123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571 |
- // SPDX-License-Identifier: Apache-2.0
- // ----------------------------------------------------------------------------
- // Copyright 2019-2022 Arm Limited
- // Copyright 2008 Jose Fonseca
- //
- // Licensed under the Apache License, Version 2.0 (the "License"); you may not
- // use this file except in compliance with the License. You may obtain a copy
- // of the License at:
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
- // License for the specific language governing permissions and limitations
- // under the License.
- // ----------------------------------------------------------------------------
- /*
- * This module implements vector support for floats, ints, and vector lane
- * control masks. It provides access to both explicit vector width types, and
- * flexible N-wide types where N can be determined at compile time.
- *
- * The design of this module encourages use of vector length agnostic code, via
- * the vint, vfloat, and vmask types. These will take on the widest SIMD vector
- * with that is available at compile time. The current vector width is
- * accessible for e.g. loop strides via the ASTCENC_SIMD_WIDTH constant.
- *
- * Explicit scalar types are accessible via the vint1, vfloat1, vmask1 types.
- * These are provided primarily for prototyping and algorithm debug of VLA
- * implementations.
- *
- * Explicit 4-wide types are accessible via the vint4, vfloat4, and vmask4
- * types. These are provided for use by VLA code, but are also expected to be
- * used as a fixed-width type and will supported a reference C++ fallback for
- * use on platforms without SIMD intrinsics.
- *
- * Explicit 8-wide types are accessible via the vint8, vfloat8, and vmask8
- * types. These are provide for use by VLA code, and are not expected to be
- * used as a fixed-width type in normal code. No reference C implementation is
- * provided on platforms without underlying SIMD intrinsics.
- *
- * With the current implementation ISA support is provided for:
- *
- * * 1-wide for scalar reference.
- * * 4-wide for Armv8-A NEON.
- * * 4-wide for x86-64 SSE2.
- * * 4-wide for x86-64 SSE4.1.
- * * 8-wide for x86-64 AVX2.
- */
- #ifndef ASTC_VECMATHLIB_H_INCLUDED
- #define ASTC_VECMATHLIB_H_INCLUDED
- #if ASTCENC_SSE != 0 || ASTCENC_AVX != 0
- #include <immintrin.h>
- #elif ASTCENC_NEON != 0
- #include <arm_neon.h>
- #endif
- #if !defined(__clang__) && defined(_MSC_VER)
- #define ASTCENC_SIMD_INLINE __forceinline
- #define ASTCENC_NO_INLINE
- #elif defined(__GNUC__) && !defined(__clang__)
- #define ASTCENC_SIMD_INLINE __attribute__((always_inline)) inline
- #define ASTCENC_NO_INLINE __attribute__ ((noinline))
- #else
- #define ASTCENC_SIMD_INLINE __attribute__((always_inline, nodebug)) inline
- #define ASTCENC_NO_INLINE __attribute__ ((noinline))
- #endif
- #if ASTCENC_AVX >= 2
- /* If we have AVX2 expose 8-wide VLA. */
- #include "astcenc_vecmathlib_sse_4.h"
- #include "astcenc_vecmathlib_common_4.h"
- #include "astcenc_vecmathlib_avx2_8.h"
- #define ASTCENC_SIMD_WIDTH 8
- using vfloat = vfloat8;
- #if defined(ASTCENC_NO_INVARIANCE)
- using vfloatacc = vfloat8;
- #else
- using vfloatacc = vfloat4;
- #endif
- using vint = vint8;
- using vmask = vmask8;
- constexpr auto loada = vfloat8::loada;
- constexpr auto load1 = vfloat8::load1;
- #elif ASTCENC_SSE >= 20
- /* If we have SSE expose 4-wide VLA, and 4-wide fixed width. */
- #include "astcenc_vecmathlib_sse_4.h"
- #include "astcenc_vecmathlib_common_4.h"
- #define ASTCENC_SIMD_WIDTH 4
- using vfloat = vfloat4;
- using vfloatacc = vfloat4;
- using vint = vint4;
- using vmask = vmask4;
- constexpr auto loada = vfloat4::loada;
- constexpr auto load1 = vfloat4::load1;
- #elif ASTCENC_NEON > 0
- /* If we have NEON expose 4-wide VLA. */
- #include "astcenc_vecmathlib_neon_4.h"
- #include "astcenc_vecmathlib_common_4.h"
- #define ASTCENC_SIMD_WIDTH 4
- using vfloat = vfloat4;
- using vfloatacc = vfloat4;
- using vint = vint4;
- using vmask = vmask4;
- constexpr auto loada = vfloat4::loada;
- constexpr auto load1 = vfloat4::load1;
- #else
- // If we have nothing expose 4-wide VLA, and 4-wide fixed width.
