the values of the two 64-bit integers passed in.
- // https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
- FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
- {
- return vreinterpretq_m128i_s64(
- vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
- }
- // Sets the 16 signed 8-bit integer values.
- // https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
- signed char b14,
- signed char b13,
- signed char b12,
- signed char b11,
- signed char b10,
- signed char b9,
- signed char b8,
- signed char b7,
- signed char b6,
- signed char b5,
- signed char b4,
- signed char b3,
- signed char b2,
- signed char b1,
- signed char b0)
- {
- int8_t ALIGN_STRUCT(16)
- data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
- (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
- (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
- (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
- return (__m128i) vld1q_s8(data);
- }
- // Set packed double-precision (64-bit) floating-point elements in dst with the
- // supplied values.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd
- FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
- {
- double ALIGN_STRUCT(16) data[2] = {e0, e1};
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
- #else
- return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
- #endif
- }
- // Broadcast double-precision (64-bit) floating-point value a to all elements of
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1
- #define _mm_set_pd1 _mm_set1_pd
- // Copy double-precision (64-bit) floating-point element a to the lower element
- // of dst, and zero the upper element.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd
- FORCE_INLINE __m128d _mm_set_sd(double a)
- {
- return _mm_set_pd(0, a);
- }
- // Sets the 8 signed 16-bit integer values to w.
- //
- // r0 := w
- // r1 := w
- // ...
- // r7 := w
- //
- // https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_set1_epi16(short w)
- {
- return vreinterpretq_m128i_s16(vdupq_n_s16(w));
- }
- // Sets the 4 signed 32-bit integer values to i.
- //
- // r0 := i
- // r1 := i
- // r2 := i
- // r3 := I
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set1_epi32(int _i)
- {
- return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
- }
- // Sets the 2 signed 64-bit integer values to i.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100)
- FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
- {
- return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i));
- }
- // Sets the 2 signed 64-bit integer values to i.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x
- FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
- {
- return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
- }
- // Sets the 16 signed 8-bit integer values to b.
- //
- // r0 := b
- // r1 := b
- // ...
- // r15 := b
- //
- // https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
- {
- return vreinterpretq_m128i_s8(vdupq_n_s8(w));
- }
- // Broadcast double-precision (64-bit) floating-point value a to all elements of
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd
- FORCE_INLINE __m128d _mm_set1_pd(double d)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vdupq_n_f64(d));
- #else
- return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d));
- #endif
- }
- // Sets the 8 signed 16-bit integer values in reverse order.
- //
- // Return Value
- // r0 := w0
- // r1 := w1
- // ...
- // r7 := w7
- FORCE_INLINE __m128i _mm_setr_epi16(short w0,
- short w1,
- short w2,
- short w3,
- short w4,
- short w5,
- short w6,
- short w7)
- {
- int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
- return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
- }
- // Sets the 4 signed 32-bit integer values in reverse order
- // https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
- {
- int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
- return vreinterpretq_m128i_s32(vld1q_s32(data));
- }
- // Set packed 64-bit integers in dst with the supplied values in reverse order.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64
- FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
- {
- return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
- }
- // Sets the 16 signed 8-bit integer values in reverse order.
- // https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
- signed char b1,
- signed char b2,
- signed char b3,
- signed char b4,
- signed char b5,
- signed char b6,
- signed char b7,
- signed char b8,
- signed char b9,
- signed char b10,
- signed char b11,
- signed char b12,
- signed char b13,
- signed char b14,
- signed char b15)
- {
- int8_t ALIGN_STRUCT(16)
- data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
- (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
- (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
- (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
- return (__m128i) vld1q_s8(data);
- }
- // Set packed double-precision (64-bit) floating-point elements in dst with the
- // supplied values in reverse order.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd
- FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
- {
- return _mm_set_pd(e0, e1);
- }
- // Return vector of type __m128d with all elements set to zero.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd
- FORCE_INLINE __m128d _mm_setzero_pd(void)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vdupq_n_f64(0));
- #else
- return vreinterpretq_m128d_f32(vdupq_n_f32(0));
- #endif
- }
- // Sets the 128-bit value to zero
- // https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_setzero_si128(void)
- {
- return vreinterpretq_m128i_s32(vdupq_n_s32(0));
- }
- // Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
- // https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
- // FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- int32x4_t _input = vreinterpretq_s32_m128i(a); \
- int32x4_t _shuf = __builtin_shufflevector( \
- _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
- vreinterpretq_m128i_s32(_shuf); \
- })
- #else // generic
- #define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- switch (imm) { \
- case _MM_SHUFFLE(1, 0, 3, 2): \
- ret = _mm_shuffle_epi_1032((a)); \
- break; \
- case _MM_SHUFFLE(2, 3, 0, 1): \
- ret = _mm_shuffle_epi_2301((a)); \
- break; \
- case _MM_SHUFFLE(0, 3, 2, 1): \
- ret = _mm_shuffle_epi_0321((a)); \
- break; \
- case _MM_SHUFFLE(2, 1, 0, 3): \
- ret = _mm_shuffle_epi_2103((a)); \
- break; \
- case _MM_SHUFFLE(1, 0, 1, 0): \
- ret = _mm_shuffle_epi_1010((a)); \
- break; \
- case _MM_SHUFFLE(1, 0, 0, 1): \
- ret = _mm_shuffle_epi_1001((a)); \
- break; \
- case _MM_SHUFFLE(0, 1, 0, 1): \
- ret = _mm_shuffle_epi_0101((a)); \
- break; \
- case _MM_SHUFFLE(2, 2, 1, 1): \
- ret = _mm_shuffle_epi_2211((a)); \
- break; \
- case _MM_SHUFFLE(0, 1, 2, 2): \
- ret = _mm_shuffle_epi_0122((a)); \
- break; \
- case _MM_SHUFFLE(3, 3, 3, 2): \
- ret = _mm_shuffle_epi_3332((a)); \
- break; \
- case _MM_SHUFFLE(0, 0, 0, 0): \
- ret = _mm_shuffle_epi32_splat((a), 0); \
- break; \
- case _MM_SHUFFLE(1, 1, 1, 1): \
- ret = _mm_shuffle_epi32_splat((a), 1); \
- break; \
- case _MM_SHUFFLE(2, 2, 2, 2): \
- ret = _mm_shuffle_epi32_splat((a), 2); \
- break; \
- case _MM_SHUFFLE(3, 3, 3, 3): \
- ret = _mm_shuffle_epi32_splat((a), 3); \
- break; \
- default: \
- ret = _mm_shuffle_epi32_default((a), (imm)); \
- break; \
- } \
- ret; \
- })
- #endif
- // Shuffle double-precision (64-bit) floating-point elements using the control
- // in imm8, and store the results in dst.
- //
- // dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64]
- // dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_pd(a, b, imm8) \
- vreinterpretq_m128d_s64(__builtin_shufflevector( \
- vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \
- ((imm8 & 0x2) >> 1) + 2))
- #else
- #define _mm_shuffle_pd(a, b, imm8) \
- _mm_castsi128_pd(_mm_set_epi64x( \
- vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
- vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
- #endif
- // FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shufflehi_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
- (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
- (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128i_s16(_shuf); \
- })
- #else // generic
- #define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
- #endif
- // FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shufflelo_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
- (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
- vreinterpretq_m128i_s16(_shuf); \
- })
- #else // generic
- #define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
- #endif
- // Shift packed 16-bit integers in a left by count while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF count[63:0] > 15
- // dst[i+15:i] := 0
- // ELSE
- // dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16
- FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (_sse2neon_unlikely(c & ~15))
- return _mm_setzero_si128();
- int16x8_t vc = vdupq_n_s16((int16_t) c);
- return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
- }
- // Shift packed 32-bit integers in a left by count while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // IF count[63:0] > 31
- // dst[i+31:i] := 0
- // ELSE
- // dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32
- FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (_sse2neon_unlikely(c & ~31))
- return _mm_setzero_si128();
- int32x4_t vc = vdupq_n_s32((int32_t) c);
- return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
- }
- // Shift packed 64-bit integers in a left by count while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // IF count[63:0] > 63
- // dst[i+63:i] := 0
- // ELSE
- // dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64
- FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (_sse2neon_unlikely(c & ~63))
- return _mm_setzero_si128();
- int64x2_t vc = vdupq_n_s64((int64_t) c);
- return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
- }
- // Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF imm8[7:0] > 15
- // dst[i+15:i] := 0
- // ELSE
- // dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16
- FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
- {
- if (_sse2neon_unlikely(imm & ~15))
- return _mm_setzero_si128();
- return vreinterpretq_m128i_s16(
- vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm)));
- }
- // Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // IF imm8[7:0] > 31
- // dst[i+31:i] := 0
- // ELSE
- // dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32
- FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
- {
- if (_sse2neon_unlikely(imm & ~31))
- return _mm_setzero_si128();
- return vreinterpretq_m128i_s32(
- vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
- }
- // Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // IF imm8[7:0] > 63
- // dst[i+63:i] := 0
- // ELSE
- // dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64
- FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
- {
- if (_sse2neon_unlikely(imm & ~63))
- return _mm_setzero_si128();
- return vreinterpretq_m128i_s64(
- vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
- }
- // Shift a left by imm8 bytes while shifting in zeros, and store the results in
- // dst.
