rasterizer_scene_gles2.cpp 159 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173
  1. /**************************************************************************/
  2. /* rasterizer_scene_gles2.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "rasterizer_scene_gles2.h"
  31. #include "core/math/math_funcs.h"
  32. #include "core/math/transform.h"
  33. #include "core/os/os.h"
  34. #include "core/project_settings.h"
  35. #include "core/vmap.h"
  36. #include "rasterizer_canvas_gles2.h"
  37. #include "servers/camera/camera_feed.h"
  38. #include "servers/visual/visual_server_raster.h"
  39. #ifndef GLES_OVER_GL
  40. #define glClearDepth glClearDepthf
  41. #endif
  42. #ifndef GLES_OVER_GL
  43. #ifdef IPHONE_ENABLED
  44. #include <OpenGLES/ES2/glext.h>
  45. //void *glResolveMultisampleFramebufferAPPLE;
  46. #define GL_READ_FRAMEBUFFER 0x8CA8
  47. #define GL_DRAW_FRAMEBUFFER 0x8CA9
  48. #endif
  49. #endif
  50. const GLenum RasterizerSceneGLES2::_cube_side_enum[6] = {
  51. GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
  52. GL_TEXTURE_CUBE_MAP_POSITIVE_X,
  53. GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
  54. GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
  55. GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
  56. GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
  57. };
  58. void RasterizerSceneGLES2::directional_shadow_create() {
  59. if (directional_shadow.fbo) {
  60. // Erase existing directional shadow texture to recreate it.
  61. glDeleteTextures(1, &directional_shadow.depth);
  62. glDeleteFramebuffers(1, &directional_shadow.fbo);
  63. directional_shadow.depth = 0;
  64. directional_shadow.fbo = 0;
  65. }
  66. directional_shadow.light_count = 0;
  67. directional_shadow.size = next_power_of_2(directional_shadow_size);
  68. if (directional_shadow.size > storage->config.max_viewport_dimensions[0] || directional_shadow.size > storage->config.max_viewport_dimensions[1]) {
  69. WARN_PRINT("Cannot set directional shadow size larger than maximum hardware supported size of (" + itos(storage->config.max_viewport_dimensions[0]) + ", " + itos(storage->config.max_viewport_dimensions[1]) + "). Setting size to maximum.");
  70. directional_shadow.size = MIN(directional_shadow.size, storage->config.max_viewport_dimensions[0]);
  71. directional_shadow.size = MIN(directional_shadow.size, storage->config.max_viewport_dimensions[1]);
  72. }
  73. glGenFramebuffers(1, &directional_shadow.fbo);
  74. glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo);
  75. if (storage->config.use_rgba_3d_shadows) {
  76. //maximum compatibility, renderbuffer and RGBA shadow
  77. glGenRenderbuffers(1, &directional_shadow.depth);
  78. glBindRenderbuffer(GL_RENDERBUFFER, directional_shadow.depth);
  79. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_buffer_internalformat, directional_shadow.size, directional_shadow.size);
  80. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, directional_shadow.depth);
  81. glGenTextures(1, &directional_shadow.color);
  82. glBindTexture(GL_TEXTURE_2D, directional_shadow.color);
  83. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, directional_shadow.size, directional_shadow.size, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
  84. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  85. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  86. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  87. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  88. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, directional_shadow.color, 0);
  89. } else {
  90. //just a depth buffer
  91. glGenTextures(1, &directional_shadow.depth);
  92. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  93. glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, nullptr);
  94. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  95. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  96. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  97. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  98. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0);
  99. }
  100. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  101. if (status != GL_FRAMEBUFFER_COMPLETE) {
  102. ERR_PRINT("Directional shadow framebuffer status invalid");
  103. }
  104. }
  105. /* SHADOW ATLAS API */
  106. RID RasterizerSceneGLES2::shadow_atlas_create() {
  107. ShadowAtlas *shadow_atlas = memnew(ShadowAtlas);
  108. shadow_atlas->fbo = 0;
  109. shadow_atlas->depth = 0;
  110. shadow_atlas->color = 0;
  111. shadow_atlas->size = 0;
  112. shadow_atlas->smallest_subdiv = 0;
  113. for (int i = 0; i < 4; i++) {
  114. shadow_atlas->size_order[i] = i;
  115. }
  116. return shadow_atlas_owner.make_rid(shadow_atlas);
  117. }
  118. void RasterizerSceneGLES2::shadow_atlas_set_size(RID p_atlas, int p_size) {
  119. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  120. ERR_FAIL_COND(!shadow_atlas);
  121. ERR_FAIL_COND(p_size < 0);
  122. p_size = next_power_of_2(p_size);
  123. if (p_size == shadow_atlas->size) {
  124. return;
  125. }
  126. // erase the old atlast
  127. if (shadow_atlas->fbo) {
  128. if (storage->config.use_rgba_3d_shadows) {
  129. glDeleteRenderbuffers(1, &shadow_atlas->depth);
  130. } else {
  131. glDeleteTextures(1, &shadow_atlas->depth);
  132. }
  133. glDeleteFramebuffers(1, &shadow_atlas->fbo);
  134. if (shadow_atlas->color) {
  135. glDeleteTextures(1, &shadow_atlas->color);
  136. }
  137. shadow_atlas->fbo = 0;
  138. shadow_atlas->depth = 0;
  139. shadow_atlas->color = 0;
  140. }
  141. // erase shadow atlast references from lights
  142. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  143. LightInstance *li = light_instance_owner.getornull(E->key());
  144. ERR_CONTINUE(!li);
  145. li->shadow_atlases.erase(p_atlas);
  146. }
  147. shadow_atlas->shadow_owners.clear();
  148. shadow_atlas->size = p_size;
  149. if (shadow_atlas->size) {
  150. glGenFramebuffers(1, &shadow_atlas->fbo);
  151. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  152. if (shadow_atlas->size > storage->config.max_viewport_dimensions[0] || shadow_atlas->size > storage->config.max_viewport_dimensions[1]) {
  153. WARN_PRINT("Cannot set shadow atlas size larger than maximum hardware supported size of (" + itos(storage->config.max_viewport_dimensions[0]) + ", " + itos(storage->config.max_viewport_dimensions[1]) + "). Setting size to maximum.");
  154. shadow_atlas->size = MIN(shadow_atlas->size, storage->config.max_viewport_dimensions[0]);
  155. shadow_atlas->size = MIN(shadow_atlas->size, storage->config.max_viewport_dimensions[1]);