- // Note: We no longer expose the 1-wide scalar fallback because it is not
- // invariant with the 4-wide path due to algorithms that use horizontal
- // operations that accumulate a local vector sum before accumulating into
- // a running sum.
- //
- // For 4 items adding into an accumulator using 1-wide vectors the sum is:
- //
- // result = ((((sum + l0) + l1) + l2) + l3)
- //
- // ... whereas the accumulator for a 4-wide vector sum is:
- //
- // result = sum + ((l0 + l2) + (l1 + l3))
- //
- // In "normal maths" this is the same, but the floating point reassociation
- // differences mean that these will not produce the same result.
- #include "astcenc_vecmathlib_none_4.h"
- #include "astcenc_vecmathlib_common_4.h"
- #define ASTCENC_SIMD_WIDTH 4
- using vfloat = vfloat4;
- using vfloatacc = vfloat4;
- using vint = vint4;
- using vmask = vmask4;
- constexpr auto loada = vfloat4::loada;
- constexpr auto load1 = vfloat4::load1;
- #endif
- /**
- * @brief Round a count down to the largest multiple of 8.
- *
- * @param count The unrounded value.
- *
- * @return The rounded value.
- */
- ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_8(unsigned int count)
- {
- return count & static_cast<unsigned int>(~(8 - 1));
- }
- /**
- * @brief Round a count down to the largest multiple of 4.
- *
- * @param count The unrounded value.
- *
- * @return The rounded value.
- */
- ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_4(unsigned int count)
- {
- return count & static_cast<unsigned int>(~(4 - 1));
- }
- /**
- * @brief Round a count down to the largest multiple of the SIMD width.
- *
- * Assumption that the vector width is a power of two ...
- *
- * @param count The unrounded value.
- *
- * @return The rounded value.
- */
- ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_vla(unsigned int count)
- {
- return count & static_cast<unsigned int>(~(ASTCENC_SIMD_WIDTH - 1));
- }
- /**
- * @brief Round a count up to the largest multiple of the SIMD width.
- *
- * Assumption that the vector width is a power of two ...
- *
- * @param count The unrounded value.
- *
- * @return The rounded value.
- */
- ASTCENC_SIMD_INLINE unsigned int round_up_to_simd_multiple_vla(unsigned int count)
- {
- unsigned int multiples = (count + ASTCENC_SIMD_WIDTH - 1) / ASTCENC_SIMD_WIDTH;
- return multiples * ASTCENC_SIMD_WIDTH;
- }
- /**
- * @brief Return @c a with lanes negated if the @c b lane is negative.
- */
- ASTCENC_SIMD_INLINE vfloat change_sign(vfloat a, vfloat b)
- {
- vint ia = float_as_int(a);
- vint ib = float_as_int(b);
- vint sign_mask(static_cast<int>(0x80000000));
- vint r = ia ^ (ib & sign_mask);
- return int_as_float(r);
- }
- /**
- * @brief Return fast, but approximate, vector atan(x).
- *
- * Max error of this implementation is 0.004883.
