btMatrix3x3.h 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. /*
  2. Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans https://bulletphysics.org
  3. This software is provided 'as-is', without any express or implied warranty.
  4. In no event will the authors be held liable for any damages arising from the use of this software.
  5. Permission is granted to anyone to use this software for any purpose,
  6. including commercial applications, and to alter it and redistribute it freely,
  7. subject to the following restrictions:
  8. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  9. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  10. 3. This notice may not be removed or altered from any source distribution.
  11. */
  12. #ifndef BT_MATRIX3x3_H
  13. #define BT_MATRIX3x3_H
  14. #include "btVector3.h"
  15. #include "btQuaternion.h"
  16. #include <stdio.h>
  17. #ifdef BT_USE_SSE
  18. //const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
  19. //const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
  20. #define vMPPP (_mm_set_ps(+0.0f, +0.0f, +0.0f, -0.0f))
  21. #endif
  22. #if defined(BT_USE_SSE)
  23. #define v0000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f))
  24. #define v1000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 1.0f))
  25. #define v0100 (_mm_set_ps(0.0f, 0.0f, 1.0f, 0.0f))
  26. #define v0010 (_mm_set_ps(0.0f, 1.0f, 0.0f, 0.0f))
  27. #elif defined(BT_USE_NEON)
  28. const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0000) = {0.0f, 0.0f, 0.0f, 0.0f};
  29. const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
  30. const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
  31. const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
  32. #endif
  33. #ifdef BT_USE_DOUBLE_PRECISION
  34. #define btMatrix3x3Data btMatrix3x3DoubleData
  35. #else
  36. #define btMatrix3x3Data btMatrix3x3FloatData
  37. #endif //BT_USE_DOUBLE_PRECISION
  38. /**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
  39. * Make sure to only include a pure orthogonal matrix without scaling. */
  40. ATTRIBUTE_ALIGNED16(class)
  41. btMatrix3x3
  42. {
  43. ///Data storage for the matrix, each vector is a row of the matrix
  44. btVector3 m_el[3];
  45. public:
  46. /** @brief No initializaion constructor */
  47. btMatrix3x3() {}
  48. // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
  49. /**@brief Constructor from Quaternion */
  50. explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
  51. /*
  52. template <typename btScalar>
  53. Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
  54. {
  55. setEulerYPR(yaw, pitch, roll);
  56. }
  57. */
  58. /** @brief Constructor with row major formatting */
  59. btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
  60. const btScalar& yx, const btScalar& yy, const btScalar& yz,
  61. const btScalar& zx, const btScalar& zy, const btScalar& zz)
  62. {
  63. setValue(xx, xy, xz,
  64. yx, yy, yz,
  65. zx, zy, zz);
  66. }
  67. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  68. SIMD_FORCE_INLINE btMatrix3x3(const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2)
  69. {
  70. m_el[0].mVec128 = v0;
  71. m_el[1].mVec128 = v1;
  72. m_el[2].mVec128 = v2;
  73. }
  74. SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2)
  75. {
  76. m_el[0] = v0;
  77. m_el[1] = v1;
  78. m_el[2] = v2;
  79. }
  80. // Copy constructor
  81. SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
  82. {
  83. m_el[0].mVec128 = rhs.m_el[0].mVec128;
  84. m_el[1].mVec128 = rhs.m_el[1].mVec128;
  85. m_el[2].mVec128 = rhs.m_el[2].mVec128;
  86. }
  87. // Assignment Operator
  88. SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
  89. {
  90. m_el[0].mVec128 = m.m_el[0].mVec128;
  91. m_el[1].mVec128 = m.m_el[1].mVec128;
  92. m_el[2].mVec128 = m.m_el[2].mVec128;
  93. return *this;
  94. }
  95. #else
  96. /** @brief Copy constructor */
  97. SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& other)
  98. {
  99. m_el[0] = other.m_el[0];
  100. m_el[1] = other.m_el[1];
  101. m_el[2] = other.m_el[2];
  102. }
  103. /** @brief Assignment Operator */
  104. SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
  105. {
  106. m_el[0] = other.m_el[0];
  107. m_el[1] = other.m_el[1];
  108. m_el[2] = other.m_el[2];
  109. return *this;
  110. }
  111. SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2)
  112. {
  113. m_el[0] = v0;
  114. m_el[1] = v1;
  115. m_el[2] = v2;
  116. }
  117. #endif
  118. /** @brief Get a column of the matrix as a vector
  119. * @param i Column number 0 indexed */
  120. SIMD_FORCE_INLINE btVector3 getColumn(int i) const
  121. {
  122. return btVector3(m_el[0][i], m_el[1][i], m_el[2][i]);
  123. }
  124. /** @brief Get a row of the matrix as a vector
  125. * @param i Row number 0 indexed */
  126. SIMD_FORCE_INLINE const btVector3& getRow(int i) const
  127. {
  128. btFullAssert(0 <= i && i < 3);
  129. return m_el[i];
  130. }
  131. /** @brief Get a mutable reference to a row of the matrix as a vector
  132. * @param i Row number 0 indexed */
  133. SIMD_FORCE_INLINE btVector3& operator[](int i)
  134. {
  135. btFullAssert(0 <= i && i < 3);
  136. return m_el[i];
  137. }
  138. /** @brief Get a const reference to a row of the matrix as a vector
  139. * @param i Row number 0 indexed */
  140. SIMD_FORCE_INLINE const btVector3& operator[](int i) const
  141. {
  142. btFullAssert(0 <= i && i < 3);
  143. return m_el[i];
  144. }
  145. /** @brief Multiply by the target matrix on the right
  146. * @param m Rotation matrix to be applied
  147. * Equivilant to this = this * m */
  148. btMatrix3x3& operator*=(const btMatrix3x3& m);
  149. /** @brief Adds by the target matrix on the right
  150. * @param m matrix to be applied
  151. * Equivilant to this = this + m */
