123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799 |
- /*
- * AES-NI support functions
- *
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
- */
- /*
- * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
- * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
- */
- #include "common.h"
- #if defined(MBEDTLS_AESNI_C)
- #include "mbedtls/aesni.h"
- #include <string.h>
- /* *INDENT-OFF* */
- #ifndef asm
- #define asm __asm
- #endif
- /* *INDENT-ON* */
- #if defined(MBEDTLS_AESNI_HAVE_CODE)
- #if MBEDTLS_AESNI_HAVE_CODE == 2
- #if defined(__GNUC__)
- #include <cpuid.h>
- #elif defined(_MSC_VER)
- #include <intrin.h>
- #else
- #error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
- #endif
- #include <immintrin.h>
- #endif
- /*
- * AES-NI support detection routine
- */
- int mbedtls_aesni_has_support(unsigned int what)
- {
- static int done = 0;
- static unsigned int c = 0;
- if (!done) {
- #if MBEDTLS_AESNI_HAVE_CODE == 2
- static int info[4] = { 0, 0, 0, 0 };
- #if defined(_MSC_VER)
- __cpuid(info, 1);
- #else
- __cpuid(1, info[0], info[1], info[2], info[3]);
- #endif
- c = info[2];
- #else /* AESNI using asm */
- asm ("movl $1, %%eax \n\t"
- "cpuid \n\t"
- : "=c" (c)
- :
- : "eax", "ebx", "edx");
- #endif /* MBEDTLS_AESNI_HAVE_CODE */
- done = 1;
- }
- return (c & what) != 0;
- }
- #if MBEDTLS_AESNI_HAVE_CODE == 2
- /*
- * AES-NI AES-ECB block en(de)cryption
- */
- int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
- int mode,
- const unsigned char input[16],
- unsigned char output[16])
- {
- const __m128i *rk = (const __m128i *) (ctx->rk);
- unsigned nr = ctx->nr; // Number of remaining rounds
- // Load round key 0
- __m128i state;
- memcpy(&state, input, 16);
- state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
- ++rk;
- --nr;
- if (mode == 0) {
- while (nr != 0) {
- state = _mm_aesdec_si128(state, *rk);
- ++rk;
- --nr;
- }
- state = _mm_aesdeclast_si128(state, *rk);
- } else {
- while (nr != 0) {
- state = _mm_aesenc_si128(state, *rk);
- ++rk;
- --nr;
- }
- state = _mm_aesenclast_si128(state, *rk);
- }
- memcpy(output, &state, 16);
- return 0;
- }
- /*
- * GCM multiplication: c = a times b in GF(2^128)
- * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
- */
- static void gcm_clmul(const __m128i aa, const __m128i bb,
- __m128i *cc, __m128i *dd)
- {
- /*
- * Caryless multiplication dd:cc = aa * bb
- * using [CLMUL-WP] algorithm 1 (p. 12).
- */
- *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
- *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
- __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
- __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
- ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
- ee = ff; // e1+f1:e0+f0
- ff = _mm_srli_si128(ff, 8); // 0:e1+f1
- ee = _mm_slli_si128(ee, 8); // e0+f0:0
- *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
- *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
- }
- static void gcm_shift(__m128i *cc, __m128i *dd)
- {
- /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
- * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
- // // *cc = r1:r0
- // // *dd = r3:r2
- __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
- __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
- __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
- __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
- __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
- cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
- dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
- *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
- *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
- }
- static __m128i gcm_reduce(__m128i xx)
- {
- // // xx = x1:x0
- /* [CLMUL-WP] Algorithm 5 Step 2 */
- __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
- __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
- __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
- __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
- return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
- }
- static __m128i gcm_mix(__m128i dx)
- {
- /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
- __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
- __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
- __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
- // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
- // bits carried from d. Now get those bits back in.
- __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
- __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
- __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
- __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
- return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
- }
- void mbedtls_aesni_gcm_mult(unsigned char c[16],
- const unsigned char a[16],
- const unsigned char b[16])
- {
- __m128i aa = { 0 }, bb = { 0 }, cc, dd;
- /* The inputs are in big-endian order, so byte-reverse them */
- for (size_t i = 0; i < 16; i++) {
- ((uint8_t *) &aa)[i] = a[15 - i];
- ((uint8_t *) &bb)[i] = b[15 - i];
- }
- gcm_clmul(aa, bb, &cc, &dd);
- gcm_shift(&cc, &dd);
- /*
- * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
- * using [CLMUL-WP] algorithm 5 (p. 18).
- * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
- */
- __m128i dx = gcm_reduce(cc);
- __m128i xh = gcm_mix(dx);
- cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
- /* Now byte-reverse the outputs */
- for (size_t i = 0; i < 16; i++) {
- c[i] = ((uint8_t *) &cc)[15 - i];
- }
- return;
- }
- /*
- * Compute decryption round keys from encryption round keys
- */
- void mbedtls_aesni_inverse_key(unsigned char *invkey,
- const unsigned char *fwdkey, int nr)
- {
- __m128i *ik = (__m128i *) invkey;
- const __m128i *fk = (const __m128i *) fwdkey + nr;
- *ik = *fk;
- for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
- *ik = _mm_aesimc_si128(*fk);
- }
- *ik = *fk;
- }
- /*
- * Key expansion, 128-bit case
- */
- static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
- {
- /*
- * Finish generating the next round key.
- *
- * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
- * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
- *
- * On exit, xword is r7:r6:r5:r4
- * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
- * and this is returned, to be written to the round key buffer.
- */
- xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
- xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
- state = _mm_slli_si128(state, 4); // r2:r1:r0:0
- xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
- state = _mm_slli_si128(state, 4); // r1:r0:0:0
- xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
- state = _mm_slli_si128(state, 4); // r0:0:0:0
- state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
- return state;
- }
- static void aesni_setkey_enc_128(unsigned char *rk_bytes,
- const unsigned char *key)
- {
- __m128i *rk = (__m128i *) rk_bytes;
- memcpy(&rk[0], key, 16);
- rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
- rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
- rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
- rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
- rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
- rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
- rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
- rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
- rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
- rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
- }
- /*
- * Key expansion, 192-bit case
- */
- static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
- unsigned char *rk)
- {
- /*
- * Finish generating the next 6 quarter-keys.
- *
- * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
- * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
- * (obtained with AESKEYGENASSIST).
- *
- * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
- * and those are written to the round key buffer.
- */
- xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
- xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
- *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
- xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
- *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
- xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
- *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
- xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
- *state0 = xword; // = r9:r8:r7:r6
- xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
- xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
- *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
- xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
- *state1 = xword; // = stuff:stuff:r11:r10
- /* Store state0 and the low half of state1 into rk, which is conceptually
- * an array of 24-byte elements. Since 24 is not a multiple of 16,
- * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
- memcpy(rk, state0, 16);
- memcpy(rk + 16, state1, 8);
- }
- static void aesni_setkey_enc_192(unsigned char *rk,
- const unsigned char *key)
- {
- /* First round: use original key */
- memcpy(rk, key, 24);
- /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
- __m128i state0 = ((__m128i *) rk)[0];
- __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
- aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
- aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
- aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
- aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
- aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
- aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
- aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
- aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
- }
- /*
- * Key expansion, 256-bit case
- */
- static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
- __m128i *rk0, __m128i *rk1)
- {
- /*
- * Finish generating the next two round keys.
- *
- * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
- * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
- * (obtained with AESKEYGENASSIST).
- *
- * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
- */
- xword = _mm_shuffle_epi32(xword, 0xff);
- xword = _mm_xor_si128(xword, state0);
- state0 = _mm_slli_si128(state0, 4);
- xword = _mm_xor_si128(xword, state0);
- state0 = _mm_slli_si128(state0, 4);
- xword = _mm_xor_si128(xword, state0);
- state0 = _mm_slli_si128(state0, 4);
- state0 = _mm_xor_si128(state0, xword);
- *rk0 = state0;
- /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
- * and proceed to generate next round key from there */
- xword = _mm_aeskeygenassist_si128(state0, 0x00);
- xword = _mm_shuffle_epi32(xword, 0xaa);
- xword = _mm_xor_si128(xword, state1);
- state1 = _mm_slli_si128(state1, 4);
- xword = _mm_xor_si128(xword, state1);
- state1 = _mm_slli_si128(state1, 4);
- xword = _mm_xor_si128(xword, state1);
- state1 = _mm_slli_si128(state1, 4);
- state1 = _mm_xor_si128(state1, xword);
- *rk1 = state1;
- }
- static void aesni_setkey_enc_256(unsigned char *rk_bytes,
- const unsigned char *key)
- {
- __m128i *rk = (__m128i *) rk_bytes;
- memcpy(&rk[0], key, 16);
- memcpy(&rk[1], key + 16, 16);
- /*
- * Main "loop" - Generating one more key than necessary,
- * see definition of mbedtls_aes_context.buf
- */
- aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
- aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
- aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
- aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
- aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
- aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
- aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
- }
- #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
- #if defined(__has_feature)
- #if __has_feature(memory_sanitizer)
- #warning \
- "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
- #endif
- #endif
- /*
- * Binutils needs to be at least 2.19 to support AES-NI instructions.