  156. }
  157. // create a depth texture
  158. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  159. if (storage->config.use_rgba_3d_shadows) {
  160. //maximum compatibility, renderbuffer and RGBA shadow
  161. glGenRenderbuffers(1, &shadow_atlas->depth);
  162. glBindRenderbuffer(GL_RENDERBUFFER, shadow_atlas->depth);
  163. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_buffer_internalformat, shadow_atlas->size, shadow_atlas->size);
  164. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, shadow_atlas->depth);
  165. glGenTextures(1, &shadow_atlas->color);
  166. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  167. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, shadow_atlas->size, shadow_atlas->size, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
  168. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  169. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  170. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  171. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  172. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, shadow_atlas->color, 0);
  173. } else {
  174. //just depth texture
  175. glGenTextures(1, &shadow_atlas->depth);
  176. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  177. glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, nullptr);
  178. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  179. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  180. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  181. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  182. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadow_atlas->depth, 0);
  183. }
  184. glViewport(0, 0, shadow_atlas->size, shadow_atlas->size);
  185. glDepthMask(GL_TRUE);
  186. glClearDepth(0.0f);
  187. glClear(GL_DEPTH_BUFFER_BIT);
  188. glBindFramebuffer(GL_FRAMEBUFFER, 0);
  189. }
  190. }
  191. void RasterizerSceneGLES2::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  192. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  193. ERR_FAIL_COND(!shadow_atlas);
  194. ERR_FAIL_INDEX(p_quadrant, 4);
  195. ERR_FAIL_INDEX(p_subdivision, 16384);
  196. uint32_t subdiv = next_power_of_2(p_subdivision);
  197. if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer
  198. subdiv <<= 1;
  199. }
  200. subdiv = int(Math::sqrt((float)subdiv));
  201. if (shadow_atlas->quadrants[p_quadrant].shadows.size() == (int)subdiv) {
  202. return;
  203. }
  204. // erase all data from the quadrant
  205. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  206. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  207. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  208. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  209. ERR_CONTINUE(!li);
  210. li->shadow_atlases.erase(p_atlas);
  211. }
  212. }
  213. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  214. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv);
  215. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  216. // cache the smallest subdivision for faster allocations
  217. shadow_atlas->smallest_subdiv = 1 << 30;
  218. for (int i = 0; i < 4; i++) {
  219. if (shadow_atlas->quadrants[i].subdivision) {
  220. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  221. }
  222. }
  223. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  224. shadow_atlas->smallest_subdiv = 0;
  225. }
  226. // re-sort the quadrants
  227. int swaps = 0;
  228. do {
  229. swaps = 0;
  230. for (int i = 0; i < 3; i++) {
  231. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  232. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  233. swaps++;
  234. }
  235. }
  236. } while (swaps > 0);
  237. }
  238. bool RasterizerSceneGLES2::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  239. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  240. int qidx = p_in_quadrants[i];
  241. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  242. return false;
  243. }
  244. // look for an empty space
  245. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  246. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  247. int found_free_idx = -1; // found a free one
  248. int found_used_idx = -1; // found an existing one, must steal it
  249. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently
  250. for (int j = 0; j < sc; j++) {
  251. if (!sarr[j].owner.is_valid()) {
  252. found_free_idx = j;
  253. break;
  254. }
  255. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  256. ERR_CONTINUE(!sli);
  257. if (sli->last_scene_pass != scene_pass) {
  258. // was just allocated, don't kill it so soon, wait a bit...
  259. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  260. continue;
  261. }
  262. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  263. found_used_idx = j;
  264. min_pass = sli->last_scene_pass;
  265. }
  266. }
  267. }
  268. if (found_free_idx == -1 && found_used_idx == -1) {
  269. continue; // nothing found
  270. }
  271. if (found_free_idx == -1 && found_used_idx != -1) {
  272. found_free_idx = found_used_idx;
  273. }
  274. r_quadrant = qidx;
  275. r_shadow = found_free_idx;
  276. return true;
  277. }
  278. return false;
  279. }
  280. bool RasterizerSceneGLES2::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  281. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  282. ERR_FAIL_COND_V(!shadow_atlas, false);
  283. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  284. ERR_FAIL_COND_V(!li, false);
  285. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  286. return false;
  287. }
  288. uint32_t quad_size = shadow_atlas->size >> 1;
  289. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  290. int valid_quadrants[4];
  291. int valid_quadrant_count = 0;
  292. int best_size = -1;
  293. int best_subdiv = -1;
  294. for (int i = 0; i < 4; i++) {
  295. int q = shadow_atlas->size_order[i];
  296. int sd = shadow_atlas->quadrants[q].subdivision;
  297. if (sd == 0) {
  298. continue;
  299. }
  300. int max_fit = quad_size / sd;
  301. if (best_size != -1 && max_fit > best_size) {
  302. break; // what we asked for is bigger than this.
  303. }
  304. valid_quadrants[valid_quadrant_count] = q;
  305. valid_quadrant_count++;
  306. best_subdiv = sd;
  307. if (max_fit >= desired_fit) {
  308. best_size = max_fit;
  309. }
  310. }
  311. ERR_FAIL_COND_V(valid_quadrant_count == 0, false); // no suitable block available
  312. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  313. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  314. // light was already known!