  152. btMatrix3x3& operator+=(const btMatrix3x3& m);
  153. /** @brief Substractss by the target matrix on the right
  154. * @param m matrix to be applied
  155. * Equivilant to this = this - m */
  156. btMatrix3x3& operator-=(const btMatrix3x3& m);
  157. /** @brief Set from the rotational part of a 4x4 OpenGL matrix
  158. * @param m A pointer to the beginning of the array of scalars*/
  159. void setFromOpenGLSubMatrix(const btScalar* m)
  160. {
  161. m_el[0].setValue(m[0], m[4], m[8]);
  162. m_el[1].setValue(m[1], m[5], m[9]);
  163. m_el[2].setValue(m[2], m[6], m[10]);
  164. }
  165. /** @brief Set the values of the matrix explicitly (row major)
  166. * @param xx Top left
  167. * @param xy Top Middle
  168. * @param xz Top Right
  169. * @param yx Middle Left
  170. * @param yy Middle Middle
  171. * @param yz Middle Right
  172. * @param zx Bottom Left
  173. * @param zy Bottom Middle
  174. * @param zz Bottom Right*/
  175. void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
  176. const btScalar& yx, const btScalar& yy, const btScalar& yz,
  177. const btScalar& zx, const btScalar& zy, const btScalar& zz)
  178. {
  179. m_el[0].setValue(xx, xy, xz);
  180. m_el[1].setValue(yx, yy, yz);
  181. m_el[2].setValue(zx, zy, zz);
  182. }
  183. /** @brief Set the matrix from a quaternion
  184. * @param q The Quaternion to match */
  185. void setRotation(const btQuaternion& q)
  186. {
  187. btScalar d = q.length2();
  188. btFullAssert(d != btScalar(0.0));
  189. btScalar s = btScalar(2.0) / d;
  190. #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  191. __m128 vs, Q = q.get128();
  192. __m128i Qi = btCastfTo128i(Q);
  193. __m128 Y, Z;
  194. __m128 V1, V2, V3;
  195. __m128 V11, V21, V31;
  196. __m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
  197. __m128i NQi = btCastfTo128i(NQ);
  198. V1 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 2, 3))); // Y X Z W
  199. V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0, 0, 1, 3)); // -X -X Y W
  200. V3 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(2, 1, 0, 3))); // Z Y X W
  201. V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element
  202. V11 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 1, 0, 3))); // Y Y X W
  203. V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W
  204. V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0, 2, 0, 3)); // X Z -X -W
  205. V2 = V2 * V1; //
  206. V1 = V1 * V11; //
  207. V3 = V3 * V31; //
  208. V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2, 3, 1, 3)); // -Z -W Y W
  209. V11 = V11 * V21; //
  210. V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element
  211. V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3, 3, 1, 3)); // W W -Y -W
  212. V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element
  213. Y = btCastiTo128f(_mm_shuffle_epi32(NQi, BT_SHUFFLE(3, 2, 0, 3))); // -W -Z -X -W
  214. Z = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 1, 3))); // Y X Y W
  215. vs = _mm_load_ss(&s);
  216. V21 = V21 * Y;
  217. V31 = V31 * Z;
  218. V1 = V1 + V11;
  219. V2 = V2 + V21;
  220. V3 = V3 + V31;
  221. vs = bt_splat3_ps(vs, 0);
  222. // s ready
  223. V1 = V1 * vs;
  224. V2 = V2 * vs;
  225. V3 = V3 * vs;
  226. V1 = V1 + v1000;
  227. V2 = V2 + v0100;
  228. V3 = V3 + v0010;
  229. m_el[0] = V1;
  230. m_el[1] = V2;
  231. m_el[2] = V3;
  232. #else
  233. btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
  234. btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
  235. btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
  236. btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
  237. setValue(
  238. btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
  239. xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
  240. xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
  241. #endif
  242. }
  243. /** @brief Set the matrix from euler angles using YPR around YXZ respectively
  244. * @param yaw Yaw about Y axis
  245. * @param pitch Pitch about X axis
  246. * @param roll Roll about Z axis
  247. */
  248. void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
  249. {
  250. setEulerZYX(roll, pitch, yaw);
  251. }
  252. /** @brief Set the matrix from euler angles YPR around ZYX axes
  253. * @param eulerX Roll about X axis
  254. * @param eulerY Pitch around Y axis
  255. * @param eulerZ Yaw about Z axis
  256. *
  257. * These angles are used to produce a rotation matrix. The euler
  258. * angles are applied in ZYX order. I.e a vector is first rotated
  259. * about X then Y and then Z
  260. **/
  261. void setEulerZYX(btScalar eulerX, btScalar eulerY, btScalar eulerZ)
  262. {
  263. ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
  264. btScalar ci(btCos(eulerX));
  265. btScalar cj(btCos(eulerY));
  266. btScalar ch(btCos(eulerZ));
  267. btScalar si(btSin(eulerX));
  268. btScalar sj(btSin(eulerY));
  269. btScalar sh(btSin(eulerZ));
  270. btScalar cc = ci * ch;
  271. btScalar cs = ci * sh;
  272. btScalar sc = si * ch;
  273. btScalar ss = si * sh;
  274. setValue(cj * ch, sj * sc - cs, sj * cc + ss,
  275. cj * sh, sj * ss + cc, sj * cs - sc,
  276. -sj, cj * si, cj * ci);
  277. }
  278. /**@brief Set the matrix to the identity */
  279. void setIdentity()
  280. {
  281. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  282. m_el[0] = v1000;
  283. m_el[1] = v0100;
  284. m_el[2] = v0010;
  285. #else
  286. setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
  287. btScalar(0.0), btScalar(1.0), btScalar(0.0),
  288. btScalar(0.0), btScalar(0.0), btScalar(1.0));
  289. #endif
  290. }
  291. /**@brief Set the matrix to the identity */
  292. void setZero()
  293. {
  294. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  295. m_el[0] = v0000;
  296. m_el[1] = v0000;
  297. m_el[2] = v0000;
  298. #else