- //
- // tmp := imm8[7:0]
- // IF tmp > 15
- // tmp := 16
- // FI
- // dst[127:0] := a[127:0] << (tmp*8)
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128
- FORCE_INLINE __m128i _mm_slli_si128(__m128i a, int imm)
- {
- if (_sse2neon_unlikely(imm & ~15))
- return _mm_setzero_si128();
- uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_m128i(a)};
- return vreinterpretq_m128i_u8(
- vld1q_u8(((uint8_t const *) tmp) + (16 - imm)));
- }
- // Compute the square root of packed double-precision (64-bit) floating-point
- // elements in a, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd
- FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a)));
- #else
- double a0 = sqrt(((double *) &a)[0]);
- double a1 = sqrt(((double *) &a)[1]);
- return _mm_set_pd(a1, a0);
- #endif
- }
- // Compute the square root of the lower double-precision (64-bit) floating-point
- // element in b, store the result in the lower element of dst, and copy the
- // upper element from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd
- FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_sqrt_pd(b));
- #else
- return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0]));
- #endif
- }
- // Shift packed 16-bit integers in a right by count while shifting in sign bits,
- // and store the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF count[63:0] > 15
- // dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0)
- // ELSE
- // dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16
- FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
- {
- int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
- if (_sse2neon_unlikely(c & ~15))
- return _mm_cmplt_epi16(a, _mm_setzero_si128());
- return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c)));
- }
- // Shift packed 32-bit integers in a right by count while shifting in sign bits,
- // and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // IF count[63:0] > 31
- // dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
- // ELSE
- // dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32
- FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
- {
- int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
- if (_sse2neon_unlikely(c & ~31))
- return _mm_cmplt_epi32(a, _mm_setzero_si128());
- return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c)));
- }
- // Shift packed 16-bit integers in a right by imm8 while shifting in sign
- // bits, and store the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF imm8[7:0] > 15
- // dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0)
- // ELSE
- // dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16
- FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
- {
- const int count = (imm & ~15) ? 15 : imm;
- return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
- }
- // Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
- // and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // IF imm8[7:0] > 31
- // dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
- // ELSE
- // dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32
- // FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
- #define _mm_srai_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (_sse2neon_unlikely((imm) == 0)) { \
- ret = a; \
- } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \
- ret = vreinterpretq_m128i_s32( \
- vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \
- } else { \
- ret = vreinterpretq_m128i_s32( \
- vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \
- } \
- ret; \
- })
- // Shift packed 16-bit integers in a right by count while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF count[63:0] > 15
- // dst[i+15:i] := 0
- // ELSE
- // dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16
- FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (_sse2neon_unlikely(c & ~15))
- return _mm_setzero_si128();
- int16x8_t vc = vdupq_n_s16(-(int16_t) c);
- return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
- }
- // Shift packed 32-bit integers in a right by count while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // IF count[63:0] > 31
- // dst[i+31:i] := 0
- // ELSE
- // dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32
- FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (_sse2neon_unlikely(c & ~31))
- return _mm_setzero_si128();
- int32x4_t vc = vdupq_n_s32(-(int32_t) c);
- return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
- }
- // Shift packed 64-bit integers in a right by count while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // IF count[63:0] > 63
- // dst[i+63:i] := 0
- // ELSE
- // dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64
- FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (_sse2neon_unlikely(c & ~63))
- return _mm_setzero_si128();
- int64x2_t vc = vdupq_n_s64(-(int64_t) c);
- return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
- }
- // Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF imm8[7:0] > 15
- // dst[i+15:i] := 0
- // ELSE
- // dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16
- #define _mm_srli_epi16(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (_sse2neon_unlikely(imm & ~15)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u16( \
- vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \
- } \
- ret; \
- })
- // Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // IF imm8[7:0] > 31
- // dst[i+31:i] := 0
- // ELSE
- // dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32
- // FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
- #define _mm_srli_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (_sse2neon_unlikely(imm & ~31)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u32( \
- vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \
- } \
- ret; \
- })
- // Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // IF imm8[7:0] > 63
- // dst[i+63:i] := 0
- // ELSE
- // dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64
- #define _mm_srli_epi64(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (_sse2neon_unlikely(imm & ~63)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u64( \
- vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \
- } \
- ret; \
- })
- // Shift a right by imm8 bytes while shifting in zeros, and store the results in
- // dst.
- //
- // tmp := imm8[7:0]
- // IF tmp > 15
- // tmp := 16
- // FI
- // dst[127:0] := a[127:0] >> (tmp*8)
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128
- FORCE_INLINE __m128i _mm_srli_si128(__m128i a, int imm)
- {
- if (_sse2neon_unlikely(imm & ~15))
- return _mm_setzero_si128();
- uint8x16_t tmp[2] = {vreinterpretq_u8_m128i(a), vdupq_n_u8(0)};
- return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + imm));
- }
- // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
- // elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
- // or a general-protection exception may be generated.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd
- FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
- #else
- vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
- #endif
- }
- // Store the lower double-precision (64-bit) floating-point element from a into
- // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
- // boundary or a general-protection exception may be generated.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1
- FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
- vst1q_f64((float64_t *) mem_addr,
- vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
- #else
- float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
- vst1q_f32((float32_t *) mem_addr,
- vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
- #endif
- }
- // Store the lower double-precision (64-bit) floating-point element from a into
- // memory. mem_addr does not need to be aligned on any particular boundary.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd
- FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
- #else
- vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a)));
- #endif
- }
- // Stores four 32-bit integer values as (as a __m128i value) at the address p.
- // https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
- FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
- {
- vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
- }
- // Store the lower double-precision (64-bit) floating-point element from a into
- // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
- // boundary or a general-protection exception may be generated.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd
- #define _mm_store1_pd _mm_store_pd1
- // Store the upper double-precision (64-bit) floating-point element from a into
- // memory.
- //
- // MEM[mem_addr+63:mem_addr] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd
- FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
- #else
- vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
- #endif
- }
- // Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
- // https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
- {
- uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
- uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
- *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
- }
- // Store the lower double-precision (64-bit) floating-point element from a into
- // memory.
- //
- // MEM[mem_addr+63:mem_addr] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd
- FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
- #else
- vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
- #endif
- }
- // Store 2 double-precision (64-bit) floating-point elements from a into memory
- // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // MEM[mem_addr+63:mem_addr] := a[127:64]
- // MEM[mem_addr+127:mem_addr+64] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd
- FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
- {
- float32x4_t f = vreinterpretq_f32_m128d(a);
- _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
- }
- // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
- // elements) from a into memory. mem_addr does not need to be aligned on any
- // particular boundary.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd
- FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
- {
- _mm_store_pd(mem_addr, a);
- }
- // Stores 128-bits of integer data a at the address p.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128
- FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
- {
- vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
- }
- // Stores 32-bits of integer data a at the address p.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32
- FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
- {
- vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0);
- }
- // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
- // elements) from a into memory using a non-temporal memory hint. mem_addr must
- // be aligned on a 16-byte boundary or a general-protection exception may be
- // generated.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd
- FORCE_INLINE void _mm_stream_pd(double *p, __m128d a)
- {
- #if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, (float32x4_t *) p);
- #elif defined(__aarch64__)
- vst1q_f64(p, vreinterpretq_f64_m128d(a));
- #else
- vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a));
- #endif
- }
- // Stores the data in a to the address p without polluting the caches. If the
- // cache line containing address p is already in the cache, the cache will be
- // updated.
- // https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
- {
- #if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, p);
- #else
- vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
- #endif
- }
- // Store 32-bit integer a into memory using a non-temporal hint to minimize
- // cache pollution. If the cache line containing address mem_addr is already in
- // the cache, the cache will be updated.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32
- FORCE_INLINE void _mm_stream_si32(int *p, int a)
- {
- vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0);
- }
- // Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
- // store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16
- FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
- // unsigned 32-bit integers of a.
- //
- // r0 := a0 - b0
- // r1 := a1 - b1
- // r2 := a2 - b2
- // r3 := a3 - b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
- // and store the results in dst.
- // r0 := a0 - b0
- // r1 := a1 - b1
- FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s64(
- vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
- }
- // Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
- // store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8
- FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Subtract packed double-precision (64-bit) floating-point elements in b from
- // packed double-precision (64-bit) floating-point elements in a, and store the
- // results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // dst[i+63:i] := a[i+63:i] - b[i+63:i]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd
- FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] - db[0];
- c[1] = da[1] - db[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Subtract the lower double-precision (64-bit) floating-point element in b from
- // the lower double-precision (64-bit) floating-point element in a, store the
- // result in the lower element of dst, and copy the upper element from a to the
- // upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd
- FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_sub_pd(a, b));
- }
- // Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
- //
- // dst[63:0] := a[63:0] - b[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64
- FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s64(
- vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
- }
- // Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
- // of a and saturates.