- */
- ASTCENC_SIMD_INLINE vfloat atan(vfloat x)
- {
- vmask c = abs(x) > vfloat(1.0f);
- vfloat z = change_sign(vfloat(astc::PI_OVER_TWO), x);
- vfloat y = select(x, vfloat(1.0f) / x, c);
- y = y / (y * y * vfloat(0.28f) + vfloat(1.0f));
- return select(y, z - y, c);
- }
- /**
- * @brief Return fast, but approximate, vector atan2(x, y).
- */
- ASTCENC_SIMD_INLINE vfloat atan2(vfloat y, vfloat x)
- {
- vfloat z = atan(abs(y / x));
- vmask xmask = vmask(float_as_int(x).m);
- return change_sign(select_msb(z, vfloat(astc::PI) - z, xmask), y);
- }
- /*
- * @brief Factory that returns a unit length 4 component vfloat4.
- */
- static ASTCENC_SIMD_INLINE vfloat4 unit4()
- {
- return vfloat4(0.5f);
- }
- /**
- * @brief Factory that returns a unit length 3 component vfloat4.
- */
- static ASTCENC_SIMD_INLINE vfloat4 unit3()
- {
- float val = 0.577350258827209473f;
- return vfloat4(val, val, val, 0.0f);
- }
- /**
- * @brief Factory that returns a unit length 2 component vfloat4.
- */
- static ASTCENC_SIMD_INLINE vfloat4 unit2()
- {
- float val = 0.707106769084930420f;
- return vfloat4(val, val, 0.0f, 0.0f);
- }
- /**
- * @brief Factory that returns a 3 component vfloat4.
- */
- static ASTCENC_SIMD_INLINE vfloat4 vfloat3(float a, float b, float c)
- {
- return vfloat4(a, b, c, 0.0f);
- }
- /**
- * @brief Factory that returns a 2 component vfloat4.
- */
- static ASTCENC_SIMD_INLINE vfloat4 vfloat2(float a, float b)
- {
- return vfloat4(a, b, 0.0f, 0.0f);
- }
- /**
- * @brief Normalize a non-zero length vector to unit length.
- */
- static ASTCENC_SIMD_INLINE vfloat4 normalize(vfloat4 a)
- {
- vfloat4 length = dot(a, a);
- return a / sqrt(length);
- }
- /**
- * @brief Normalize a vector, returning @c safe if len is zero.
- */
- static ASTCENC_SIMD_INLINE vfloat4 normalize_safe(vfloat4 a, vfloat4 safe)
- {
- vfloat4 length = dot(a, a);
- if (length.lane<0>() != 0.0f)
- {
- return a / sqrt(length);
- }
- return safe;
- }
- #define POLY0(x, c0) ( c0)
- #define POLY1(x, c0, c1) ((POLY0(x, c1) * x) + c0)
- #define POLY2(x, c0, c1, c2) ((POLY1(x, c1, c2) * x) + c0)
- #define POLY3(x, c0, c1, c2, c3) ((POLY2(x, c1, c2, c3) * x) + c0)
- #define POLY4(x, c0, c1, c2, c3, c4) ((POLY3(x, c1, c2, c3, c4) * x) + c0)
- #define POLY5(x, c0, c1, c2, c3, c4, c5) ((POLY4(x, c1, c2, c3, c4, c5) * x) + c0)
- /**
- * @brief Compute an approximate exp2(x) for each lane in the vector.
- *
- * Based on 5th degree minimax polynomials, ported from this blog
- * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html
- */
- static ASTCENC_SIMD_INLINE vfloat4 exp2(vfloat4 x)
- {
- x = clamp(-126.99999f, 129.0f, x);
- vint4 ipart = float_to_int(x - 0.5f);
- vfloat4 fpart = x - int_to_float(ipart);
- // Integer contrib, using 1 << ipart
- vfloat4 iexp = int_as_float(lsl<23>(ipart + 127));
- // Fractional contrib, using polynomial fit of 2^x in range [-0.5, 0.5)
- vfloat4 fexp = POLY5(fpart,
- 9.9999994e-1f,
- 6.9315308e-1f,
- 2.4015361e-1f,
- 5.5826318e-2f,
- 8.9893397e-3f,
- 1.8775767e-3f);
- return iexp * fexp;
- }
- /**
- * @brief Compute an approximate log2(x) for each lane in the vector.