  299. setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0),
  300. btScalar(0.0), btScalar(0.0), btScalar(0.0),
  301. btScalar(0.0), btScalar(0.0), btScalar(0.0));
  302. #endif
  303. }
  304. static const btMatrix3x3& getIdentity()
  305. {
  306. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  307. static const btMatrix3x3
  308. identityMatrix(v1000, v0100, v0010);
  309. #else
  310. static const btMatrix3x3
  311. identityMatrix(
  312. btScalar(1.0), btScalar(0.0), btScalar(0.0),
  313. btScalar(0.0), btScalar(1.0), btScalar(0.0),
  314. btScalar(0.0), btScalar(0.0), btScalar(1.0));
  315. #endif
  316. return identityMatrix;
  317. }
  318. /**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
  319. * @param m The array to be filled */
  320. void getOpenGLSubMatrix(btScalar * m) const
  321. {
  322. #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  323. __m128 v0 = m_el[0].mVec128;
  324. __m128 v1 = m_el[1].mVec128;
  325. __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
  326. __m128* vm = (__m128*)m;
  327. __m128 vT;
  328. v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
  329. vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
  330. v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
  331. v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0
  332. v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0
  333. v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
  334. vm[0] = v0;
  335. vm[1] = v1;
  336. vm[2] = v2;
  337. #elif defined(BT_USE_NEON)
  338. // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
  339. static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
  340. float32x4_t* vm = (float32x4_t*)m;
  341. float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
  342. float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0}
  343. float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
  344. float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
  345. float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
  346. float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0
  347. vm[0] = v0;
  348. vm[1] = v1;
  349. vm[2] = v2;
  350. #else
  351. m[0] = btScalar(m_el[0].x());
  352. m[1] = btScalar(m_el[1].x());
  353. m[2] = btScalar(m_el[2].x());
  354. m[3] = btScalar(0.0);
  355. m[4] = btScalar(m_el[0].y());
  356. m[5] = btScalar(m_el[1].y());
  357. m[6] = btScalar(m_el[2].y());
  358. m[7] = btScalar(0.0);
  359. m[8] = btScalar(m_el[0].z());
  360. m[9] = btScalar(m_el[1].z());
  361. m[10] = btScalar(m_el[2].z());
  362. m[11] = btScalar(0.0);
  363. #endif
  364. }
  365. /**@brief Get the matrix represented as a quaternion
  366. * @param q The quaternion which will be set */
  367. void getRotation(btQuaternion & q) const
  368. {
  369. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  370. btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
  371. btScalar s, x;
  372. union {
  373. btSimdFloat4 vec;
  374. btScalar f[4];
  375. } temp;
  376. if (trace > btScalar(0.0))
  377. {
  378. x = trace + btScalar(1.0);
  379. temp.f[0] = m_el[2].y() - m_el[1].z();
  380. temp.f[1] = m_el[0].z() - m_el[2].x();
  381. temp.f[2] = m_el[1].x() - m_el[0].y();
  382. temp.f[3] = x;
  383. //temp.f[3]= s * btScalar(0.5);
  384. }
  385. else
  386. {
  387. int i, j, k;
  388. if (m_el[0].x() < m_el[1].y())
  389. {
  390. if (m_el[1].y() < m_el[2].z())
  391. {
  392. i = 2;
  393. j = 0;
  394. k = 1;
  395. }
  396. else
  397. {
  398. i = 1;
  399. j = 2;
  400. k = 0;
  401. }
  402. }
  403. else
  404. {
  405. if (m_el[0].x() < m_el[2].z())
  406. {
  407. i = 2;
  408. j = 0;
  409. k = 1;
  410. }
  411. else
  412. {
  413. i = 0;
  414. j = 1;
  415. k = 2;
  416. }
  417. }
  418. x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
  419. temp.f[3] = (m_el[k][j] - m_el[j][k]);
  420. temp.f[j] = (m_el[j][i] + m_el[i][j]);
  421. temp.f[k] = (m_el[k][i] + m_el[i][k]);
  422. temp.f[i] = x;
  423. //temp.f[i] = s * btScalar(0.5);
  424. }
  425. s = btSqrt(x);
  426. q.set128(temp.vec);
  427. s = btScalar(0.5) / s;
  428. q *= s;
  429. #else
  430. btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
  431. btScalar temp[4];
  432. if (trace > btScalar(0.0))
  433. {
  434. btScalar s = btSqrt(trace + btScalar(1.0));
  435. temp[3] = (s * btScalar(0.5));
  436. s = btScalar(0.5) / s;
  437. temp[0] = ((m_el[2].y() - m_el[1].z()) * s);
  438. temp[1] = ((m_el[0].z() - m_el[2].x()) * s);
  439. temp[2] = ((m_el[1].x() - m_el[0].y()) * s);
  440. }
  441. else
  442. {
  443. int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0);
  444. int j = (i + 1) % 3;
  445. int k = (i + 2) % 3;
  446. btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
  447. temp[i] = s * btScalar(0.5);
  448. s = btScalar(0.5) / s;
  449. temp[3] = (m_el[k][j] - m_el[j][k]) * s;
  450. temp[j] = (m_el[j][i] + m_el[i][j]) * s;
  451. temp[k] = (m_el[k][i] + m_el[i][k]) * s;
  452. }
  453. q.setValue(temp[0], temp[1], temp[2], temp[3]);
  454. #endif
  455. }
  456. /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
  457. * @param yaw Yaw around Y axis
  458. * @param pitch Pitch around X axis
  459. * @param roll around Z axis */
  460. void getEulerYPR(btScalar & yaw, btScalar & pitch, btScalar & roll) const
  461. {
  462. // first use the normal calculus
  463. yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
  464. pitch = btScalar(btAsin(-m_el[2].x()));
  465. roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
  466. // on pitch = +/-HalfPI
  467. if (btFabs(pitch) == SIMD_HALF_PI)
  468. {
  469. if (yaw > 0)
  470. yaw -= SIMD_PI;
  471. else
  472. yaw += SIMD_PI;
  473. if (roll > 0)
  474. roll -= SIMD_PI;
  475. else
  476. roll += SIMD_PI;
  477. }
  478. };
  479. /**@brief Get the matrix represented as euler angles around ZYX