- //
- // r0 := SignedSaturate(a0 - b0)
- // r1 := SignedSaturate(a1 - b1)
- // ...
- // r7 := SignedSaturate(a7 - b7)
- //
- // https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers
- // of a and saturates.
- //
- // r0 := SignedSaturate(a0 - b0)
- // r1 := SignedSaturate(a1 - b1)
- // ...
- // r15 := SignedSaturate(a15 - b15)
- //
- // https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
- // integers of a and saturates..
- // https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
- }
- // Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
- // integers of a and saturates.
- //
- // r0 := UnsignedSaturate(a0 - b0)
- // r1 := UnsignedSaturate(a1 - b1)
- // ...
- // r15 := UnsignedSaturate(a15 - b15)
- //
- // https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- #define _mm_ucomieq_sd _mm_comieq_sd
- #define _mm_ucomige_sd _mm_comige_sd
- #define _mm_ucomigt_sd _mm_comigt_sd
- #define _mm_ucomile_sd _mm_comile_sd
- #define _mm_ucomilt_sd _mm_comilt_sd
- #define _mm_ucomineq_sd _mm_comineq_sd
- // Return vector of type __m128d with undefined elements.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd
- FORCE_INLINE __m128d _mm_undefined_pd(void)
- {
- #if defined(__GNUC__) || defined(__clang__)
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wuninitialized"
- #endif
- __m128d a;
- return a;
- #if defined(__GNUC__) || defined(__clang__)
- #pragma GCC diagnostic pop
- #endif
- }
- // Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
- // upper 4 signed or unsigned 16-bit integers in b.
- //
- // r0 := a4
- // r1 := b4
- // r2 := a5
- // r3 := b5
- // r4 := a6
- // r5 := b6
- // r6 := a7
- // r7 := b7
- //
- // https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(
- vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- #else
- int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
- int16x4x2_t result = vzip_s16(a1, b1);
- return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
- // upper 2 signed or unsigned 32-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s32(
- vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- #else
- int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
- int32x2x2_t result = vzip_s32(a1, b1);
- return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper signed or unsigned 64-bit integer in a with the
- // upper signed or unsigned 64-bit integer in b.
- //
- // r0 := a1
- // r1 := b1
- FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
- {
- int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
- int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
- }
- // Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
- // 8 signed or unsigned 8-bit integers in b.
- //
- // r0 := a8
- // r1 := b8
- // r2 := a9
- // r3 := b9
- // ...
- // r14 := a15
- // r15 := b15
- //
- // https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(
- vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- #else
- int8x8_t a1 =
- vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
- int8x8_t b1 =
- vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
- int8x8x2_t result = vzip_s8(a1, b1);
- return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
- #endif
- }
- // Unpack and interleave double-precision (64-bit) floating-point elements from
- // the high half of a and b, and store the results in dst.
- //
- // DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) {
- // dst[63:0] := src1[127:64]
- // dst[127:64] := src2[127:64]
- // RETURN dst[127:0]
- // }
- // dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd
- FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- return vreinterpretq_m128d_s64(
- vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
- vget_high_s64(vreinterpretq_s64_m128d(b))));
- #endif
- }
- // Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
- // lower 4 signed or unsigned 16-bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- // r4 := a2
- // r5 := b2
- // r6 := a3
- // r7 := b3
- //
- // https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(
- vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- #else
- int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
- int16x4x2_t result = vzip_s16(a1, b1);
- return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
- // lower 2 signed or unsigned 32 - bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- //
- // https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s32(
- vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- #else
- int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
- int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
- int32x2x2_t result = vzip_s32(a1, b1);
- return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
- #endif
- }
- FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
- {
- int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
- int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
- }
- // Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
- // 8 signed or unsigned 8-bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- // ...
- // r14 := a7
- // r15 := b7
- //
- // https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(
- vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- #else
- int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
- int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
- int8x8x2_t result = vzip_s8(a1, b1);
- return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
- #endif
- }
- // Unpack and interleave double-precision (64-bit) floating-point elements from
- // the low half of a and b, and store the results in dst.
- //
- // DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) {
- // dst[63:0] := src1[63:0]
- // dst[127:64] := src2[63:0]
- // RETURN dst[127:0]
- // }
- // dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd
- FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- return vreinterpretq_m128d_s64(
- vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
- vget_low_s64(vreinterpretq_s64_m128d(b))));
- #endif
- }
- // Compute the bitwise XOR of packed double-precision (64-bit) floating-point
- // elements in a and b, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // dst[i+63:i] := a[i+63:i] XOR b[i+63:i]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd
- FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
- {
- return vreinterpretq_m128d_s64(
- veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
- }
- // Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
- // b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- /* SSE3 */
- // Alternatively add and subtract packed double-precision (64-bit)
- // floating-point elements in a to/from packed elements in b, and store the
- // results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // IF ((j & 1) == 0)
- // dst[i+63:i] := a[i+63:i] - b[i+63:i]
- // ELSE
- // dst[i+63:i] := a[i+63:i] + b[i+63:i]
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd
- FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
- {
- __m128d mask = _mm_set_pd(1.0f, -1.0f);
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a),
- vreinterpretq_f64_m128d(b),
- vreinterpretq_f64_m128d(mask)));
- #else
- return _mm_add_pd(_mm_mul_pd(b, mask), a);
- #endif
- }
- // Alternatively add and subtract packed single-precision (32-bit)
- // floating-point elements in a to/from packed elements in b, and store the
- // results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps
- FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
- {
- __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f};
- #if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */
- return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(mask),
- vreinterpretq_f32_m128(b)));
- #else
- return _mm_add_ps(_mm_mul_ps(b, mask), a);
- #endif
- }
- // Horizontally add adjacent pairs of double-precision (64-bit) floating-point
- // elements in a and b, and pack the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd
- FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[] = {da[0] + da[1], db[0] + db[1]};
- return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
- #endif
- }
- // Computes pairwise add of each argument as single-precision, floating-point
- // values a and b.
- // https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
- FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(
- vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
- #endif
- }
- // Horizontally subtract adjacent pairs of double-precision (64-bit)
- // floating-point elements in a and b, and pack the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd
- FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vsubq_f64(
- vuzp1q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)),
- vuzp2q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b))));
- #else
- double *da = (double *) &_a;
- double *db = (double *) &_b;
- double c[] = {da[0] - da[1], db[0] - db[1]};
- return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
- #endif
- }
- // Horizontally substract adjacent pairs of single-precision (32-bit)
- // floating-point elements in a and b, and pack the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps
- FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vsubq_f32(
- vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)),
- vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b))));
- #else
- float32x4x2_t c =
- vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b));
- return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
- #endif
- }
- // Load 128-bits of integer data from unaligned memory into dst. This intrinsic
- // may perform better than _mm_loadu_si128 when the data crosses a cache line
- // boundary.
- //
- // dst[127:0] := MEM[mem_addr+127:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128
- #define _mm_lddqu_si128 _mm_loadu_si128
- // Load a double-precision (64-bit) floating-point element from memory into both
- // elements of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd
- #define _mm_loaddup_pd _mm_load1_pd
- // Duplicate the low double-precision (64-bit) floating-point element from a,
- // and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd
- FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
- {
- #if (__aarch64__)
- return vreinterpretq_m128d_f64(
- vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
- #else
- return vreinterpretq_m128d_u64(
- vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
- #endif
- }
- // Duplicate odd-indexed single-precision (32-bit) floating-point elements
- // from a, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps
- FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
- {
- #if __has_builtin(__builtin_shufflevector)
- return vreinterpretq_m128_f32(__builtin_shufflevector(
- vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
- #else
- float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
- float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
- float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- #endif
- }
- // Duplicate even-indexed single-precision (32-bit) floating-point elements
- // from a, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps
- FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
- {
- #if __has_builtin(__builtin_shufflevector)
- return vreinterpretq_m128_f32(__builtin_shufflevector(
- vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
- #else
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
- float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- #endif
- }
- /* SSSE3 */
- // Compute the absolute value of packed signed 16-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // dst[i+15:i] := ABS(a[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16
- FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
- {
- return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
- }
- // Compute the absolute value of packed signed 32-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // dst[i+31:i] := ABS(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32
- FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
- {
- return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
- }
- // Compute the absolute value of packed signed 8-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 15
- // i := j*8
- // dst[i+7:i] := ABS(a[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8
- FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
- {
- return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
- }
- // Compute the absolute value of packed signed 16-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := ABS(a[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16
- FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
- {
- return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
- }
- // Compute the absolute value of packed signed 32-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 1
- // i := j*32
- // dst[i+31:i] := ABS(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32
- FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
- {
- return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
- }
- // Compute the absolute value of packed signed 8-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := ABS(a[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8
- FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
- {
- return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
- }
- // Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
- // the result right by imm8 bytes, and store the low 16 bytes in dst.