- *
- * Based on 5th degree minimax polynomials, ported from this blog
- * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html
- */
- static ASTCENC_SIMD_INLINE vfloat4 log2(vfloat4 x)
- {
- vint4 exp(0x7F800000);
- vint4 mant(0x007FFFFF);
- vint4 one(0x3F800000);
- vint4 i = float_as_int(x);
- vfloat4 e = int_to_float(lsr<23>(i & exp) - 127);
- vfloat4 m = int_as_float((i & mant) | one);
- // Polynomial fit of log2(x)/(x - 1), for x in range [1, 2)
- vfloat4 p = POLY4(m,
- 2.8882704548164776201f,
- -2.52074962577807006663f,
- 1.48116647521213171641f,
- -0.465725644288844778798f,
- 0.0596515482674574969533f);
- // Increases the polynomial degree, but ensures that log2(1) == 0
- p = p * (m - 1.0f);
- return p + e;
- }
- /**
- * @brief Compute an approximate pow(x, y) for each lane in the vector.
- *
- * Power function based on the exp2(log2(x) * y) transform.
- */
- static ASTCENC_SIMD_INLINE vfloat4 pow(vfloat4 x, vfloat4 y)
- {
- vmask4 zero_mask = y == vfloat4(0.0f);
- vfloat4 estimate = exp2(log2(x) * y);
- // Guarantee that y == 0 returns exactly 1.0f
- return select(estimate, vfloat4(1.0f), zero_mask);
- }
- /**
- * @brief Count the leading zeros for each lane in @c a.
- *
- * Valid for all data values of @c a; will return a per-lane value [0, 32].
- */
- static ASTCENC_SIMD_INLINE vint4 clz(vint4 a)
- {
- // This function is a horrible abuse of floating point exponents to convert
- // the original integer value into a 2^N encoding we can recover easily.
- // Convert to float without risk of rounding up by keeping only top 8 bits.
- // This trick is is guaranteed to keep top 8 bits and clear the 9th.
- a = (~lsr<8>(a)) & a;
- a = float_as_int(int_to_float(a));
- // Extract and unbias exponent
- a = vint4(127 + 31) - lsr<23>(a);
- // Clamp result to a valid 32-bit range
- return clamp(0, 32, a);
- }
- /**
- * @brief Return lanewise 2^a for each lane in @c a.
- *
- * Use of signed int means that this is only valid for values in range [0, 31].
- */
- static ASTCENC_SIMD_INLINE vint4 two_to_the_n(vint4 a)
- {
- // 2^30 is the largest signed number than can be represented
- assert(all(a < vint4(31)));
- // This function is a horrible abuse of floating point to use the exponent
- // and float conversion to generate a 2^N multiple.
- // Bias the exponent
- vint4 exp = a + 127;
- exp = lsl<23>(exp);
- // Reinterpret the bits as a float, and then convert to an int
- vfloat4 f = int_as_float(exp);
- return float_to_int(f);
- }
- /**
- * @brief Convert unorm16 [0, 65535] to float16 in range [0, 1].