  480. * @param yaw Yaw around Z axis
  481. * @param pitch Pitch around Y axis
  482. * @param roll around X axis
  483. * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
  484. void getEulerZYX(btScalar & yaw, btScalar & pitch, btScalar & roll, unsigned int solution_number = 1) const
  485. {
  486. struct Euler
  487. {
  488. btScalar yaw;
  489. btScalar pitch;
  490. btScalar roll;
  491. };
  492. Euler euler_out;
  493. Euler euler_out2; //second solution
  494. //get the pointer to the raw data
  495. // Check that pitch is not at a singularity
  496. if (btFabs(m_el[2].x()) >= 1)
  497. {
  498. euler_out.yaw = 0;
  499. euler_out2.yaw = 0;
  500. // From difference of angles formula
  501. btScalar delta = btAtan2(m_el[0].x(), m_el[0].z());
  502. if (m_el[2].x() > 0) //gimbal locked up
  503. {
  504. euler_out.pitch = SIMD_PI / btScalar(2.0);
  505. euler_out2.pitch = SIMD_PI / btScalar(2.0);
  506. euler_out.roll = euler_out.pitch + delta;
  507. euler_out2.roll = euler_out.pitch + delta;
  508. }
  509. else // gimbal locked down
  510. {
  511. euler_out.pitch = -SIMD_PI / btScalar(2.0);
  512. euler_out2.pitch = -SIMD_PI / btScalar(2.0);
  513. euler_out.roll = -euler_out.pitch + delta;
  514. euler_out2.roll = -euler_out.pitch + delta;
  515. }
  516. }
  517. else
  518. {
  519. euler_out.pitch = -btAsin(m_el[2].x());
  520. euler_out2.pitch = SIMD_PI - euler_out.pitch;
  521. euler_out.roll = btAtan2(m_el[2].y() / btCos(euler_out.pitch),
  522. m_el[2].z() / btCos(euler_out.pitch));
  523. euler_out2.roll = btAtan2(m_el[2].y() / btCos(euler_out2.pitch),
  524. m_el[2].z() / btCos(euler_out2.pitch));
  525. euler_out.yaw = btAtan2(m_el[1].x() / btCos(euler_out.pitch),
  526. m_el[0].x() / btCos(euler_out.pitch));
  527. euler_out2.yaw = btAtan2(m_el[1].x() / btCos(euler_out2.pitch),
  528. m_el[0].x() / btCos(euler_out2.pitch));
  529. }
  530. if (solution_number == 1)
  531. {
  532. yaw = euler_out.yaw;
  533. pitch = euler_out.pitch;
  534. roll = euler_out.roll;
  535. }
  536. else
  537. {
  538. yaw = euler_out2.yaw;
  539. pitch = euler_out2.pitch;
  540. roll = euler_out2.roll;
  541. }
  542. }
  543. /**@brief Create a scaled copy of the matrix
  544. * @param s Scaling vector The elements of the vector will scale each column */
  545. btMatrix3x3 scaled(const btVector3& s) const
  546. {
  547. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  548. return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
  549. #else
  550. return btMatrix3x3(
  551. m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
  552. m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
  553. m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
  554. #endif
  555. }
  556. /**@brief Return the determinant of the matrix */
  557. btScalar determinant() const;
  558. /**@brief Return the adjoint of the matrix */
  559. btMatrix3x3 adjoint() const;
  560. /**@brief Return the matrix with all values non negative */
  561. btMatrix3x3 absolute() const;
  562. /**@brief Return the transpose of the matrix */
  563. btMatrix3x3 transpose() const;
  564. /**@brief Return the inverse of the matrix */
  565. btMatrix3x3 inverse() const;
  566. /// Solve A * x = b, where b is a column vector. This is more efficient
  567. /// than computing the inverse in one-shot cases.
  568. ///Solve33 is from Box2d, thanks to Erin Catto,
  569. btVector3 solve33(const btVector3& b) const
  570. {
  571. btVector3 col1 = getColumn(0);
  572. btVector3 col2 = getColumn(1);
  573. btVector3 col3 = getColumn(2);
  574. btScalar det = btDot(col1, btCross(col2, col3));
  575. if (btFabs(det) > SIMD_EPSILON)
  576. {
  577. det = 1.0f / det;
  578. }
  579. btVector3 x;
  580. x[0] = det * btDot(b, btCross(col2, col3));
  581. x[1] = det * btDot(col1, btCross(b, col3));
  582. x[2] = det * btDot(col1, btCross(col2, b));
  583. return x;
  584. }
  585. btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
  586. btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
  587. SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
  588. {
  589. return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
  590. }
  591. SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
  592. {
  593. return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
  594. }
  595. SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
  596. {
  597. return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
  598. }
  599. ///extractRotation is from "A robust method to extract the rotational part of deformations"
  600. ///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
  601. ///decomposes a matrix A in a orthogonal matrix R and a
  602. ///symmetric matrix S:
  603. ///A = R*S.
  604. ///note that R can include both rotation and scaling.
  605. SIMD_FORCE_INLINE void extractRotation(btQuaternion & q, btScalar tolerance = 1.0e-9, int maxIter = 100)
  606. {
  607. int iter = 0;
  608. btScalar w;
  609. const btMatrix3x3& A = *this;
  610. for (iter = 0; iter < maxIter; iter++)
  611. {
  612. btMatrix3x3 R(q);
  613. btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) + R.getColumn(2).cross(A.getColumn(2))) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) +
  614. tolerance);
  615. w = omega.norm();
  616. if (w < tolerance)
  617. break;
  618. q = btQuaternion(btVector3((btScalar(1.0) / w) * omega), w) *
  619. q;
  620. q.normalize();
  621. }
  622. }
  623. /**@brief diagonalizes this matrix by the Jacobi method.
  624. * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
  625. * coordinate system, i.e., old_this = rot * new_this * rot^T.
  626. * @param threshold See iteration
  627. * @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
  628. * by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
  629. *
  630. * Note that this matrix is assumed to be symmetric.