  315. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  316. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  317. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  318. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  319. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  320. if (!should_realloc) {
  321. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  322. return should_redraw;
  323. }
  324. int new_quadrant;
  325. int new_shadow;
  326. // find a better place
  327. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  328. // found a better place
  329. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  330. if (sh->owner.is_valid()) {
  331. // it is take but invalid, so we can take it
  332. shadow_atlas->shadow_owners.erase(sh->owner);
  333. LightInstance *sli = light_instance_owner.get(sh->owner);
  334. sli->shadow_atlases.erase(p_atlas);
  335. }
  336. // erase previous
  337. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  338. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  339. sh->owner = p_light_intance;
  340. sh->alloc_tick = tick;
  341. sh->version = p_light_version;
  342. li->shadow_atlases.insert(p_atlas);
  343. // make a new key
  344. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  345. key |= new_shadow;
  346. // update it in the map
  347. shadow_atlas->shadow_owners[p_light_intance] = key;
  348. // make it dirty, so we redraw
  349. return true;
  350. }
  351. // no better place found, so we keep the current place
  352. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  353. return should_redraw;
  354. }
  355. int new_quadrant;
  356. int new_shadow;
  357. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  358. // found a better place
  359. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  360. if (sh->owner.is_valid()) {
  361. // it is take but invalid, so we can take it
  362. shadow_atlas->shadow_owners.erase(sh->owner);
  363. LightInstance *sli = light_instance_owner.get(sh->owner);
  364. sli->shadow_atlases.erase(p_atlas);
  365. }
  366. sh->owner = p_light_intance;
  367. sh->alloc_tick = tick;
  368. sh->version = p_light_version;
  369. li->shadow_atlases.insert(p_atlas);
  370. // make a new key
  371. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  372. key |= new_shadow;
  373. // update it in the map
  374. shadow_atlas->shadow_owners[p_light_intance] = key;
  375. // make it dirty, so we redraw
  376. return true;
  377. }
  378. return false;
  379. }
  380. void RasterizerSceneGLES2::set_directional_shadow_count(int p_count) {
  381. directional_shadow.light_count = p_count;
  382. directional_shadow.current_light = 0;
  383. }
  384. int RasterizerSceneGLES2::get_directional_light_shadow_size(RID p_light_intance) {
  385. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  386. int shadow_size;
  387. if (directional_shadow.light_count == 1) {
  388. shadow_size = directional_shadow.size;
  389. } else {
  390. shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway
  391. }
  392. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  393. ERR_FAIL_COND_V(!light_instance, 0);
  394. switch (light_instance->light_ptr->directional_shadow_mode) {
  395. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  396. break; //none
  397. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  398. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_3_SPLITS:
  399. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  400. shadow_size /= 2;
  401. break;
  402. }
  403. return shadow_size;
  404. }
  405. //////////////////////////////////////////////////////
  406. RID RasterizerSceneGLES2::reflection_atlas_create() {
  407. return RID();
  408. }
  409. void RasterizerSceneGLES2::reflection_atlas_set_size(RID p_ref_atlas, int p_size) {
  410. }
  411. void RasterizerSceneGLES2::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) {
  412. }
  413. ////////////////////////////////////////////////////
  414. RID RasterizerSceneGLES2::reflection_probe_instance_create(RID p_probe) {
  415. RasterizerStorageGLES2::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe);
  416. ERR_FAIL_COND_V(!probe, RID());
  417. ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance);
  418. rpi->probe_ptr = probe;
  419. rpi->self = reflection_probe_instance_owner.make_rid(rpi);
  420. rpi->probe = p_probe;
  421. rpi->reflection_atlas_index = -1;
  422. rpi->render_step = -1;
  423. rpi->last_pass = 0;
  424. rpi->current_resolution = 0;
  425. rpi->dirty = true;
  426. rpi->index = 0;
  427. for (int i = 0; i < 6; i++) {
  428. glGenFramebuffers(1, &rpi->fbo[i]);
  429. glGenTextures(1, &rpi->color[i]);
  430. }
  431. glGenRenderbuffers(1, &rpi->depth);
  432. rpi->cubemap = 0;
  433. //glGenTextures(1, &rpi->cubemap);
  434. return rpi->self;
  435. }
  436. void RasterizerSceneGLES2::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  437. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  438. ERR_FAIL_COND(!rpi);
  439. rpi->transform = p_transform;
  440. }
  441. void RasterizerSceneGLES2::reflection_probe_release_atlas_index(RID p_instance) {
  442. }
  443. bool RasterizerSceneGLES2::reflection_probe_instance_needs_redraw(RID p_instance) {
  444. const ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  445. ERR_FAIL_COND_V(!rpi, false);
  446. bool need_redraw = rpi->probe_ptr->resolution != rpi->current_resolution || rpi->dirty || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS;
  447. rpi->dirty = false;
  448. return need_redraw;
  449. }
  450. bool RasterizerSceneGLES2::reflection_probe_instance_has_reflection(RID p_instance) {
  451. return true;
  452. }
  453. bool RasterizerSceneGLES2::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  454. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  455. ERR_FAIL_COND_V(!rpi, false);
  456. rpi->render_step = 0;
  457. if (rpi->probe_ptr->resolution != rpi->current_resolution) {
  458. //update cubemap if resolution changed
  459. int size = rpi->probe_ptr->resolution;
  460. if (size > storage->config.max_viewport_dimensions[0] || size > storage->config.max_viewport_dimensions[1]) {
  461. WARN_PRINT_ONCE("Cannot set reflection probe resolution larger than maximum hardware supported size of (" + itos(storage->config.max_viewport_dimensions[0]) + ", " + itos(storage->config.max_viewport_dimensions[1]) + "). Setting size to maximum.");
  462. size = MIN(size, storage->config.max_viewport_dimensions[0]);
  463. size = MIN(size, storage->config.max_viewport_dimensions[1]);
  464. }
  465. rpi->current_resolution = size;
  466. GLenum internal_format = GL_RGB;
  467. GLenum format = GL_RGB;
  468. GLenum type = GL_UNSIGNED_BYTE;
  469. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  470. glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth);
  471. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_buffer_internalformat, size, size);
  472. if (rpi->cubemap != 0) {
  473. glDeleteTextures(1, &rpi->cubemap);
  474. }
  475. glGenTextures(1, &rpi->cubemap);
  476. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  477. // Mobile hardware (PowerVR specially) prefers this approach,
  478. // the previous approach with manual lod levels kills the game.