- //
- // tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8)
- // dst[127:0] := tmp[127:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8
- FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm)
- {
- if (_sse2neon_unlikely(imm & ~31))
- return _mm_setzero_si128();
- int idx;
- uint8x16_t tmp[2];
- if (imm >= 16) {
- idx = imm - 16;
- tmp[0] = vreinterpretq_u8_m128i(a);
- tmp[1] = vdupq_n_u8(0);
- } else {
- idx = imm;
- tmp[0] = vreinterpretq_u8_m128i(b);
- tmp[1] = vreinterpretq_u8_m128i(a);
- }
- return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + idx));
- }
- // Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
- // the result right by imm8 bytes, and store the low 8 bytes in dst.
- //
- // tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8)
- // dst[63:0] := tmp[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8
- #define _mm_alignr_pi8(a, b, imm) \
- __extension__({ \
- __m64 ret; \
- if (_sse2neon_unlikely((imm) >= 16)) { \
- ret = vreinterpret_m64_s8(vdup_n_s8(0)); \
- } else { \
- uint8x8_t tmp_low, tmp_high; \
- if (imm >= 8) { \
- const int idx = imm - 8; \
- tmp_low = vreinterpret_u8_m64(a); \
- tmp_high = vdup_n_u8(0); \
- ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
- } else { \
- const int idx = imm; \
- tmp_low = vreinterpret_u8_m64(b); \
- tmp_high = vreinterpret_u8_m64(a); \
- ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
- } \
- } \
- ret; \
- })
- // Computes pairwise add of each argument as a 16-bit signed or unsigned integer
- // values a and b.
- FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
- {
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
- #else
- return vreinterpretq_m128i_s16(
- vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
- vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
- #endif
- }
- // Computes pairwise add of each argument as a 32-bit signed or unsigned integer
- // values a and b.
- FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- return vreinterpretq_m128i_s32(
- vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
- vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
- }
- // Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
- // signed 16-bit results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16
- FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s16(
- vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
- }
- // Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
- // signed 32-bit results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32
- FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s32(
- vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
- }
- // Computes saturated pairwise sub of each argument as a 16-bit signed
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
- {
- #if defined(__aarch64__)
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- return vreinterpretq_s64_s16(
- vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
- #else
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated add
- return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
- #endif
- }
- // Horizontally add adjacent pairs of signed 16-bit integers in a and b using
- // saturation, and pack the signed 16-bit results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16
- FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
- {
- int16x4_t a = vreinterpret_s16_m64(_a);
- int16x4_t b = vreinterpret_s16_m64(_b);
- #if defined(__aarch64__)
- return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
- #else
- int16x4x2_t res = vuzp_s16(a, b);
- return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1]));
- #endif
- }
- // Computes pairwise difference of each argument as a 16-bit signed or unsigned
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Subtract
- return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357));
- }
- // Computes pairwise difference of each argument as a 32-bit signed or unsigned
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
- {
- int64x2_t a = vreinterpretq_s64_m128i(_a);
- int64x2_t b = vreinterpretq_s64_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|b0|b2]
- // [a1|a2|b1|b3]
- int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b));
- int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32));
- // Subtract
- return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13));
- }
- // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
- // the signed 16-bit results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16
- FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b)
- {
- int32x4_t ab =
- vcombine_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b));
- int16x4_t ab_low_bits = vmovn_s32(ab);
- int16x4_t ab_high_bits = vshrn_n_s32(ab, 16);
- return vreinterpret_m64_s16(vsub_s16(ab_low_bits, ab_high_bits));
- }
- // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
- // the signed 32-bit results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32
- FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b)
- {
- #if defined(__aarch64__)
- int32x2_t a = vreinterpret_s32_m64(_a);
- int32x2_t b = vreinterpret_s32_m64(_b);
- return vreinterpret_m64_s32(vsub_s32(vtrn1_s32(a, b), vtrn2_s32(a, b)));
- #else
- int32x2x2_t trn_ab =
- vtrn_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b));
- return vreinterpret_m64_s32(vsub_s32(trn_ab.val[0], trn_ab.val[1]));
- #endif
- }
- // Computes saturated pairwise difference of each argument as a 16-bit signed
- // integer values a and b.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16
- FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
- {
- #if defined(__aarch64__)
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- return vreinterpretq_s64_s16(
- vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
- #else
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated subtract
- return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357));
- #endif
- }
- // Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
- // using saturation, and pack the signed 16-bit results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16
- FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b)
- {
- int16x4_t a = vreinterpret_s16_m64(_a);
- int16x4_t b = vreinterpret_s16_m64(_b);
- #if defined(__aarch64__)
- return vreinterpret_s64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
- #else
- int16x4x2_t res = vuzp_s16(a, b);
- return vreinterpret_s64_s16(vqsub_s16(res.val[0], res.val[1]));
- #endif
- }
- // Vertically multiply each unsigned 8-bit integer from a with the corresponding
- // signed 8-bit integer from b, producing intermediate signed 16-bit integers.
- // Horizontally add adjacent pairs of intermediate signed 16-bit integers,
- // and pack the saturated results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] +
- // a[i+7:i]*b[i+7:i] )
- // ENDFOR
- FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
- {
- #if defined(__aarch64__)
- uint8x16_t a = vreinterpretq_u8_m128i(_a);
- int8x16_t b = vreinterpretq_s8_m128i(_b);
- int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
- vmovl_s8(vget_low_s8(b)));
- int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
- vmovl_s8(vget_high_s8(b)));
- return vreinterpretq_m128i_s16(
- vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
- #else
- // This would be much simpler if x86 would choose to zero extend OR sign
- // extend, not both. This could probably be optimized better.
- uint16x8_t a = vreinterpretq_u16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- // Zero extend a
- int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
- int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
- // Sign extend by shifting left then shifting right.
- int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
- int16x8_t b_odd = vshrq_n_s16(b, 8);
- // multiply
- int16x8_t prod1 = vmulq_s16(a_even, b_even);
- int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
- // saturated add
- return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
- #endif
- }
- // Vertically multiply each unsigned 8-bit integer from a with the corresponding
- // signed 8-bit integer from b, producing intermediate signed 16-bit integers.
- // Horizontally add adjacent pairs of intermediate signed 16-bit integers, and
- // pack the saturated results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16
- FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b)
- {
- uint16x4_t a = vreinterpret_u16_m64(_a);
- int16x4_t b = vreinterpret_s16_m64(_b);
- // Zero extend a
- int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8));
- int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff)));
- // Sign extend by shifting left then shifting right.
- int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8);
- int16x4_t b_odd = vshr_n_s16(b, 8);
- // multiply
- int16x4_t prod1 = vmul_s16(a_even, b_even);
- int16x4_t prod2 = vmul_s16(a_odd, b_odd);
- // saturated add
- return vreinterpret_m64_s16(vqadd_s16(prod1, prod2));
- }
- // Multiply packed signed 16-bit integers in a and b, producing intermediate
- // signed 32-bit integers. Shift right by 15 bits while rounding up, and store
- // the packed 16-bit integers in dst.
- //
- // r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15)
- // r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15)
- // r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15)
- // ...
- // r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15)
- FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
- {
- // Has issues due to saturation
- // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
- // Multiply
- int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
- vget_low_s16(vreinterpretq_s16_m128i(b)));
- int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
- vget_high_s16(vreinterpretq_s16_m128i(b)));
- // Rounding narrowing shift right
- // narrow = (int16_t)((mul + 16384) >> 15);
- int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
- int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
- // Join together
- return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
- }
- // Multiply packed signed 16-bit integers in a and b, producing intermediate
- // signed 32-bit integers. Truncate each intermediate integer to the 18 most
- // significant bits, round by adding 1, and store bits [16:1] to dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16
- FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
- {
- int32x4_t mul_extend =
- vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b)));
- // Rounding narrowing shift right
- return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15));
- }
- // Shuffle packed 8-bit integers in a according to shuffle control mask in the
- // corresponding 8-bit element of b, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8
- FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
- {
- int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
- uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
- uint8x16_t idx_masked =
- vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
- #elif defined(__GNUC__)
- int8x16_t ret;
- // %e and %f represent the even and odd D registers
- // respectively.