  631. */
  632. void diagonalize(btMatrix3x3 & rot, btScalar threshold, int maxSteps)
  633. {
  634. rot.setIdentity();
  635. for (int step = maxSteps; step > 0; step--)
  636. {
  637. // find off-diagonal element [p][q] with largest magnitude
  638. int p = 0;
  639. int q = 1;
  640. int r = 2;
  641. btScalar max = btFabs(m_el[0][1]);
  642. btScalar v = btFabs(m_el[0][2]);
  643. if (v > max)
  644. {
  645. q = 2;
  646. r = 1;
  647. max = v;
  648. }
  649. v = btFabs(m_el[1][2]);
  650. if (v > max)
  651. {
  652. p = 1;
  653. q = 2;
  654. r = 0;
  655. max = v;
  656. }
  657. btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
  658. if (max <= t)
  659. {
  660. if (max <= SIMD_EPSILON * t)
  661. {
  662. return;
  663. }
  664. step = 1;
  665. }
  666. // compute Jacobi rotation J which leads to a zero for element [p][q]
  667. btScalar mpq = m_el[p][q];
  668. btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
  669. btScalar theta2 = theta * theta;
  670. btScalar cos;
  671. btScalar sin;
  672. if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
  673. {
  674. t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
  675. : 1 / (theta - btSqrt(1 + theta2));
  676. cos = 1 / btSqrt(1 + t * t);
  677. sin = cos * t;
  678. }
  679. else
  680. {
  681. // approximation for large theta-value, i.e., a nearly diagonal matrix
  682. t = 1 / (theta * (2 + btScalar(0.5) / theta2));
  683. cos = 1 - btScalar(0.5) * t * t;
  684. sin = cos * t;
  685. }
  686. // apply rotation to matrix (this = J^T * this * J)
  687. m_el[p][q] = m_el[q][p] = 0;
  688. m_el[p][p] -= t * mpq;
  689. m_el[q][q] += t * mpq;
  690. btScalar mrp = m_el[r][p];
  691. btScalar mrq = m_el[r][q];
  692. m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
  693. m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;
  694. // apply rotation to rot (rot = rot * J)
  695. for (int i = 0; i < 3; i++)
  696. {
  697. btVector3& row = rot[i];
  698. mrp = row[p];
  699. mrq = row[q];
  700. row[p] = cos * mrp - sin * mrq;
  701. row[q] = cos * mrq + sin * mrp;
  702. }
  703. }
  704. }
  705. /**@brief Calculate the matrix cofactor
  706. * @param r1 The first row to use for calculating the cofactor
  707. * @param c1 The first column to use for calculating the cofactor
  708. * @param r1 The second row to use for calculating the cofactor
  709. * @param c1 The second column to use for calculating the cofactor
  710. * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
  711. */
  712. btScalar cofac(int r1, int c1, int r2, int c2) const
  713. {
  714. return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
  715. }
  716. void serialize(struct btMatrix3x3Data & dataOut) const;
  717. void serializeFloat(struct btMatrix3x3FloatData & dataOut) const;
  718. void deSerialize(const struct btMatrix3x3Data& dataIn);
  719. void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
  720. void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
  721. };
  722. SIMD_FORCE_INLINE btMatrix3x3&
  723. btMatrix3x3::operator*=(const btMatrix3x3& m)
  724. {
  725. #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  726. __m128 rv00, rv01, rv02;
  727. __m128 rv10, rv11, rv12;
  728. __m128 rv20, rv21, rv22;
  729. __m128 mv0, mv1, mv2;
  730. rv02 = m_el[0].mVec128;
  731. rv12 = m_el[1].mVec128;
  732. rv22 = m_el[2].mVec128;
  733. mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
  734. mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
  735. mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);
  736. // rv0
  737. rv00 = bt_splat_ps(rv02, 0);
  738. rv01 = bt_splat_ps(rv02, 1);
  739. rv02 = bt_splat_ps(rv02, 2);
  740. rv00 = _mm_mul_ps(rv00, mv0);
  741. rv01 = _mm_mul_ps(rv01, mv1);
  742. rv02 = _mm_mul_ps(rv02, mv2);
  743. // rv1
  744. rv10 = bt_splat_ps(rv12, 0);
  745. rv11 = bt_splat_ps(rv12, 1);
  746. rv12 = bt_splat_ps(rv12, 2);
  747. rv10 = _mm_mul_ps(rv10, mv0);
  748. rv11 = _mm_mul_ps(rv11, mv1);
  749. rv12 = _mm_mul_ps(rv12, mv2);
  750. // rv2
  751. rv20 = bt_splat_ps(rv22, 0);
  752. rv21 = bt_splat_ps(rv22, 1);
  753. rv22 = bt_splat_ps(rv22, 2);
  754. rv20 = _mm_mul_ps(rv20, mv0);
  755. rv21 = _mm_mul_ps(rv21, mv1);
  756. rv22 = _mm_mul_ps(rv22, mv2);
  757. rv00 = _mm_add_ps(rv00, rv01);
  758. rv10 = _mm_add_ps(rv10, rv11);
  759. rv20 = _mm_add_ps(rv20, rv21);
  760. m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
  761. m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
  762. m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
  763. #elif defined(BT_USE_NEON)
  764. float32x4_t rv0, rv1, rv2;
  765. float32x4_t v0, v1, v2;
  766. float32x4_t mv0, mv1, mv2;
  767. v0 = m_el[0].mVec128;
  768. v1 = m_el[1].mVec128;
  769. v2 = m_el[2].mVec128;
  770. mv0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
  771. mv1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
  772. mv2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
  773. rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
  774. rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
  775. rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
  776. rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
  777. rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
  778. rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
  779. rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
  780. rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
  781. rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
  782. m_el[0].mVec128 = rv0;
  783. m_el[1].mVec128 = rv1;
  784. m_el[2].mVec128 = rv2;
  785. #else
  786. setValue(
  787. m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
  788. m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
  789. m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
  790. #endif
  791. return *this;
  792. }
  793. SIMD_FORCE_INLINE btMatrix3x3&
  794. btMatrix3x3::operator+=(const btMatrix3x3& m)
  795. {
  796. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  797. m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
  798. m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
  799. m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