  479. for (int i = 0; i < 6; i++) {
  480. glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, nullptr);
  481. }
  482. glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
  483. // Generate framebuffers for rendering
  484. for (int i = 0; i < 6; i++) {
  485. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  486. glBindTexture(GL_TEXTURE_2D, rpi->color[i]);
  487. glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size, 0, format, type, nullptr);
  488. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rpi->color[i], 0);
  489. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth);
  490. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  491. ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
  492. }
  493. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  494. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
  495. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  496. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  497. glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
  498. }
  499. return true;
  500. }
  501. bool RasterizerSceneGLES2::reflection_probe_instance_postprocess_step(RID p_instance) {
  502. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  503. ERR_FAIL_COND_V(!rpi, false);
  504. ERR_FAIL_COND_V(rpi->current_resolution == 0, false);
  505. int size = rpi->probe_ptr->resolution;
  506. {
  507. glBindBuffer(GL_ARRAY_BUFFER, 0);
  508. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
  509. glDisable(GL_CULL_FACE);
  510. glDisable(GL_DEPTH_TEST);
  511. glDisable(GL_SCISSOR_TEST);
  512. glDisable(GL_BLEND);
  513. glDepthMask(GL_FALSE);
  514. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  515. glDisableVertexAttribArray(i);
  516. }
  517. }
  518. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  519. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  520. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //use linear, no mipmaps so it does not read from what is being written to
  521. //first of all, copy rendered textures to cubemap
  522. for (int i = 0; i < 6; i++) {
  523. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  524. glViewport(0, 0, size, size);
  525. glCopyTexSubImage2D(_cube_side_enum[i], 0, 0, 0, 0, 0, size, size);
  526. }
  527. //do filtering
  528. //vdc cache
  529. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE1);
  530. glBindTexture(GL_TEXTURE_2D, storage->resources.radical_inverse_vdc_cache_tex);
  531. // now render to the framebuffer, mipmap level for mipmap level
  532. int lod = 1;
  533. size >>= 1;
  534. int mipmaps = 6;
  535. storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false);
  536. storage->shaders.cubemap_filter.bind();
  537. glBindFramebuffer(GL_FRAMEBUFFER, storage->resources.mipmap_blur_fbo);
  538. //blur
  539. while (size >= 1) {
  540. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE3);
  541. glBindTexture(GL_TEXTURE_2D, storage->resources.mipmap_blur_color);
  542. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr);
  543. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, storage->resources.mipmap_blur_color, 0);
  544. glViewport(0, 0, size, size);
  545. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  546. for (int i = 0; i < 6; i++) {
  547. storage->bind_quad_array();
  548. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i);
  549. float roughness = CLAMP(lod / (float)(mipmaps - 1), 0, 1);
  550. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness);
  551. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false);
  552. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  553. glCopyTexSubImage2D(_cube_side_enum[i], lod, 0, 0, 0, 0, size, size);
  554. }
  555. size >>= 1;
  556. lod++;
  557. }
  558. // restore ranges
  559. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  560. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  561. glBindTexture(GL_TEXTURE_2D, 0);
  562. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE3); //back to panorama
  563. glBindTexture(GL_TEXTURE_2D, 0);
  564. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE1);
  565. glBindTexture(GL_TEXTURE_2D, 0);
  566. glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
  567. return true;
  568. }
  569. /* ENVIRONMENT API */
  570. RID RasterizerSceneGLES2::environment_create() {
  571. Environment *env = memnew(Environment);
  572. return environment_owner.make_rid(env);
  573. }
  574. void RasterizerSceneGLES2::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) {
  575. Environment *env = environment_owner.getornull(p_env);
  576. ERR_FAIL_COND(!env);
  577. env->bg_mode = p_bg;
  578. }
  579. void RasterizerSceneGLES2::environment_set_sky(RID p_env, RID p_sky) {
  580. Environment *env = environment_owner.getornull(p_env);
  581. ERR_FAIL_COND(!env);
  582. env->sky = p_sky;
  583. }
  584. void RasterizerSceneGLES2::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  585. Environment *env = environment_owner.getornull(p_env);
  586. ERR_FAIL_COND(!env);
  587. env->sky_custom_fov = p_scale;
  588. }
  589. void RasterizerSceneGLES2::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  590. Environment *env = environment_owner.getornull(p_env);
  591. ERR_FAIL_COND(!env);
  592. env->sky_orientation = p_orientation;
  593. }
  594. void RasterizerSceneGLES2::environment_set_bg_color(RID p_env, const Color &p_color) {
  595. Environment *env = environment_owner.getornull(p_env);
  596. ERR_FAIL_COND(!env);
  597. env->bg_color = p_color;
  598. }
  599. void RasterizerSceneGLES2::environment_set_bg_energy(RID p_env, float p_energy) {
  600. Environment *env = environment_owner.getornull(p_env);
  601. ERR_FAIL_COND(!env);
  602. env->bg_energy = p_energy;
  603. }
  604. void RasterizerSceneGLES2::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  605. Environment *env = environment_owner.getornull(p_env);
  606. ERR_FAIL_COND(!env);