- * Unfortunately, a lot of users have a lower version now (2014-04).
- * Emit bytecode directly in order to support "old" version of gas.
- *
- * Opcodes from the Intel architecture reference manual, vol. 3.
- * We always use registers, so we don't need prefixes for memory operands.
- * Operand macros are in gas order (src, dst) as opposed to Intel order
- * (dst, src) in order to blend better into the surrounding assembly code.
- */
- #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
- #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
- #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
- #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
- #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
- #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
- #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
- #define xmm0_xmm0 "0xC0"
- #define xmm0_xmm1 "0xC8"
- #define xmm0_xmm2 "0xD0"
- #define xmm0_xmm3 "0xD8"
- #define xmm0_xmm4 "0xE0"
- #define xmm1_xmm0 "0xC1"
- #define xmm1_xmm2 "0xD1"
- /*
- * AES-NI AES-ECB block en(de)cryption
- */
- int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
- int mode,
- const unsigned char input[16],
- unsigned char output[16])
- {
- asm ("movdqu (%3), %%xmm0 \n\t" // load input
- "movdqu (%1), %%xmm1 \n\t" // load round key 0
- "pxor %%xmm1, %%xmm0 \n\t" // round 0
- "add $16, %1 \n\t" // point to next round key
- "subl $1, %0 \n\t" // normal rounds = nr - 1
- "test %2, %2 \n\t" // mode?
- "jz 2f \n\t" // 0 = decrypt
- "1: \n\t" // encryption loop
- "movdqu (%1), %%xmm1 \n\t" // load round key
- AESENC(xmm1_xmm0) // do round
- "add $16, %1 \n\t" // point to next round key
- "subl $1, %0 \n\t" // loop
- "jnz 1b \n\t"
- "movdqu (%1), %%xmm1 \n\t" // load round key
- AESENCLAST(xmm1_xmm0) // last round
- "jmp 3f \n\t"
- "2: \n\t" // decryption loop
- "movdqu (%1), %%xmm1 \n\t"
- AESDEC(xmm1_xmm0) // do round
- "add $16, %1 \n\t"
- "subl $1, %0 \n\t"
- "jnz 2b \n\t"
- "movdqu (%1), %%xmm1 \n\t" // load round key
- AESDECLAST(xmm1_xmm0) // last round
- "3: \n\t"
- "movdqu %%xmm0, (%4) \n\t" // export output
- :
- : "r" (ctx->nr), "r" (ctx->rk), "r" (mode), "r" (input), "r" (output)
- : "memory", "cc", "xmm0", "xmm1");
- return 0;
- }
- /*
- * GCM multiplication: c = a times b in GF(2^128)
- * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
- */
- void mbedtls_aesni_gcm_mult(unsigned char c[16],
- const unsigned char a[16],
- const unsigned char b[16])
- {
- unsigned char aa[16], bb[16], cc[16];
- size_t i;
- /* The inputs are in big-endian order, so byte-reverse them */
- for (i = 0; i < 16; i++) {
- aa[i] = a[15 - i];
- bb[i] = b[15 - i];
- }
- asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
- "movdqu (%1), %%xmm1 \n\t" // b1:b0
- /*
- * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
- * using [CLMUL-WP] algorithm 1 (p. 12).