  800. #else
  801. setValue(
  802. m_el[0][0] + m.m_el[0][0],
  803. m_el[0][1] + m.m_el[0][1],
  804. m_el[0][2] + m.m_el[0][2],
  805. m_el[1][0] + m.m_el[1][0],
  806. m_el[1][1] + m.m_el[1][1],
  807. m_el[1][2] + m.m_el[1][2],
  808. m_el[2][0] + m.m_el[2][0],
  809. m_el[2][1] + m.m_el[2][1],
  810. m_el[2][2] + m.m_el[2][2]);
  811. #endif
  812. return *this;
  813. }
  814. SIMD_FORCE_INLINE btMatrix3x3
  815. operator*(const btMatrix3x3& m, const btScalar& k)
  816. {
  817. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  818. __m128 vk = bt_splat_ps(_mm_load_ss((float*)&k), 0x80);
  819. return btMatrix3x3(
  820. _mm_mul_ps(m[0].mVec128, vk),
  821. _mm_mul_ps(m[1].mVec128, vk),
  822. _mm_mul_ps(m[2].mVec128, vk));
  823. #elif defined(BT_USE_NEON)
  824. return btMatrix3x3(
  825. vmulq_n_f32(m[0].mVec128, k),
  826. vmulq_n_f32(m[1].mVec128, k),
  827. vmulq_n_f32(m[2].mVec128, k));
  828. #else
  829. return btMatrix3x3(
  830. m[0].x() * k, m[0].y() * k, m[0].z() * k,
  831. m[1].x() * k, m[1].y() * k, m[1].z() * k,
  832. m[2].x() * k, m[2].y() * k, m[2].z() * k);
  833. #endif
  834. }
  835. SIMD_FORCE_INLINE btMatrix3x3
  836. operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
  837. {
  838. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  839. return btMatrix3x3(
  840. m1[0].mVec128 + m2[0].mVec128,
  841. m1[1].mVec128 + m2[1].mVec128,
  842. m1[2].mVec128 + m2[2].mVec128);
  843. #else
  844. return btMatrix3x3(
  845. m1[0][0] + m2[0][0],
  846. m1[0][1] + m2[0][1],
  847. m1[0][2] + m2[0][2],
  848. m1[1][0] + m2[1][0],
  849. m1[1][1] + m2[1][1],
  850. m1[1][2] + m2[1][2],
  851. m1[2][0] + m2[2][0],
  852. m1[2][1] + m2[2][1],
  853. m1[2][2] + m2[2][2]);
  854. #endif
  855. }
  856. SIMD_FORCE_INLINE btMatrix3x3
  857. operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
  858. {
  859. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  860. return btMatrix3x3(
  861. m1[0].mVec128 - m2[0].mVec128,
  862. m1[1].mVec128 - m2[1].mVec128,
  863. m1[2].mVec128 - m2[2].mVec128);
  864. #else
  865. return btMatrix3x3(
  866. m1[0][0] - m2[0][0],
  867. m1[0][1] - m2[0][1],
  868. m1[0][2] - m2[0][2],
  869. m1[1][0] - m2[1][0],
  870. m1[1][1] - m2[1][1],
  871. m1[1][2] - m2[1][2],
  872. m1[2][0] - m2[2][0],
  873. m1[2][1] - m2[2][1],
  874. m1[2][2] - m2[2][2]);
  875. #endif
  876. }
  877. SIMD_FORCE_INLINE btMatrix3x3&
  878. btMatrix3x3::operator-=(const btMatrix3x3& m)
  879. {
  880. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  881. m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
  882. m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
  883. m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
  884. #else
  885. setValue(
  886. m_el[0][0] - m.m_el[0][0],
  887. m_el[0][1] - m.m_el[0][1],
  888. m_el[0][2] - m.m_el[0][2],
  889. m_el[1][0] - m.m_el[1][0],
  890. m_el[1][1] - m.m_el[1][1],
  891. m_el[1][2] - m.m_el[1][2],
  892. m_el[2][0] - m.m_el[2][0],
  893. m_el[2][1] - m.m_el[2][1],
  894. m_el[2][2] - m.m_el[2][2]);
  895. #endif
  896. return *this;
  897. }
  898. SIMD_FORCE_INLINE btScalar
  899. btMatrix3x3::determinant() const
  900. {
  901. return btTriple((*this)[0], (*this)[1], (*this)[2]);
  902. }
  903. SIMD_FORCE_INLINE btMatrix3x3
  904. btMatrix3x3::absolute() const
  905. {
  906. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  907. return btMatrix3x3(
  908. _mm_and_ps(m_el[0].mVec128, btvAbsfMask),
  909. _mm_and_ps(m_el[1].mVec128, btvAbsfMask),
  910. _mm_and_ps(m_el[2].mVec128, btvAbsfMask));
  911. #elif defined(BT_USE_NEON)
  912. return btMatrix3x3(
  913. (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
  914. (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
  915. (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
  916. #else
  917. return btMatrix3x3(
  918. btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
  919. btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
  920. btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
  921. #endif
  922. }
  923. SIMD_FORCE_INLINE btMatrix3x3
  924. btMatrix3x3::transpose() const
  925. {
  926. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  927. __m128 v0 = m_el[0].mVec128;
  928. __m128 v1 = m_el[1].mVec128;
  929. __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
  930. __m128 vT;
  931. v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
  932. vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
  933. v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
  934. v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0
  935. v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0
  936. v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
  937. return btMatrix3x3(v0, v1, v2);
  938. #elif defined(BT_USE_NEON)
  939. // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
  940. static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
  941. float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
  942. float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0}
  943. float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
  944. float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
  945. float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
  946. float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0
  947. return btMatrix3x3(v0, v1, v2);
  948. #else
  949. return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
  950. m_el[0].y(), m_el[1].y(), m_el[2].y(),
  951. m_el[0].z(), m_el[1].z(), m_el[2].z());
  952. #endif
  953. }
  954. SIMD_FORCE_INLINE btMatrix3x3
  955. btMatrix3x3::adjoint() const
  956. {
  957. return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
  958. cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
  959. cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
  960. }
  961. SIMD_FORCE_INLINE btMatrix3x3
  962. btMatrix3x3::inverse() const
  963. {
  964. btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
  965. btScalar det = (*this)[0].dot(co);
  966. //btFullAssert(det != btScalar(0.0));
  967. btAssert(det != btScalar(0.0));
  968. btScalar s = btScalar(1.0) / det;