  607. env->canvas_max_layer = p_max_layer;
  608. }
  609. void RasterizerSceneGLES2::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) {
  610. Environment *env = environment_owner.getornull(p_env);
  611. ERR_FAIL_COND(!env);
  612. env->ambient_color = p_color;
  613. env->ambient_energy = p_energy;
  614. env->ambient_sky_contribution = p_sky_contribution;
  615. }
  616. void RasterizerSceneGLES2::environment_set_camera_feed_id(RID p_env, int p_camera_feed_id) {
  617. Environment *env = environment_owner.getornull(p_env);
  618. ERR_FAIL_COND(!env);
  619. env->camera_feed_id = p_camera_feed_id;
  620. }
  621. void RasterizerSceneGLES2::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  622. Environment *env = environment_owner.getornull(p_env);
  623. ERR_FAIL_COND(!env);
  624. env->dof_blur_far_enabled = p_enable;
  625. env->dof_blur_far_distance = p_distance;
  626. env->dof_blur_far_transition = p_transition;
  627. env->dof_blur_far_amount = p_amount;
  628. env->dof_blur_far_quality = p_quality;
  629. }
  630. void RasterizerSceneGLES2::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  631. Environment *env = environment_owner.getornull(p_env);
  632. ERR_FAIL_COND(!env);
  633. env->dof_blur_near_enabled = p_enable;
  634. env->dof_blur_near_distance = p_distance;
  635. env->dof_blur_near_transition = p_transition;
  636. env->dof_blur_near_amount = p_amount;
  637. env->dof_blur_near_quality = p_quality;
  638. }
  639. void RasterizerSceneGLES2::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale, bool p_high_quality) {
  640. Environment *env = environment_owner.getornull(p_env);
  641. ERR_FAIL_COND(!env);
  642. env->glow_enabled = p_enable;
  643. env->glow_levels = p_level_flags;
  644. env->glow_intensity = p_intensity;
  645. env->glow_strength = p_strength;
  646. env->glow_bloom = p_bloom_threshold;
  647. env->glow_blend_mode = p_blend_mode;
  648. env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold;
  649. env->glow_hdr_bleed_scale = p_hdr_bleed_scale;
  650. env->glow_hdr_luminance_cap = p_hdr_luminance_cap;
  651. env->glow_bicubic_upscale = p_bicubic_upscale;
  652. env->glow_high_quality = p_high_quality;
  653. }
  654. void RasterizerSceneGLES2::environment_set_glow_map(RID p_env, float p_glow_map_strength, RID p_glow_map) {
  655. Environment *env = environment_owner.getornull(p_env);
  656. ERR_FAIL_COND(!env);
  657. }
  658. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {
  659. Environment *env = environment_owner.getornull(p_env);
  660. ERR_FAIL_COND(!env);
  661. }
  662. void RasterizerSceneGLES2::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) {
  663. Environment *env = environment_owner.getornull(p_env);
  664. ERR_FAIL_COND(!env);
  665. }
  666. void RasterizerSceneGLES2::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
  667. Environment *env = environment_owner.getornull(p_env);
  668. ERR_FAIL_COND(!env);
  669. }
  670. void RasterizerSceneGLES2::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  671. Environment *env = environment_owner.getornull(p_env);
  672. ERR_FAIL_COND(!env);
  673. }
  674. void RasterizerSceneGLES2::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {
  675. Environment *env = environment_owner.getornull(p_env);
  676. ERR_FAIL_COND(!env);
  677. env->adjustments_enabled = p_enable;
  678. env->adjustments_brightness = p_brightness;
  679. env->adjustments_contrast = p_contrast;
  680. env->adjustments_saturation = p_saturation;
  681. env->color_correction = p_ramp;
  682. }
  683. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {
  684. Environment *env = environment_owner.getornull(p_env);
  685. ERR_FAIL_COND(!env);
  686. env->fog_enabled = p_enable;
  687. env->fog_color = p_color;
  688. env->fog_sun_color = p_sun_color;
  689. env->fog_sun_amount = p_sun_amount;
  690. }
  691. void RasterizerSceneGLES2::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {
  692. Environment *env = environment_owner.getornull(p_env);
  693. ERR_FAIL_COND(!env);
  694. env->fog_depth_enabled = p_enable;
  695. env->fog_depth_begin = p_depth_begin;
  696. env->fog_depth_end = p_depth_end;
  697. env->fog_depth_curve = p_depth_curve;
  698. env->fog_transmit_enabled = p_transmit;
  699. env->fog_transmit_curve = p_transmit_curve;
  700. }
  701. void RasterizerSceneGLES2::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {
  702. Environment *env = environment_owner.getornull(p_env);
  703. ERR_FAIL_COND(!env);
  704. env->fog_height_enabled = p_enable;
  705. env->fog_height_min = p_min_height;
  706. env->fog_height_max = p_max_height;
  707. env->fog_height_curve = p_height_curve;
  708. }
  709. bool RasterizerSceneGLES2::is_environment(RID p_env) {
  710. return environment_owner.owns(p_env);
  711. }
  712. VS::EnvironmentBG RasterizerSceneGLES2::environment_get_background(RID p_env) {
  713. const Environment *env = environment_owner.getornull(p_env);
  714. ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX);
  715. return env->bg_mode;
  716. }
  717. int RasterizerSceneGLES2::environment_get_canvas_max_layer(RID p_env) {
  718. const Environment *env = environment_owner.getornull(p_env);
  719. ERR_FAIL_COND_V(!env, -1);
  720. return env->canvas_max_layer;
  721. }
  722. RID RasterizerSceneGLES2::light_instance_create(RID p_light) {
  723. LightInstance *light_instance = memnew(LightInstance);
  724. light_instance->last_scene_pass = 0;
  725. light_instance->light = p_light;
  726. light_instance->light_ptr = storage->light_owner.getornull(p_light);
  727. light_instance->light_index = 0xFFFF;
  728. // an ever increasing counter for each light added,
  729. // used for sorting lights for a consistent render
  730. light_instance->light_counter = _light_counter++;
  731. if (!light_instance->light_ptr) {
  732. memdelete(light_instance);
  733. ERR_FAIL_V_MSG(RID(), "Condition ' !light_instance->light_ptr ' is true.");