- */
- "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
- "movdqa %%xmm1, %%xmm3 \n\t" // same
- "movdqa %%xmm1, %%xmm4 \n\t" // same
- PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
- PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
- PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
- PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
- "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
- "movdqa %%xmm4, %%xmm3 \n\t" // same
- "psrldq $8, %%xmm4 \n\t" // 0:e1+f1
- "pslldq $8, %%xmm3 \n\t" // e0+f0:0
- "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
- "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
- /*
- * Now shift the result one bit to the left,
- * taking advantage of [CLMUL-WP] eq 27 (p. 18)
- */
- "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
- "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
- "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
- "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
- "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
- "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
- "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
- "pslldq $8, %%xmm3 \n\t" // r0>>63:0
- "pslldq $8, %%xmm4 \n\t" // r2>>63:0
- "psrldq $8, %%xmm5 \n\t" // 0:r1>>63
- "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
- "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
- "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
- /*
- * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
- * using [CLMUL-WP] algorithm 5 (p. 18).
- * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
- */
- /* Step 2 (1) */
- "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
- "movdqa %%xmm1, %%xmm4 \n\t" // same
- "movdqa %%xmm1, %%xmm5 \n\t" // same
- "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
- "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
- "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
- /* Step 2 (2) */
- "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
- "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
- "pslldq $8, %%xmm3 \n\t" // a+b+c:0
- "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
- /* Steps 3 and 4 */
- "movdqa %%xmm1,%%xmm0 \n\t" // d:x0
- "movdqa %%xmm1,%%xmm4 \n\t" // same
- "movdqa %%xmm1,%%xmm5 \n\t" // same
- "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
- "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
- "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
- "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
- "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
- // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
- // bits carried from d. Now get those\t bits back in.
- "movdqa %%xmm1,%%xmm3 \n\t" // d:x0
- "movdqa %%xmm1,%%xmm4 \n\t" // same
- "movdqa %%xmm1,%%xmm5 \n\t" // same
- "psllq $63, %%xmm3 \n\t" // d<<63:stuff
- "psllq $62, %%xmm4 \n\t" // d<<62:stuff
- "psllq $57, %%xmm5 \n\t" // d<<57:stuff
- "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
- "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
- "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
- "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
- "pxor %%xmm1, %%xmm0 \n\t" // h1:h0
- "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
- "movdqu %%xmm0, (%2) \n\t" // done
- :
- : "r" (aa), "r" (bb), "r" (cc)
- : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
- /* Now byte-reverse the outputs */
- for (i = 0; i < 16; i++) {
- c[i] = cc[15 - i];
- }
- return;
- }
- /*
- * Compute decryption round keys from encryption round keys
- */
- void mbedtls_aesni_inverse_key(unsigned char *invkey,
- const unsigned char *fwdkey, int nr)
- {
- unsigned char *ik = invkey;
- const unsigned char *fk = fwdkey + 16 * nr;
- memcpy(ik, fk, 16);
- for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
- asm ("movdqu (%0), %%xmm0 \n\t"
- AESIMC(xmm0_xmm0)
- "movdqu %%xmm0, (%1) \n\t"
- :
- : "r" (fk), "r" (ik)
- : "memory", "xmm0");
- }
- memcpy(ik, fk, 16);
- }
- /*
- * Key expansion, 128-bit case
- */
- static void aesni_setkey_enc_128(unsigned char *rk,
- const unsigned char *key)
- {
- asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
- "movdqu %%xmm0, (%0) \n\t" // as round key 0
- "jmp 2f \n\t" // skip auxiliary routine
- /*
- * Finish generating the next round key.
- *
- * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
- * with X = rot( sub( r3 ) ) ^ RCON.
- *
- * On exit, xmm0 is r7:r6:r5:r4
- * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
- * and those are written to the round key buffer.