- */
- static ASTCENC_SIMD_INLINE vint4 unorm16_to_sf16(vint4 p)
- {
- vint4 fp16_one = vint4(0x3C00);
- vint4 fp16_small = lsl<8>(p);
- vmask4 is_one = p == vint4(0xFFFF);
- vmask4 is_small = p < vint4(4);
- // Manually inline clz() on Visual Studio to avoid release build codegen bug
- // see https://github.com/ARM-software/astc-encoder/issues/259
- #if !defined(__clang__) && defined(_MSC_VER)
- vint4 a = (~lsr<8>(p)) & p;
- a = float_as_int(int_to_float(a));
- a = vint4(127 + 31) - lsr<23>(a);
- vint4 lz = clamp(0, 32, a) - 16;
- #else
- vint4 lz = clz(p) - 16;
- #endif
- p = p * two_to_the_n(lz + 1);
- p = p & vint4(0xFFFF);
- p = lsr<6>(p);
- p = p | lsl<10>(vint4(14) - lz);
- vint4 r = select(p, fp16_one, is_one);
- r = select(r, fp16_small, is_small);
- return r;
- }
- /**
- * @brief Convert 16-bit LNS to float16.
- */
- static ASTCENC_SIMD_INLINE vint4 lns_to_sf16(vint4 p)
- {
- vint4 mc = p & 0x7FF;
- vint4 ec = lsr<11>(p);
- vint4 mc_512 = mc * 3;
- vmask4 mask_512 = mc < vint4(512);
- vint4 mc_1536 = mc * 4 - 512;
- vmask4 mask_1536 = mc < vint4(1536);
- vint4 mc_else = mc * 5 - 2048;
- vint4 mt = mc_else;
- mt = select(mt, mc_1536, mask_1536);
- mt = select(mt, mc_512, mask_512);
- vint4 res = lsl<10>(ec) | lsr<3>(mt);
- return min(res, vint4(0x7BFF));
- }
- /**
- * @brief Extract mantissa and exponent of a float value.
- *
- * @param a The input value.
- * @param[out] exp The output exponent.
- *
- * @return The mantissa.
- */
- static ASTCENC_SIMD_INLINE vfloat4 frexp(vfloat4 a, vint4& exp)
- {
- // Interpret the bits as an integer
- vint4 ai = float_as_int(a);
- // Extract and unbias the exponent
- exp = (lsr<23>(ai) & 0xFF) - 126;
- // Extract and unbias the mantissa
- vint4 manti = (ai & static_cast<int>(0x807FFFFF)) | 0x3F000000;
- return int_as_float(manti);
- }
- /**
- * @brief Convert float to 16-bit LNS.
- */
- static ASTCENC_SIMD_INLINE vfloat4 float_to_lns(vfloat4 a)
- {
- vint4 exp;
- vfloat4 mant = frexp(a, exp);
- // Do these early before we start messing about ...
- vmask4 mask_underflow_nan = ~(a > vfloat4(1.0f / 67108864.0f));
- vmask4 mask_infinity = a >= vfloat4(65536.0f);
- // If input is smaller than 2^-14, multiply by 2^25 and don't bias.
- vmask4 exp_lt_m13 = exp < vint4(-13);
- vfloat4 a1a = a * 33554432.0f;
- vint4 expa = vint4::zero();
- vfloat4 a1b = (mant - 0.5f) * 4096;
- vint4 expb = exp + 14;
- a = select(a1b, a1a, exp_lt_m13);
- exp = select(expb, expa, exp_lt_m13);
- vmask4 a_lt_384 = a < vfloat4(384.0f);
- vmask4 a_lt_1408 = a <= vfloat4(1408.0f);
- vfloat4 a2a = a * (4.0f / 3.0f);
- vfloat4 a2b = a + 128.0f;
- vfloat4 a2c = (a + 512.0f) * (4.0f / 5.0f);
- a = a2c;
- a = select(a, a2b, a_lt_1408);
- a = select(a, a2a, a_lt_384);
- a = a + (int_to_float(exp) * 2048.0f) + 1.0f;
- a = select(a, vfloat4(65535.0f), mask_infinity);
- a = select(a, vfloat4::zero(), mask_underflow_nan);
- return a;
- }
- namespace astc
- {
- static ASTCENC_SIMD_INLINE float pow(float x, float y)
- {
- return pow(vfloat4(x), vfloat4(y)).lane<0>();
- }
- }
- #endif // #ifndef ASTC_VECMATHLIB_H_INCLUDED
|