- __asm__ __volatile__(
- "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
- "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
- : [ret] "=&w"(ret)
- : [tbl] "w"(tbl), [idx] "w"(idx_masked));
- return vreinterpretq_m128i_s8(ret);
- #else
- // use this line if testing on aarch64
- int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
- return vreinterpretq_m128i_s8(
- vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
- vtbl2_s8(a_split, vget_high_u8(idx_masked))));
- #endif
- }
- // Shuffle packed 8-bit integers in a according to shuffle control mask in the
- // corresponding 8-bit element of b, and store the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // IF b[i+7] == 1
- // dst[i+7:i] := 0
- // ELSE
- // index[2:0] := b[i+2:i]
- // dst[i+7:i] := a[index*8+7:index*8]
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8
- FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b)
- {
- const int8x8_t controlMask =
- vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t)(0x1 << 7 | 0x07)));
- int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask);
- return vreinterpret_m64_s8(res);
- }
- // Negate packed 16-bit integers in a when the corresponding signed
- // 16-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..7
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
- {
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFF : 0
- uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
- // (b == 0) ? 0xFFFF : 0
- #if defined(__aarch64__)
- int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
- #else
- int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
- #endif
- // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
- // 'a') based on ltMask
- int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
- // res = masked & (~zeroMask)
- int16x8_t res = vbicq_s16(masked, zeroMask);
- return vreinterpretq_m128i_s16(res);
- }
- // Negate packed 32-bit integers in a when the corresponding signed
- // 32-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..3
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFFFFFF : 0
- uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
- // (b == 0) ? 0xFFFFFFFF : 0
- #if defined(__aarch64__)
- int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
- #else
- int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
- #endif
- // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
- // 'a') based on ltMask
- int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
- // res = masked & (~zeroMask)
- int32x4_t res = vbicq_s32(masked, zeroMask);
- return vreinterpretq_m128i_s32(res);
- }
- // Negate packed 8-bit integers in a when the corresponding signed
- // 8-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..15
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
- {
- int8x16_t a = vreinterpretq_s8_m128i(_a);
- int8x16_t b = vreinterpretq_s8_m128i(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFF : 0
- uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
- // (b == 0) ? 0xFF : 0
- #if defined(__aarch64__)
- int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
- #else
- int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
- #endif
- // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a')
- // based on ltMask
- int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
- // res = masked & (~zeroMask)
- int8x16_t res = vbicq_s8(masked, zeroMask);
- return vreinterpretq_m128i_s8(res);
- }
- // Negate packed 16-bit integers in a when the corresponding signed 16-bit
- // integer in b is negative, and store the results in dst. Element in dst are
- // zeroed out when the corresponding element in b is zero.
- //
- // FOR j := 0 to 3
- // i := j*16
- // IF b[i+15:i] < 0
- // dst[i+15:i] := -(a[i+15:i])
- // ELSE IF b[i+15:i] == 0
- // dst[i+15:i] := 0
- // ELSE
- // dst[i+15:i] := a[i+15:i]
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16
- FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
- {
- int16x4_t a = vreinterpret_s16_m64(_a);
- int16x4_t b = vreinterpret_s16_m64(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFF : 0
- uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
- // (b == 0) ? 0xFFFF : 0
- #if defined(__aarch64__)
- int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
- #else
- int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
- #endif
- // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a')
- // based on ltMask
- int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
- // res = masked & (~zeroMask)
- int16x4_t res = vbic_s16(masked, zeroMask);
- return vreinterpret_m64_s16(res);
- }
- // Negate packed 32-bit integers in a when the corresponding signed 32-bit
- // integer in b is negative, and store the results in dst. Element in dst are
- // zeroed out when the corresponding element in b is zero.
- //
- // FOR j := 0 to 1
- // i := j*32
- // IF b[i+31:i] < 0
- // dst[i+31:i] := -(a[i+31:i])
- // ELSE IF b[i+31:i] == 0
- // dst[i+31:i] := 0
- // ELSE
- // dst[i+31:i] := a[i+31:i]
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32
- FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
- {
- int32x2_t a = vreinterpret_s32_m64(_a);
- int32x2_t b = vreinterpret_s32_m64(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFFFFFF : 0
- uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
- // (b == 0) ? 0xFFFFFFFF : 0
- #if defined(__aarch64__)
- int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
- #else
- int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
- #endif
- // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a')
- // based on ltMask
- int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
- // res = masked & (~zeroMask)
- int32x2_t res = vbic_s32(masked, zeroMask);
- return vreinterpret_m64_s32(res);
- }
- // Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
- // in b is negative, and store the results in dst. Element in dst are zeroed out
- // when the corresponding element in b is zero.
- //
- // FOR j := 0 to 7
- // i := j*8
- // IF b[i+7:i] < 0
- // dst[i+7:i] := -(a[i+7:i])
- // ELSE IF b[i+7:i] == 0
- // dst[i+7:i] := 0
- // ELSE
- // dst[i+7:i] := a[i+7:i]
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8
- FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
- {
- int8x8_t a = vreinterpret_s8_m64(_a);
- int8x8_t b = vreinterpret_s8_m64(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFF : 0
- uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
- // (b == 0) ? 0xFF : 0
- #if defined(__aarch64__)
- int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
- #else
- int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
- #endif
- // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a')
- // based on ltMask
- int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
- // res = masked & (~zeroMask)
- int8x8_t res = vbic_s8(masked, zeroMask);
- return vreinterpret_m64_s8(res);
- }
- /* SSE4.1 */
- // Blend packed 16-bit integers from a and b using control mask imm8, and store
- // the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF imm8[j]
- // dst[i+15:i] := b[i+15:i]
- // ELSE
- // dst[i+15:i] := a[i+15:i]
- // FI
- // ENDFOR
- // FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
- // __constrange(0,255) int imm)
- #define _mm_blend_epi16(a, b, imm) \
- __extension__({ \
- const uint16_t ones = 0xffff; \
- const uint16_t zeros = 0x0000; \
- const uint16_t _mask[8] = {((imm) & (1 << 0)) ? ones : zeros, \
- ((imm) & (1 << 1)) ? ones : zeros, \
- ((imm) & (1 << 2)) ? ones : zeros, \
- ((imm) & (1 << 3)) ? ones : zeros, \
- ((imm) & (1 << 4)) ? ones : zeros, \
- ((imm) & (1 << 5)) ? ones : zeros, \
- ((imm) & (1 << 6)) ? ones : zeros, \
- ((imm) & (1 << 7)) ? ones : zeros}; \
- uint16x8_t _mask_vec = vld1q_u16(_mask); \
- uint16x8_t _a = vreinterpretq_u16_m128i(a); \
- uint16x8_t _b = vreinterpretq_u16_m128i(b); \
- vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \
- })
- // Blend packed double-precision (64-bit) floating-point elements from a and b
- // using control mask imm8, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd
- #define _mm_blend_pd(a, b, imm) \
- __extension__({ \
- const uint64_t _mask[2] = { \
- ((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \
- ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)}; \
- uint64x2_t _mask_vec = vld1q_u64(_mask); \
- uint64x2_t _a = vreinterpretq_u64_m128d(a); \
- uint64x2_t _b = vreinterpretq_u64_m128d(b); \
- vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, _b, _a)); \
- })
- // Blend packed single-precision (32-bit) floating-point elements from a and b
- // using mask, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps
- FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
- {
- const uint32_t ALIGN_STRUCT(16)
- data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0,
- ((imm8) & (1 << 1)) ? UINT32_MAX : 0,
- ((imm8) & (1 << 2)) ? UINT32_MAX : 0,
- ((imm8) & (1 << 3)) ? UINT32_MAX : 0};
- uint32x4_t mask = vld1q_u32(data);
- float32x4_t a = vreinterpretq_f32_m128(_a);
- float32x4_t b = vreinterpretq_f32_m128(_b);
- return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
- }
- // Blend packed 8-bit integers from a and b using mask, and store the results in
- // dst.
- //
- // FOR j := 0 to 15
- // i := j*8
- // IF mask[i+7]
- // dst[i+7:i] := b[i+7:i]
- // ELSE
- // dst[i+7:i] := a[i+7:i]
- // FI
- // ENDFOR
- FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
- {
- // Use a signed shift right to create a mask with the sign bit
- uint8x16_t mask =
- vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
- uint8x16_t a = vreinterpretq_u8_m128i(_a);
- uint8x16_t b = vreinterpretq_u8_m128i(_b);
- return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
- }
- // Blend packed double-precision (64-bit) floating-point elements from a and b
- // using mask, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd
- FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
- {
- uint64x2_t mask =
- vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63));
- #if defined(__aarch64__)
- float64x2_t a = vreinterpretq_f64_m128d(_a);
- float64x2_t b = vreinterpretq_f64_m128d(_b);
- return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a));
- #else
- uint64x2_t a = vreinterpretq_u64_m128d(_a);
- uint64x2_t b = vreinterpretq_u64_m128d(_b);
- return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a));
- #endif
- }
- // Blend packed single-precision (32-bit) floating-point elements from a and b
- // using mask, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps
- FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
- {
- // Use a signed shift right to create a mask with the sign bit
- uint32x4_t mask =
- vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
- float32x4_t a = vreinterpretq_f32_m128(_a);
- float32x4_t b = vreinterpretq_f32_m128(_b);
- return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
- }
- // Round the packed double-precision (64-bit) floating-point elements in a up
- // to an integer value, and store the results as packed double-precision
- // floating-point elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd
- FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a)));
- #else
- double *f = (double *) &a;
- return _mm_set_pd(ceil(f[1]), ceil(f[0]));
- #endif
- }
- // Round the packed single-precision (32-bit) floating-point elements in a up to
- // an integer value, and store the results as packed single-precision
- // floating-point elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps
- FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
- #else
- float *f = (float *) &a;
- return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0]));
- #endif
- }
- // Round the lower double-precision (64-bit) floating-point element in b up to
- // an integer value, store the result as a double-precision floating-point
- // element in the lower element of dst, and copy the upper element from a to the
- // upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd
- FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_ceil_pd(b));
- }
- // Round the lower single-precision (32-bit) floating-point element in b up to
- // an integer value, store the result as a single-precision floating-point
- // element in the lower element of dst, and copy the upper 3 packed elements
- // from a to the upper elements of dst.