- */
- "1: \n\t"
- "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
- "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
- "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
- "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
- "pslldq $4, %%xmm0 \n\t" // etc
- "pxor %%xmm0, %%xmm1 \n\t"
- "pslldq $4, %%xmm0 \n\t"
- "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
- "add $16, %0 \n\t" // point to next round key
- "movdqu %%xmm0, (%0) \n\t" // write it
- "ret \n\t"
- /* Main "loop" */
- "2: \n\t"
- AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
- AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
- :
- : "r" (rk), "r" (key)
- : "memory", "cc", "0");
- }
- /*
- * Key expansion, 192-bit case
- */
- static void aesni_setkey_enc_192(unsigned char *rk,
- const unsigned char *key)
- {
- asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
- "movdqu %%xmm0, (%0) \n\t"
- "add $16, %0 \n\t"
- "movq 16(%1), %%xmm1 \n\t"
- "movq %%xmm1, (%0) \n\t"
- "add $8, %0 \n\t"
- "jmp 2f \n\t" // skip auxiliary routine
- /*
- * Finish generating the next 6 quarter-keys.
- *
- * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
- * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
- *
- * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
- * and those are written to the round key buffer.
- */
- "1: \n\t"
- "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
- "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
- "pslldq $4, %%xmm0 \n\t" // etc
- "pxor %%xmm0, %%xmm2 \n\t"
- "pslldq $4, %%xmm0 \n\t"
- "pxor %%xmm0, %%xmm2 \n\t"
- "pslldq $4, %%xmm0 \n\t"
- "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
- "movdqu %%xmm0, (%0) \n\t"
- "add $16, %0 \n\t"
- "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
- "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
- "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
- "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
- "movq %%xmm1, (%0) \n\t"
- "add $8, %0 \n\t"
- "ret \n\t"
- "2: \n\t"
- AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
- :
- : "r" (rk), "r" (key)
- : "memory", "cc", "0");
- }
- /*
- * Key expansion, 256-bit case
- */
- static void aesni_setkey_enc_256(unsigned char *rk,
- const unsigned char *key)
- {
- asm ("movdqu (%1), %%xmm0 \n\t"
- "movdqu %%xmm0, (%0) \n\t"
- "add $16, %0 \n\t"
- "movdqu 16(%1), %%xmm1 \n\t"
- "movdqu %%xmm1, (%0) \n\t"
- "jmp 2f \n\t" // skip auxiliary routine
- /*
- * Finish generating the next two round keys.
- *
- * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
- * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
- *
- * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
- * and those have been written to the output buffer.
- */
- "1: \n\t"
- "pshufd $0xff, %%xmm2, %%xmm2 \n\t"
- "pxor %%xmm0, %%xmm2 \n\t"
- "pslldq $4, %%xmm0 \n\t"
- "pxor %%xmm0, %%xmm2 \n\t"
- "pslldq $4, %%xmm0 \n\t"
- "pxor %%xmm0, %%xmm2 \n\t"
- "pslldq $4, %%xmm0 \n\t"
- "pxor %%xmm2, %%xmm0 \n\t"
- "add $16, %0 \n\t"
- "movdqu %%xmm0, (%0) \n\t"
- /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
- * and proceed to generate next round key from there */
- AESKEYGENA(xmm0_xmm2, "0x00")
- "pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
- "pxor %%xmm1, %%xmm2 \n\t"
- "pslldq $4, %%xmm1 \n\t"
- "pxor %%xmm1, %%xmm2 \n\t"
- "pslldq $4, %%xmm1 \n\t"
- "pxor %%xmm1, %%xmm2 \n\t"
- "pslldq $4, %%xmm1 \n\t"
- "pxor %%xmm2, %%xmm1 \n\t"
- "add $16, %0 \n\t"
- "movdqu %%xmm1, (%0) \n\t"
- "ret \n\t"
- /*
- * Main "loop" - Generating one more key than necessary,
- * see definition of mbedtls_aes_context.buf
- */
- "2: \n\t"
- AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
- AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
- :
- : "r" (rk), "r" (key)
- : "memory", "cc", "0");
- }
- #endif /* MBEDTLS_AESNI_HAVE_CODE */
- /*
- * Key expansion, wrapper
- */
- int mbedtls_aesni_setkey_enc(unsigned char *rk,
- const unsigned char *key,
- size_t bits)
- {
- switch (bits) {
- case 128: aesni_setkey_enc_128(rk, key); break;
- case 192: aesni_setkey_enc_192(rk, key); break;
- case 256: aesni_setkey_enc_256(rk, key); break;
- default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
- }
- return 0;
- }
- #endif /* MBEDTLS_AESNI_HAVE_CODE */
- #endif /* MBEDTLS_AESNI_C */
|