  969. return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
  970. co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
  971. co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
  972. }
  973. SIMD_FORCE_INLINE btMatrix3x3
  974. btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
  975. {
  976. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  977. // zeros w
  978. // static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
  979. __m128 row = m_el[0].mVec128;
  980. __m128 m0 = _mm_and_ps(m.getRow(0).mVec128, btvFFF0fMask);
  981. __m128 m1 = _mm_and_ps(m.getRow(1).mVec128, btvFFF0fMask);
  982. __m128 m2 = _mm_and_ps(m.getRow(2).mVec128, btvFFF0fMask);
  983. __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
  984. __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
  985. __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
  986. row = m_el[1].mVec128;
  987. r0 = _mm_add_ps(r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
  988. r1 = _mm_add_ps(r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
  989. r2 = _mm_add_ps(r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
  990. row = m_el[2].mVec128;
  991. r0 = _mm_add_ps(r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
  992. r1 = _mm_add_ps(r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
  993. r2 = _mm_add_ps(r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
  994. return btMatrix3x3(r0, r1, r2);
  995. #elif defined BT_USE_NEON
  996. // zeros w
  997. static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0};
  998. float32x4_t m0 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(0).mVec128, xyzMask);
  999. float32x4_t m1 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(1).mVec128, xyzMask);
  1000. float32x4_t m2 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(2).mVec128, xyzMask);
  1001. float32x4_t row = m_el[0].mVec128;
  1002. float32x4_t r0 = vmulq_lane_f32(m0, vget_low_f32(row), 0);
  1003. float32x4_t r1 = vmulq_lane_f32(m0, vget_low_f32(row), 1);
  1004. float32x4_t r2 = vmulq_lane_f32(m0, vget_high_f32(row), 0);
  1005. row = m_el[1].mVec128;
  1006. r0 = vmlaq_lane_f32(r0, m1, vget_low_f32(row), 0);
  1007. r1 = vmlaq_lane_f32(r1, m1, vget_low_f32(row), 1);
  1008. r2 = vmlaq_lane_f32(r2, m1, vget_high_f32(row), 0);
  1009. row = m_el[2].mVec128;
  1010. r0 = vmlaq_lane_f32(r0, m2, vget_low_f32(row), 0);
  1011. r1 = vmlaq_lane_f32(r1, m2, vget_low_f32(row), 1);
  1012. r2 = vmlaq_lane_f32(r2, m2, vget_high_f32(row), 0);
  1013. return btMatrix3x3(r0, r1, r2);
  1014. #else
  1015. return btMatrix3x3(
  1016. m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
  1017. m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
  1018. m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
  1019. m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
  1020. m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
  1021. m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
  1022. m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
  1023. m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
  1024. m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
  1025. #endif
  1026. }
  1027. SIMD_FORCE_INLINE btMatrix3x3
  1028. btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
  1029. {
  1030. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  1031. __m128 a0 = m_el[0].mVec128;
  1032. __m128 a1 = m_el[1].mVec128;
  1033. __m128 a2 = m_el[2].mVec128;
  1034. btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
  1035. __m128 mx = mT[0].mVec128;
  1036. __m128 my = mT[1].mVec128;
  1037. __m128 mz = mT[2].mVec128;
  1038. __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
  1039. __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
  1040. __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
  1041. r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
  1042. r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
  1043. r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
  1044. r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
  1045. r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
  1046. r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
  1047. return btMatrix3x3(r0, r1, r2);
  1048. #elif defined BT_USE_NEON
  1049. float32x4_t a0 = m_el[0].mVec128;
  1050. float32x4_t a1 = m_el[1].mVec128;
  1051. float32x4_t a2 = m_el[2].mVec128;
  1052. btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
  1053. float32x4_t mx = mT[0].mVec128;
  1054. float32x4_t my = mT[1].mVec128;
  1055. float32x4_t mz = mT[2].mVec128;
  1056. float32x4_t r0 = vmulq_lane_f32(mx, vget_low_f32(a0), 0);
  1057. float32x4_t r1 = vmulq_lane_f32(mx, vget_low_f32(a1), 0);
  1058. float32x4_t r2 = vmulq_lane_f32(mx, vget_low_f32(a2), 0);
  1059. r0 = vmlaq_lane_f32(r0, my, vget_low_f32(a0), 1);
  1060. r1 = vmlaq_lane_f32(r1, my, vget_low_f32(a1), 1);
  1061. r2 = vmlaq_lane_f32(r2, my, vget_low_f32(a2), 1);
  1062. r0 = vmlaq_lane_f32(r0, mz, vget_high_f32(a0), 0);
  1063. r1 = vmlaq_lane_f32(r1, mz, vget_high_f32(a1), 0);
  1064. r2 = vmlaq_lane_f32(r2, mz, vget_high_f32(a2), 0);
  1065. return btMatrix3x3(r0, r1, r2);
  1066. #else
  1067. return btMatrix3x3(
  1068. m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
  1069. m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
  1070. m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
  1071. #endif
  1072. }
  1073. SIMD_FORCE_INLINE btVector3
  1074. operator*(const btMatrix3x3& m, const btVector3& v)
  1075. {
  1076. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  1077. return v.dot3(m[0], m[1], m[2]);
  1078. #else
  1079. return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
  1080. #endif
  1081. }
  1082. SIMD_FORCE_INLINE btVector3
  1083. operator*(const btVector3& v, const btMatrix3x3& m)
  1084. {
  1085. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  1086. const __m128 vv = v.mVec128;
  1087. __m128 c0 = bt_splat_ps(vv, 0);
  1088. __m128 c1 = bt_splat_ps(vv, 1);
  1089. __m128 c2 = bt_splat_ps(vv, 2);
  1090. c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask));
  1091. c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask));
  1092. c0 = _mm_add_ps(c0, c1);