- //
- // dst[31:0] := CEIL(b[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss
- FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_ceil_ps(b));
- }
- // Compare packed 64-bit integers in a and b for equality, and store the results
- // in dst
- FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_u64(
- vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
- #else
- // ARMv7 lacks vceqq_u64
- // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
- uint32x4_t cmp =
- vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
- uint32x4_t swapped = vrev64q_u32(cmp);
- return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
- #endif
- }
- // Converts the four signed 16-bit integers in the lower 64 bits to four signed
- // 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
- {
- return vreinterpretq_m128i_s32(
- vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
- }
- // Converts the two signed 16-bit integers in the lower 32 bits two signed
- // 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
- {
- int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
- int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_s64(s64x2);
- }
- // Converts the two signed 32-bit integers in the lower 64 bits to two signed
- // 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
- {
- return vreinterpretq_m128i_s64(
- vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
- }
- // Converts the four unsigned 8-bit integers in the lower 16 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- return vreinterpretq_m128i_s16(s16x8);
- }
- // Converts the four unsigned 8-bit integers in the lower 32 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
- return vreinterpretq_m128i_s32(s32x4);
- }
- // Converts the two signed 8-bit integers in the lower 32 bits to four
- // signed 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
- int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_s64(s64x2);
- }
- // Converts the four unsigned 16-bit integers in the lower 64 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
- {
- return vreinterpretq_m128i_u32(
- vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
- }
- // Converts the two unsigned 16-bit integers in the lower 32 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
- {
- uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
- uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_u64(u64x2);
- }
- // Converts the two unsigned 32-bit integers in the lower 64 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
- {
- return vreinterpretq_m128i_u64(
- vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
- }
- // Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers,
- // and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16
- FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */
- return vreinterpretq_m128i_u16(u16x8);
- }
- // Converts the four unsigned 8-bit integers in the lower 32 bits to four
- // unsigned 32-bit integers.
- // https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
- FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
- return vreinterpretq_m128i_u32(u32x4);
- }
- // Converts the two unsigned 8-bit integers in the lower 16 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
- uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_u64(u64x2);
- }
- // Conditionally multiply the packed double-precision (64-bit) floating-point
- // elements in a and b using the high 4 bits in imm8, sum the four products, and
- // conditionally store the sum in dst using the low 4 bits of imm8.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd
- FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
- {
- // Generate mask value from constant immediate bit value
- const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0;
- const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0;
- #if !SSE2NEON_PRECISE_DP
- const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0;
- const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0;
- #endif
- // Conditional multiplication
- #if !SSE2NEON_PRECISE_DP
- __m128d mul = _mm_mul_pd(a, b);
- const __m128d mulMask =
- _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask));
- __m128d tmp = _mm_and_pd(mul, mulMask);
- #else
- #if defined(__aarch64__)
- double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) *
- vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0)
- : 0;
- double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) *
- vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1)
- : 0;
- #else
- double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0;
- double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0;
- #endif
- __m128d tmp = _mm_set_pd(d1, d0);
- #endif
- // Sum the products
- #if defined(__aarch64__)
- double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp));
- #else
- double sum = *((double *) &tmp) + *(((double *) &tmp) + 1);
- #endif
- // Conditionally store the sum
- const __m128d sumMask =
- _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask));
- __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask);
- return res;
- }
- // Conditionally multiply the packed single-precision (32-bit) floating-point
- // elements in a and b using the high 4 bits in imm8, sum the four products,
- // and conditionally store the sum in dst using the low 4 bits of imm.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps
- FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
- {
- #if defined(__aarch64__)
- /* shortcuts */
- if (imm == 0xFF) {
- return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b)));
- }
- if (imm == 0x7F) {
- float32x4_t m = _mm_mul_ps(a, b);
- m[3] = 0;
- return _mm_set1_ps(vaddvq_f32(m));
- }
- #endif
- float s = 0, c = 0;
- float32x4_t f32a = vreinterpretq_f32_m128(a);
- float32x4_t f32b = vreinterpretq_f32_m128(b);
- /* To improve the accuracy of floating-point summation, Kahan algorithm
- * is used for each operation.
- */
- if (imm & (1 << 4))
- _sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]);
- if (imm & (1 << 5))
- _sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]);
- if (imm & (1 << 6))
- _sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]);
- if (imm & (1 << 7))
- _sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]);
- s += c;
- float32x4_t res = {
- (imm & 0x1) ? s : 0,
- (imm & 0x2) ? s : 0,
- (imm & 0x4) ? s : 0,
- (imm & 0x8) ? s : 0,
- };
- return vreinterpretq_m128_f32(res);
- }
- // Extracts the selected signed or unsigned 32-bit integer from a and zero
- // extends.
- // FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
- #define _mm_extract_epi32(a, imm) \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
- // Extracts the selected signed or unsigned 64-bit integer from a and zero
- // extends.
- // FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
- #define _mm_extract_epi64(a, imm) \
- vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
- // Extracts the selected signed or unsigned 8-bit integer from a and zero
- // extends.
- // FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8
- #define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
- // Extracts the selected single-precision (32-bit) floating-point from a.
- // FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
- #define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
- // Round the packed double-precision (64-bit) floating-point elements in a down
- // to an integer value, and store the results as packed double-precision
- // floating-point elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd
- FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a)));
- #else
- double *f = (double *) &a;
- return _mm_set_pd(floor(f[1]), floor(f[0]));
- #endif
- }
- // Round the packed single-precision (32-bit) floating-point elements in a down
- // to an integer value, and store the results as packed single-precision
- // floating-point elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps
- FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
- #else
- float *f = (float *) &a;
- return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0]));
- #endif
- }
- // Round the lower double-precision (64-bit) floating-point element in b down to
- // an integer value, store the result as a double-precision floating-point
- // element in the lower element of dst, and copy the upper element from a to the
- // upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd
- FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_floor_pd(b));
- }
- // Round the lower single-precision (32-bit) floating-point element in b down to
- // an integer value, store the result as a single-precision floating-point
- // element in the lower element of dst, and copy the upper 3 packed elements
- // from a to the upper elements of dst.
- //
- // dst[31:0] := FLOOR(b[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss
- FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_floor_ps(b));
- }
- // Inserts the least significant 32 bits of b into the selected 32-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
- // __constrange(0,4) int imm)
- #define _mm_insert_epi32(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \
- })
- // Inserts the least significant 64 bits of b into the selected 64-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
- // __constrange(0,2) int imm)
- #define _mm_insert_epi64(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s64( \
- vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \
- })
- // Inserts the least significant 8 bits of b into the selected 8-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
- // __constrange(0,16) int imm)
- #define _mm_insert_epi8(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s8( \
- vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
- })
- // Copy a to tmp, then insert a single-precision (32-bit) floating-point
- // element from b into tmp using the control in imm8. Store tmp to dst using
- // the mask in imm8 (elements are zeroed out when the corresponding bit is set).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps
- #define _mm_insert_ps(a, b, imm8) \
- __extension__({ \
- float32x4_t tmp1 = \
- vsetq_lane_f32(vgetq_lane_f32(b, (imm8 >> 6) & 0x3), \
- vreinterpretq_f32_m128(a), 0); \
- float32x4_t tmp2 = \
- vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), vreinterpretq_f32_m128(a), \
- ((imm8 >> 4) & 0x3)); \
- const uint32_t data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, \
- ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \
- ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \
- ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; \
- uint32x4_t mask = vld1q_u32(data); \
- float32x4_t all_zeros = vdupq_n_f32(0); \
- \
- vreinterpretq_m128_f32( \
- vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))); \
- })
- // epi versions of min/max
- // Computes the pariwise maximums of the four signed 32-bit integer values of a
- // and b.
- //
- // A 128-bit parameter that can be defined with the following equations:
- // r0 := (a0 > b0) ? a0 : b0
- // r1 := (a1 > b1) ? a1 : b1
- // r2 := (a2 > b2) ? a2 : b2
- // r3 := (a3 > b3) ? a3 : b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compare packed signed 8-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8
- FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compare packed unsigned 16-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16
- FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
- }
- // Compare packed unsigned 32-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
- FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
- }
- // Computes the pariwise minima of the four signed 32-bit integer values of a
- // and b.
- //
- // A 128-bit parameter that can be defined with the following equations:
- // r0 := (a0 < b0) ? a0 : b0
- // r1 := (a1 < b1) ? a1 : b1
- // r2 := (a2 < b2) ? a2 : b2
- // r3 := (a3 < b3) ? a3 : b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compare packed signed 8-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8
- FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compare packed unsigned 16-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16
- FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
- }
- // Compare packed unsigned 32-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
- FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
- }
- // Horizontally compute the minimum amongst the packed unsigned 16-bit integers
- // in a, store the minimum and index in dst, and zero the remaining bits in dst.