  734. }
  735. light_instance->self = light_instance_owner.make_rid(light_instance);
  736. return light_instance->self;
  737. }
  738. void RasterizerSceneGLES2::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  739. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  740. ERR_FAIL_COND(!light_instance);
  741. light_instance->transform = p_transform;
  742. }
  743. void RasterizerSceneGLES2::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) {
  744. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  745. ERR_FAIL_COND(!light_instance);
  746. if (light_instance->light_ptr->type != VS::LIGHT_DIRECTIONAL) {
  747. p_pass = 0;
  748. }
  749. ERR_FAIL_INDEX(p_pass, 4);
  750. light_instance->shadow_transform[p_pass].camera = p_projection;
  751. light_instance->shadow_transform[p_pass].transform = p_transform;
  752. light_instance->shadow_transform[p_pass].farplane = p_far;
  753. light_instance->shadow_transform[p_pass].split = p_split;
  754. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  755. }
  756. void RasterizerSceneGLES2::light_instance_mark_visible(RID p_light_instance) {
  757. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  758. ERR_FAIL_COND(!light_instance);
  759. light_instance->last_scene_pass = scene_pass;
  760. }
  761. //////////////////////
  762. RID RasterizerSceneGLES2::gi_probe_instance_create() {
  763. return RID();
  764. }
  765. void RasterizerSceneGLES2::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {
  766. }
  767. void RasterizerSceneGLES2::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  768. }
  769. void RasterizerSceneGLES2::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) {
  770. }
  771. ////////////////////////////
  772. ////////////////////////////
  773. ////////////////////////////
  774. void RasterizerSceneGLES2::_add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) {
  775. RasterizerStorageGLES2::Material *material = nullptr;
  776. RID material_src;
  777. if (p_instance->material_override.is_valid()) {
  778. material_src = p_instance->material_override;
  779. } else if (p_material >= 0) {
  780. material_src = p_instance->materials[p_material];
  781. } else {
  782. material_src = p_geometry->material;
  783. }
  784. if (material_src.is_valid()) {
  785. material = storage->material_owner.getornull(material_src);
  786. if (!material->shader || !material->shader->valid) {
  787. material = nullptr;
  788. }
  789. }
  790. if (!material) {
  791. material = storage->material_owner.getptr(default_material);
  792. }
  793. ERR_FAIL_COND(!material);
  794. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  795. while (material->next_pass.is_valid()) {
  796. material = storage->material_owner.getornull(material->next_pass);
  797. if (!material || !material->shader || !material->shader->valid) {
  798. break;
  799. }
  800. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  801. }
  802. // Repeat the "nested chain" logic also for the overlay
  803. if (p_instance->material_overlay.is_valid()) {
  804. material = storage->material_owner.getornull(p_instance->material_overlay);
  805. if (!material || !material->shader || !material->shader->valid) {
  806. return;
  807. }
  808. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  809. while (material->next_pass.is_valid()) {
  810. material = storage->material_owner.getornull(material->next_pass);
  811. if (!material || !material->shader || !material->shader->valid) {
  812. break;
  813. }
  814. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  815. }
  816. }
  817. }
  818. void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass) {
  819. bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture;
  820. bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX;
  821. bool has_alpha = has_base_alpha || has_blend_alpha;
  822. bool mirror = p_instance->mirror;
  823. if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED) {
  824. mirror = false;
  825. } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT) {
  826. mirror = !mirror;
  827. }
  828. //if (p_material->shader->spatial.uses_sss) {
  829. // state.used_sss = true;
  830. //}
  831. if (p_material->shader->spatial.uses_screen_texture) {
  832. state.used_screen_texture = true;
  833. }
  834. if (p_depth_pass) {
  835. if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) {
  836. return; //bye
  837. }
  838. if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  839. //shader does not use discard and does not write a vertex position, use generic material
  840. if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) {
  841. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided);
  842. mirror = false;
  843. } else {
  844. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material);
  845. }
  846. }
  847. has_alpha = false;
  848. }
  849. RenderList::Element *e = (has_alpha || p_material->shader->spatial.no_depth_test) ? render_list.add_alpha_element() : render_list.add_element();
  850. if (!e) {
  851. return;
  852. }
  853. e->geometry = p_geometry;
  854. e->material = p_material;
  855. e->instance = p_instance;
  856. e->owner = p_owner;
  857. e->sort_key = 0;
  858. e->depth_key = 0;
  859. e->use_accum = false;
  860. e->light_index = RenderList::MAX_LIGHTS;
  861. e->use_accum_ptr = &e->use_accum;
  862. e->instancing = (e->instance->base_type == VS::INSTANCE_MULTIMESH) ? 1 : 0;
  863. e->front_facing = false;
  864. if (e->geometry->last_pass != render_pass) {
  865. e->geometry->last_pass = render_pass;
  866. e->geometry->index = current_geometry_index++;
  867. }
  868. e->geometry_index = e->geometry->index;
  869. if (e->material->last_pass != render_pass) {
  870. e->material->last_pass = render_pass;
  871. e->material->index = current_material_index++;
  872. if (e->material->shader->last_pass != render_pass) {