  1093. c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask));
  1094. return btVector3(_mm_add_ps(c0, c2));
  1095. #elif defined(BT_USE_NEON)
  1096. const float32x4_t vv = v.mVec128;
  1097. const float32x2_t vlo = vget_low_f32(vv);
  1098. const float32x2_t vhi = vget_high_f32(vv);
  1099. float32x4_t c0, c1, c2;
  1100. c0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
  1101. c1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
  1102. c2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
  1103. c0 = vmulq_lane_f32(c0, vlo, 0);
  1104. c1 = vmulq_lane_f32(c1, vlo, 1);
  1105. c2 = vmulq_lane_f32(c2, vhi, 0);
  1106. c0 = vaddq_f32(c0, c1);
  1107. c0 = vaddq_f32(c0, c2);
  1108. return btVector3(c0);
  1109. #else
  1110. return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
  1111. #endif
  1112. }
  1113. SIMD_FORCE_INLINE btMatrix3x3
  1114. operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
  1115. {
  1116. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  1117. __m128 m10 = m1[0].mVec128;
  1118. __m128 m11 = m1[1].mVec128;
  1119. __m128 m12 = m1[2].mVec128;
  1120. __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
  1121. __m128 c0 = bt_splat_ps(m10, 0);
  1122. __m128 c1 = bt_splat_ps(m11, 0);
  1123. __m128 c2 = bt_splat_ps(m12, 0);
  1124. c0 = _mm_mul_ps(c0, m2v);
  1125. c1 = _mm_mul_ps(c1, m2v);
  1126. c2 = _mm_mul_ps(c2, m2v);
  1127. m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
  1128. __m128 c0_1 = bt_splat_ps(m10, 1);
  1129. __m128 c1_1 = bt_splat_ps(m11, 1);
  1130. __m128 c2_1 = bt_splat_ps(m12, 1);
  1131. c0_1 = _mm_mul_ps(c0_1, m2v);
  1132. c1_1 = _mm_mul_ps(c1_1, m2v);
  1133. c2_1 = _mm_mul_ps(c2_1, m2v);
  1134. m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
  1135. c0 = _mm_add_ps(c0, c0_1);
  1136. c1 = _mm_add_ps(c1, c1_1);
  1137. c2 = _mm_add_ps(c2, c2_1);
  1138. m10 = bt_splat_ps(m10, 2);
  1139. m11 = bt_splat_ps(m11, 2);
  1140. m12 = bt_splat_ps(m12, 2);
  1141. m10 = _mm_mul_ps(m10, m2v);
  1142. m11 = _mm_mul_ps(m11, m2v);
  1143. m12 = _mm_mul_ps(m12, m2v);
  1144. c0 = _mm_add_ps(c0, m10);
  1145. c1 = _mm_add_ps(c1, m11);
  1146. c2 = _mm_add_ps(c2, m12);
  1147. return btMatrix3x3(c0, c1, c2);
  1148. #elif defined(BT_USE_NEON)
  1149. float32x4_t rv0, rv1, rv2;
  1150. float32x4_t v0, v1, v2;
  1151. float32x4_t mv0, mv1, mv2;
  1152. v0 = m1[0].mVec128;
  1153. v1 = m1[1].mVec128;
  1154. v2 = m1[2].mVec128;
  1155. mv0 = (float32x4_t)vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
  1156. mv1 = (float32x4_t)vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
  1157. mv2 = (float32x4_t)vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);
  1158. rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
  1159. rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
  1160. rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
  1161. rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
  1162. rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
  1163. rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
  1164. rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
  1165. rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
  1166. rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
  1167. return btMatrix3x3(rv0, rv1, rv2);
  1168. #else
  1169. return btMatrix3x3(
  1170. m2.tdotx(m1[0]), m2.tdoty(m1[0]), m2.tdotz(m1[0]),
  1171. m2.tdotx(m1[1]), m2.tdoty(m1[1]), m2.tdotz(m1[1]),
  1172. m2.tdotx(m1[2]), m2.tdoty(m1[2]), m2.tdotz(m1[2]));
  1173. #endif
  1174. }
  1175. /*
  1176. SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
  1177. return btMatrix3x3(
  1178. m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
  1179. m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
  1180. m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
  1181. m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
  1182. m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
  1183. m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
  1184. m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
  1185. m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
  1186. m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
  1187. }
  1188. */
  1189. /**@brief Equality operator between two matrices
  1190. * It will test all elements are equal. */
  1191. SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
  1192. {
  1193. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  1194. __m128 c0, c1, c2;
  1195. c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
  1196. c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
  1197. c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
  1198. c0 = _mm_and_ps(c0, c1);
  1199. c0 = _mm_and_ps(c0, c2);
  1200. int m = _mm_movemask_ps((__m128)c0);
  1201. return (0x7 == (m & 0x7));
  1202. #else
  1203. return (m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
  1204. m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
  1205. m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2]);
  1206. #endif
  1207. }
  1208. ///for serialization
  1209. struct btMatrix3x3FloatData
  1210. {
  1211. btVector3FloatData m_el[3];
  1212. };
  1213. ///for serialization
  1214. struct btMatrix3x3DoubleData
  1215. {
  1216. btVector3DoubleData m_el[3];
  1217. };
  1218. SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
  1219. {
  1220. for (int i = 0; i < 3; i++)
  1221. m_el[i].serialize(dataOut.m_el[i]);
  1222. }
  1223. SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
  1224. {
  1225. for (int i = 0; i < 3; i++)
  1226. m_el[i].serializeFloat(dataOut.m_el[i]);
  1227. }
  1228. SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
  1229. {
  1230. for (int i = 0; i < 3; i++)
  1231. m_el[i].deSerialize(dataIn.m_el[i]);
  1232. }
  1233. SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
  1234. {
  1235. for (int i = 0; i < 3; i++)
  1236. m_el[i].deSerializeFloat(dataIn.m_el[i]);
  1237. }
  1238. SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
  1239. {
  1240. for (int i = 0; i < 3; i++)
  1241. m_el[i].deSerializeDouble(dataIn.m_el[i]);
  1242. }
  1243. #endif //BT_MATRIX3x3_H