- //
- // index[2:0] := 0
- // min[15:0] := a[15:0]
- // FOR j := 0 to 7
- // i := j*16
- // IF a[i+15:i] < min[15:0]
- // index[2:0] := j
- // min[15:0] := a[i+15:i]
- // FI
- // ENDFOR
- // dst[15:0] := min[15:0]
- // dst[18:16] := index[2:0]
- // dst[127:19] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16
- FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
- {
- __m128i dst;
- uint16_t min, idx = 0;
- // Find the minimum value
- #if defined(__aarch64__)
- min = vminvq_u16(vreinterpretq_u16_m128i(a));
- #else
- __m64 tmp;
- tmp = vreinterpret_m64_u16(
- vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
- vget_high_u16(vreinterpretq_u16_m128i(a))));
- tmp = vreinterpret_m64_u16(
- vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
- tmp = vreinterpret_m64_u16(
- vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
- min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
- #endif
- // Get the index of the minimum value
- int i;
- for (i = 0; i < 8; i++) {
- if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
- idx = (uint16_t) i;
- break;
- }
- a = _mm_srli_si128(a, 2);
- }
- // Generate result
- dst = _mm_setzero_si128();
- dst = vreinterpretq_m128i_u16(
- vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
- dst = vreinterpretq_m128i_u16(
- vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
- return dst;
- }
- // Compute the sum of absolute differences (SADs) of quadruplets of unsigned
- // 8-bit integers in a compared to those in b, and store the 16-bit results in
- // dst. Eight SADs are performed using one quadruplet from b and eight
- // quadruplets from a. One quadruplet is selected from b starting at on the
- // offset specified in imm8. Eight quadruplets are formed from sequential 8-bit
- // integers selected from a starting at the offset specified in imm8.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8
- FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
- {
- uint8x16_t _a, _b;
- switch (imm & 0x4) {
- case 0:
- // do nothing
- _a = vreinterpretq_u8_m128i(a);
- break;
- case 4:
- _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a),
- vreinterpretq_u32_m128i(a), 1));
- break;
- default:
- #if defined(__GNUC__) || defined(__clang__)
- __builtin_unreachable();
- #endif
- break;
- }
- switch (imm & 0x3) {
- case 0:
- _b = vreinterpretq_u8_u32(
- vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0)));
- break;
- case 1:
- _b = vreinterpretq_u8_u32(
- vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1)));
- break;
- case 2:
- _b = vreinterpretq_u8_u32(
- vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2)));
- break;
- case 3:
- _b = vreinterpretq_u8_u32(
- vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3)));
- break;
- default:
- #if defined(__GNUC__) || defined(__clang__)
- __builtin_unreachable();
- #endif
- break;
- }
- int16x8_t c04, c15, c26, c37;
- uint8x8_t low_b = vget_low_u8(_b);
- c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
- _a = vextq_u8(_a, _a, 1);
- c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
- _a = vextq_u8(_a, _a, 1);
- c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
- _a = vextq_u8(_a, _a, 1);
- c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
- #if defined(__aarch64__)
- // |0|4|2|6|
- c04 = vpaddq_s16(c04, c26);
- // |1|5|3|7|
- c15 = vpaddq_s16(c15, c37);
- int32x4_t trn1_c =
- vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
- int32x4_t trn2_c =
- vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
- return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c),
- vreinterpretq_s16_s32(trn2_c)));
- #else
- int16x4_t c01, c23, c45, c67;
- c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15));
- c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37));
- c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15));
- c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37));
- return vreinterpretq_m128i_s16(
- vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67)));
- #endif
- }
- // Multiply the low signed 32-bit integers from each packed 64-bit element in
- // a and b, and store the signed 64-bit results in dst.
- //
- // r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0
- // r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2
- FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
- {
- // vmull_s32 upcasts instead of masking, so we downcast.
- int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
- int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
- }
- // Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
- // unsigned 32-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit
- // integers and saturates.
- //
- // r0 := UnsignedSaturate(a0)
- // r1 := UnsignedSaturate(a1)
- // r2 := UnsignedSaturate(a2)
- // r3 := UnsignedSaturate(a3)
- // r4 := UnsignedSaturate(b0)
- // r5 := UnsignedSaturate(b1)
- // r6 := UnsignedSaturate(b2)
- // r7 := UnsignedSaturate(b3)
- FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
- vqmovun_s32(vreinterpretq_s32_m128i(b))));
- }
- // Round the packed double-precision (64-bit) floating-point elements in a using
- // the rounding parameter, and store the results as packed double-precision
- // floating-point elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd
- FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding)
- {
- #if defined(__aarch64__)
- switch (rounding) {
- case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a)));
- case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
- return _mm_floor_pd(a);
- case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
- return _mm_ceil_pd(a);
- case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a)));
- default: //_MM_FROUND_CUR_DIRECTION
- return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)));
- }
- #else
- double *v_double = (double *) &a;
- if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
- (rounding == _MM_FROUND_CUR_DIRECTION &&
- _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
- double res[2], tmp;
- for (int i = 0; i < 2; i++) {
- tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i];
- double roundDown = floor(tmp); // Round down value
- double roundUp = ceil(tmp); // Round up value
- double diffDown = tmp - roundDown;
- double diffUp = roundUp - tmp;
- if (diffDown < diffUp) {
- /* If it's closer to the round down value, then use it */
- res[i] = roundDown;
- } else if (diffDown > diffUp) {
- /* If it's closer to the round up value, then use it */
- res[i] = roundUp;
- } else {
- /* If it's equidistant between round up and round down value,
- * pick the one which is an even number */
- double half = roundDown / 2;
- if (half != floor(half)) {
- /* If the round down value is odd, return the round up value
- */
- res[i] = roundUp;
- } else {
- /* If the round up value is odd, return the round down value
- */
- res[i] = roundDown;
- }
- }
- res[i] = (v_double[i] < 0) ? -res[i] : res[i];
- }
- return _mm_set_pd(res[1], res[0]);
- } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
- (rounding == _MM_FROUND_CUR_DIRECTION &&
- _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
- return _mm_floor_pd(a);
- } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
- (rounding == _MM_FROUND_CUR_DIRECTION &&
- _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
- return _mm_ceil_pd(a);
- }
- return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]),
- v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0]));
- #endif
- }
- // Round the packed single-precision (32-bit) floating-point elements in a using
- // the rounding parameter, and store the results as packed single-precision
- // floating-point elements in dst.
- // software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
- FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
- {
- #if defined(__aarch64__)
- switch (rounding) {
- case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
- case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
- return _mm_floor_ps(a);
- case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
- return _mm_ceil_ps(a);
- case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
- default: //_MM_FROUND_CUR_DIRECTION
- return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
- }
- #else
- float *v_float = (float *) &a;
- if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
- (rounding == _MM_FROUND_CUR_DIRECTION &&
- _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
- uint32x4_t signmask = vdupq_n_u32(0x80000000);
- float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
- vdupq_n_f32(0.5f)); /* +/- 0.5 */
- int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
- vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
- int32x4_t r_trunc = vcvtq_s32_f32(
- vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
- int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
- vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
- int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
- vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
- float32x4_t delta = vsubq_f32(
- vreinterpretq_f32_m128(a),
- vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
- uint32x4_t is_delta_half =
- vceqq_f32(delta, half); /* delta == +/- 0.5 */
- return vreinterpretq_m128_f32(
- vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal)));
- } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
- (rounding == _MM_FROUND_CUR_DIRECTION &&
- _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
- return _mm_floor_ps(a);
- } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
- (rounding == _MM_FROUND_CUR_DIRECTION &&
- _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
- return _mm_ceil_ps(a);
- }
- return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]),
- v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]),
- v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]),
- v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0]));
- #endif
- }
- // Round the lower double-precision (64-bit) floating-point element in b using
- // the rounding parameter, store the result as a double-precision floating-point
- // element in the lower element of dst, and copy the upper element from a to the
- // upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd
- FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
- {
- return _mm_move_sd(a, _mm_round_pd(b, rounding));
- }
- // Round the lower single-precision (32-bit) floating-point element in b using
- // the rounding parameter, store the result as a single-precision floating-point
- // element in the lower element of dst, and copy the upper 3 packed elements
- // from a to the upper elements of dst. Rounding is done according to the
- // rounding[3:0] parameter, which can be one of:
- // (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and
- // suppress exceptions
- // (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and
- // suppress exceptions
- // (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress
- // exceptions
- // (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress
- // exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see
- // _MM_SET_ROUNDING_MODE
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss
- FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
- {
- return _mm_move_ss(a, _mm_round_ps(b, rounding));
- }
- // Load 128-bits of integer data from memory into dst using a non-temporal
- // memory hint. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // dst[127:0] := MEM[mem_addr+127:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128
- FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
- {
- #if __has_builtin(__builtin_nontemporal_store)
- return __builtin_nontemporal_load(p);
- #else
- return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
- #endif
- }
- // Compute the bitwise NOT of a and then AND with a 128-bit vector containing
- // all 1's, and return 1 if the result is zero, otherwise return 0.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones
- FORCE_INLINE int _mm_test_all_ones(__m128i a)
- {
- return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
- ~(uint64_t) 0;
- }
- // Compute the bitwise AND of 128 bits (representing integer data) in a and
- // mask, and return 1 if the result is zero, otherwise return 0.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros
- FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
- {
- int64x2_t a_and_mask =
- vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
- return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1));
- }
- // Compute the bitwise AND of 128 bits (representing integer data) in a and
- // mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute
- // the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is
- // zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
- // otherwise return 0.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero
- FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
- {
- uint64x2_t zf =
- vandq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a));
- uint64x2_t cf =
- vbicq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a));
- uint64x2_t result = vandq_u64(zf, cf);
- return !(vgetq_lane_u64(result, 0) | vgetq_lane_u64(result, 1));
- }
- // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
- // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
- // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
- // otherwise set CF to 0. Return the CF value.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128
- FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
- {
- int64x2_t s64 =
- vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))),
- vreinterpretq_s64_m128i(b));
- return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
- }
- // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
- // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
- // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
- // otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
- // otherwise return 0.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128
- #define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b)
- // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
- // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
- // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
- // otherwise set CF to 0. Return the ZF value.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128
- FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
- {
- int64x2_t s64 =
- vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b));
- return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
- }
- /* SSE4.2 */
- // Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
- // in b for greater than.
- FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_u64(
- vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
- #else
- return vreinterpretq_m128i_s64(vshrq_n_s64(
- vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)),
- 63));
- #endif
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 16-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u8(crc, v & 0xff);
- crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 32-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u16(crc, v & 0xffff);
- crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 64-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100)
- FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff);
- crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff);
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 8-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc ^= v;
- for (int bit = 0; bit < 8; bit++) {
- if (crc & 1)
- crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
- else
- crc = (crc >> 1);
- }
- #endif
- return crc;
- }
- /* AES */
- #if !defined(__ARM_FEATURE_CRYPTO)
- /* clang-format off */
- #define SSE2NEON_AES_DATA(w) \
- { \
- w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
- w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
- w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \
- w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \
- w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \
- w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \
- w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \
- w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \
- w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \
- w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \
- w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \
- w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \
- w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \
- w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \
- w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \
- w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \
- w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \
- w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \
- w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \
- w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \
- w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \
- w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \
- w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \
- w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \
- w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \
- w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \
- w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \
- w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \
- w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \
- w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \
- w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \
- w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \
- w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \
- w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \
- w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \
- w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
- w(0xb0), w(0x54), w(0xbb), w(0x16) \
- }
- /* clang-format on */
- /* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
- #define SSE2NEON_AES_H0(x) (x)
- static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0);
- #undef SSE2NEON_AES_H0
- // In the absence of crypto extensions, implement aesenc using regular neon
- // intrinsics instead. See:
- // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
- // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
- // https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52
- // for more information Reproduced with permission of the author.
- FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
- {
- #if defined(__aarch64__)
- static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9,
- 0xe, 0x3, 0x8, 0xd, 0x2, 0x7,
- 0xc, 0x1, 0x6, 0xb};
- static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
- 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc};
- uint8x16_t v;
- uint8x16_t w = vreinterpretq_u8_m128i(EncBlock);
- // shift rows
- w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
- // sub bytes
- v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(SSE2NEON_sbox), w);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0);
- // mix columns
- w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b);
- w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
- w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
- // add round key
- return vreinterpretq_m128i_u8(w) ^ RoundKey;
- #else /* ARMv7-A NEON implementation */
- #define SSE2NEON_AES_B2W(b0, b1, b2, b3) \
- (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | \
- (b0))
- #define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
- #define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
- #define SSE2NEON_AES_U0(p) \
- SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
- #define SSE2NEON_AES_U1(p) \
- SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p)
- #define SSE2NEON_AES_U2(p) \
- SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
- #define SSE2NEON_AES_U3(p) \
- SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
- static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
- SSE2NEON_AES_DATA(SSE2NEON_AES_U0),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U1),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U2),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U3),
- };
- #undef SSE2NEON_AES_B2W
- #undef SSE2NEON_AES_F2
- #undef SSE2NEON_AES_F3
- #undef SSE2NEON_AES_U0
- #undef SSE2NEON_AES_U1
- #undef SSE2NEON_AES_U2
- #undef SSE2NEON_AES_U3
- uint32_t x0 = _mm_cvtsi128_si32(EncBlock);
- uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55));
- uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA));
- uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF));
- __m128i out = _mm_set_epi32(
- (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
- aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
- (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^
- aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]),
- (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^
- aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]),
- (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^
- aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24]));
- return _mm_xor_si128(out, RoundKey);
- #endif
- }
- // Perform the last round of an AES encryption flow on data (state) in a using
- // the round key in RoundKey, and store the result in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
- FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
- {
- /* FIXME: optimized for NEON */
- uint8_t v[4][4] = {
- {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]},
- {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]},
- {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]},
- {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]},
- };
- for (int i = 0; i < 16; i++)
- vreinterpretq_nth_u8_m128i(a, i) =
- v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i);
- return a;
- }
- // Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
- // This instruction generates a round key for AES encryption. See
- // https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
- // for details.
- //
- // https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx
- FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon)
- {
- uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55));
- uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF));
- for (int i = 0; i < 4; ++i) {
- ((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]];
- ((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]];
- }
- return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
- ((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
- }
- #undef SSE2NEON_AES_DATA
- #else /* __ARM_FEATURE_CRYPTO */
- // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
- // AESMC and then manually applying the real key as an xor operation. This
- // unfortunately means an additional xor op; the compiler should be able to
- // optimize this away for repeated calls however. See
- // https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
- // for more details.
- FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^
- vreinterpretq_u8_m128i(b));
- }
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
- FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
- {
- return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
- vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
- RoundKey);
- }
- FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
- {
- // AESE does ShiftRows and SubBytes on A
- uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0));
- uint8x16_t dest = {
- // Undo ShiftRows step from AESE and extract X1 and X3
- u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1)
- u8[0x1], u8[0xE], u8[0xB], u8[0x4], // ROT(SubBytes(X1))
- u8[0xC], u8[0x9], u8[0x6], u8[0x3], // SubBytes(X3)
- u8[0x9], u8[0x6], u8[0x3], u8[0xC], // ROT(SubBytes(X3))
- };
- uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon};
- return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r);
- }
- #endif
- /* Others */
- // Perform a carry-less multiplication of two 64-bit integers, selected from a
- // and b according to imm8, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128
- FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
- {
- uint64x2_t a = vreinterpretq_u64_m128i(_a);
- uint64x2_t b = vreinterpretq_u64_m128i(_b);
- switch (imm & 0x11) {
- case 0x00:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
- case 0x01:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
- case 0x10:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
- case 0x11:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
- default:
- abort();
- }
- }
- FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode()
- {
- union {
- fpcr_bitfield field;
- #if defined(__aarch64__)
- uint64_t value;
- #else
- uint32_t value;
- #endif
- } r;
- #if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
- #else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
- #endif
- return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF;
- }
- // Count the number of bits set to 1 in unsigned 32-bit integer a, and
- // return that count in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32
- FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
- {
- #if defined(__aarch64__)
- #if __has_builtin(__builtin_popcount)
- return __builtin_popcount(a);
- #else
- return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
- #endif
- #else
- uint32_t count = 0;
- uint8x8_t input_val, count8x8_val;
- uint16x4_t count16x4_val;
- uint32x2_t count32x2_val;
- input_val = vld1_u8((uint8_t *) &a);
- count8x8_val = vcnt_u8(input_val);
- count16x4_val = vpaddl_u8(count8x8_val);
- count32x2_val = vpaddl_u16(count16x4_val);
- vst1_u32(&count, count32x2_val);
- return count;
- #endif
- }
- // Count the number of bits set to 1 in unsigned 64-bit integer a, and
- // return that count in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64
- FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
- {
- #if defined(__aarch64__)
- #if __has_builtin(__builtin_popcountll)
- return __builtin_popcountll(a);
- #else
- return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
- #endif
- #else
- uint64_t count = 0;
- uint8x8_t input_val, count8x8_val;
- uint16x4_t count16x4_val;
- uint32x2_t count32x2_val;
- uint64x1_t count64x1_val;
- input_val = vld1_u8((uint8_t *) &a);
- count8x8_val = vcnt_u8(input_val);
- count16x4_val = vpaddl_u8(count8x8_val);
- count32x2_val = vpaddl_u16(count16x4_val);
- count64x1_val = vpaddl_u32(count32x2_val);
- vst1_u64(&count, count64x1_val);
- return count;
- #endif
- }
- FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag)
- {
- // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
- // regardless of the value of the FZ bit.
- union {
- fpcr_bitfield field;
- #if defined(__aarch64__)
- uint64_t value;
- #else
- uint32_t value;
- #endif
- } r;
- #if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
- #else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
- #endif
- r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON;
- #if defined(__aarch64__)
- asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
- #else
- asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
- #endif
- }
- #if defined(__GNUC__) || defined(__clang__)
- #pragma pop_macro("ALIGN_STRUCT")
- #pragma pop_macro("FORCE_INLINE")
- #endif
- #if defined(__GNUC__) && !defined(__clang__)
- #pragma GCC pop_options
- #endif
- #endif
|