  873. e->material->shader->index = current_shader_index++;
  874. }
  875. }
  876. e->material_index = e->material->index;
  877. if (mirror) {
  878. e->front_facing = true;
  879. }
  880. e->refprobe_0_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  881. e->refprobe_1_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  882. if (!p_depth_pass) {
  883. e->depth_layer = e->instance->depth_layer;
  884. e->priority = p_material->render_priority;
  885. if (has_alpha && p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  886. //add element to opaque
  887. RenderList::Element *eo = render_list.add_element();
  888. *eo = *e;
  889. eo->use_accum_ptr = &eo->use_accum;
  890. }
  891. int rpsize = e->instance->reflection_probe_instances.size();
  892. if (rpsize > 0) {
  893. bool first = true;
  894. rpsize = MIN(rpsize, 2); //more than 2 per object are not supported, this keeps it stable
  895. for (int i = 0; i < rpsize; i++) {
  896. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(e->instance->reflection_probe_instances[i]);
  897. if (rpi->last_pass != render_pass) {
  898. continue;
  899. }
  900. if (first) {
  901. e->refprobe_0_index = rpi->index;
  902. first = false;
  903. } else {
  904. e->refprobe_1_index = rpi->index;
  905. break;
  906. }
  907. }
  908. /* if (e->refprobe_0_index > e->refprobe_1_index) { //if both are valid, swap them to keep order as best as possible
  909. uint64_t tmp = e->refprobe_0_index;
  910. e->refprobe_0_index = e->refprobe_1_index;
  911. e->refprobe_1_index = tmp;
  912. }*/
  913. }
  914. //add directional lights
  915. if (p_material->shader->spatial.unshaded) {
  916. e->light_mode = LIGHTMODE_UNSHADED;
  917. } else {
  918. bool copy = false;
  919. for (int i = 0; i < render_directional_lights; i++) {
  920. if (copy) {
  921. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  922. if (!e2) {
  923. break;
  924. }
  925. *e2 = *e; //this includes accum ptr :)
  926. e = e2;
  927. }
  928. //directional sort key
  929. e->light_type1 = 0;
  930. e->light_type2 = 1;
  931. e->light_index = i;
  932. copy = true;
  933. }
  934. //add omni / spots
  935. for (int i = 0; i < e->instance->light_instances.size(); i++) {
  936. LightInstance *li = light_instance_owner.getornull(e->instance->light_instances[i]);
  937. if (!li || li->light_index >= render_light_instance_count || render_light_instances[li->light_index] != li) {
  938. continue; // too many or light_index did not correspond to the light instances to be rendered
  939. }
  940. if (copy) {
  941. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  942. if (!e2) {
  943. break;
  944. }
  945. *e2 = *e; //this includes accum ptr :)
  946. e = e2;
  947. }
  948. //directional sort key
  949. e->light_type1 = 1;
  950. e->light_type2 = li->light_ptr->type == VisualServer::LIGHT_OMNI ? 0 : 1;
  951. e->light_index = li->light_index;
  952. copy = true;
  953. }
  954. if (e->instance->lightmap.is_valid()) {
  955. e->light_mode = LIGHTMODE_LIGHTMAP;
  956. } else if (!e->instance->lightmap_capture_data.empty()) {
  957. e->light_mode = LIGHTMODE_LIGHTMAP_CAPTURE;
  958. } else {
  959. e->light_mode = LIGHTMODE_NORMAL;
  960. }
  961. }
  962. }
  963. // do not add anything here, as lights are duplicated elements..
  964. if (p_material->shader->spatial.uses_time) {
  965. VisualServerRaster::redraw_request(false);
  966. }
  967. }
  968. void RasterizerSceneGLES2::_copy_texture_to_buffer(GLuint p_texture, GLuint p_buffer) {
  969. //copy to front buffer
  970. glBindFramebuffer(GL_FRAMEBUFFER, p_buffer);
  971. glDepthMask(GL_FALSE);
  972. glDisable(GL_DEPTH_TEST);
  973. glDisable(GL_CULL_FACE);
  974. glDisable(GL_BLEND);
  975. glDepthFunc(GL_LEQUAL);
  976. glColorMask(1, 1, 1, 1);
  977. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  978. glBindTexture(GL_TEXTURE_2D, p_texture);
  979. glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
  980. storage->shaders.copy.bind();
  981. storage->bind_quad_array();
  982. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  983. glBindBuffer(GL_ARRAY_BUFFER, 0);
  984. }
  985. void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) {
  986. render_pass++;
  987. current_material_index = 0;
  988. current_geometry_index = 0;
  989. current_light_index = 0;
  990. current_refprobe_index = 0;
  991. current_shader_index = 0;
  992. for (int i = 0; i < p_cull_count; i++) {
  993. InstanceBase *instance = p_cull_result[i];
  994. switch (instance->base_type) {
  995. case VS::INSTANCE_MESH: {
  996. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getornull(instance->base);
  997. ERR_CONTINUE(!mesh);
  998. int num_surfaces = mesh->surfaces.size();
  999. for (int j = 0; j < num_surfaces; j++) {
  1000. int material_index = instance->materials[j].is_valid() ? j : -1;
  1001. RasterizerStorageGLES2::Surface *surface = mesh->surfaces[j];
  1002. _add_geometry(surface, instance, nullptr, material_index, p_depth_pass, p_shadow_pass);
  1003. }
  1004. } break;
  1005. case VS::INSTANCE_MULTIMESH: {
  1006. RasterizerStorageGLES2::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(instance->base);
  1007. ERR_CONTINUE(!multi_mesh);
  1008. if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0) {
  1009. continue;
  1010. }
  1011. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh);
  1012. if (!mesh) {
  1013. continue;
  1014. }
  1015. int ssize = mesh->surfaces.size();
  1016. for (int j = 0; j < ssize; j++) {
  1017. RasterizerStorageGLES2::Surface *s = mesh->surfaces[j];
  1018. _add_geometry(s, instance, multi_mesh, -1, p_depth_pass, p_shadow_pass);
  1019. }
  1020. } break;
  1021. case VS::INSTANCE_IMMEDIATE: {
  1022. RasterizerStorageGLES2::Immediate *im = storage->immediate_owner.getptr(instance->base);
  1023. ERR_CONTINUE(!im);
  1024. _add_geometry(im, instance, nullptr, -1, p_depth_pass, p_shadow_pass);
  1025. } break;
  1026. default: {
  1027. }
  1028. }
  1029. }
  1030. }
  1031. const GLenum RasterizerSceneGLES2::gl_primitive[] = {
  1032. GL_POINTS,
  1033. GL_LINES,
  1034. GL_LINE_STRIP,
  1035. GL_LINE_LOOP,
  1036. GL_TRIANGLES,
  1037. GL_TRIANGLE_STRIP,
  1038. GL_TRIANGLE_FAN
  1039. };
  1040. void RasterizerSceneGLES2::_set_cull(bool p_front, bool p_disabled, bool p_reverse_cull) {
  1041. bool front = p_front;
  1042. if (p_reverse_cull) {
  1043. front = !front;
  1044. }
  1045. if (p_disabled != state.cull_disabled) {
  1046. if (p_disabled) {
  1047. glDisable(GL_CULL_FACE);
  1048. } else {
  1049. glEnable(GL_CULL_FACE);
  1050. }
  1051. state.cull_disabled = p_disabled;
  1052. }
  1053. if (front != state.cull_front) {
  1054. glCullFace(front ? GL_FRONT : GL_BACK);
  1055. state.cull_front = front;
  1056. }
  1057. }
  1058. bool RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_alpha_pass, Size2i p_skeleton_tex_size) {
  1059. // material parameters
  1060. state.scene_shader.set_custom_shader(p_material->shader->custom_code_id);
  1061. if (p_material->shader->spatial.uses_screen_texture && storage->frame.current_rt) {
  1062. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  1063. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->copy_screen_effect.color);
  1064. }
  1065. if (p_material->shader->spatial.uses_depth_texture && storage->frame.current_rt) {
  1066. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  1067. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
  1068. }
  1069. bool shader_rebind = state.scene_shader.bind();
  1070. if (p_material->shader->spatial.no_depth_test || p_material->shader->spatial.uses_depth_texture) {
  1071. glDisable(GL_DEPTH_TEST);
  1072. } else {
  1073. glEnable(GL_DEPTH_TEST);
  1074. }
  1075. switch (p_material->shader->spatial.depth_draw_mode) {
  1076. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS:
  1077. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_OPAQUE: {
  1078. glDepthMask(!p_alpha_pass && !p_material->shader->spatial.uses_depth_texture);
  1079. } break;
  1080. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALWAYS: {
  1081. glDepthMask(GL_TRUE && !p_material->shader->spatial.uses_depth_texture);
  1082. } break;
  1083. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_NEVER: {
  1084. glDepthMask(GL_FALSE);
  1085. } break;
  1086. }
  1087. int tc = p_material->textures.size();
  1088. const Pair<StringName, RID> *textures = p_material->textures.ptr();
  1089. const ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptr();
  1090. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TEXTURE_SIZE, p_skeleton_tex_size);
  1091. state.current_main_tex = 0;
  1092. for (int i = 0; i < tc; i++) {
  1093. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + i);
  1094. RasterizerStorageGLES2::Texture *t = storage->texture_owner.getornull(textures[i].second);
  1095. if (!t) {
  1096. switch (texture_hints[i]) {
  1097. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
  1098. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
  1099. glBindTexture(GL_TEXTURE_2D, storage->resources.black_tex);
  1100. } break;
  1101. case ShaderLanguage::ShaderNode::Uniform::HINT_TRANSPARENT: {
  1102. glBindTexture(GL_TEXTURE_2D, storage->resources.transparent_tex);
  1103. } break;
  1104. case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
  1105. glBindTexture(GL_TEXTURE_2D, storage->resources.aniso_tex);
  1106. } break;
  1107. case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
  1108. glBindTexture(GL_TEXTURE_2D, storage->resources.normal_tex);
  1109. } break;
  1110. default: {
  1111. glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex);
  1112. } break;
  1113. }
  1114. continue;
  1115. }
  1116. if (t->redraw_if_visible) { //must check before proxy because this is often used with proxies
  1117. VisualServerRaster::redraw_request(false);
  1118. }
  1119. t = t->get_ptr();
  1120. #ifdef TOOLS_ENABLED
  1121. if (t->detect_3d) {
  1122. t->detect_3d(t->detect_3d_ud);
  1123. }
  1124. #endif
  1125. #ifdef TOOLS_ENABLED
  1126. if (t->detect_normal && texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL) {
  1127. t->detect_normal(t->detect_normal_ud);
  1128. }
  1129. #endif
  1130. if (t->render_target) {
  1131. t->render_target->used_in_frame = true;
  1132. }
  1133. glBindTexture(t->target, t->tex_id);
  1134. if (i == 0) {
  1135. state.current_main_tex = t->tex_id;
  1136. }
  1137. }
  1138. state.scene_shader.use_material((void *)p_material);
  1139. return shader_rebind;
  1140. }
  1141. void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton) {
  1142. switch (p_element->instance->base_type) {
  1143. case VS::INSTANCE_MESH: {
  1144. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1145. if (s->index_array_len > 0) {
  1146. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1147. }
  1148. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1149. if (s->attribs[i].enabled) {
  1150. glEnableVertexAttribArray(i);
  1151. if (!s->blend_shape_data.empty() && i != VS::ARRAY_BONES && s->blend_shape_buffer_size > 0) {
  1152. glBindBuffer(GL_ARRAY_BUFFER, s->blend_shape_buffer_id);
  1153. // When using octahedral compression (2 component normal/tangent)
  1154. // decompression changes the component count to 3/4
  1155. int size;
  1156. switch (i) {
  1157. case VS::ARRAY_NORMAL: {
  1158. size = 3;
  1159. } break;
  1160. case VS::ARRAY_TANGENT: {
  1161. size = 4;
  1162. } break;
  1163. default:
  1164. size = s->attribs[i].size;
  1165. }
  1166. glVertexAttribPointer(s->attribs[i].index, size, GL_FLOAT, GL_FALSE, 8 * 4 * sizeof(float), CAST_INT_TO_UCHAR_PTR(i * 4 * sizeof(float)));
  1167. } else {
  1168. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1169. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, CAST_INT_TO_UCHAR_PTR(s->attribs[i].offset));
  1170. }
  1171. } else {
  1172. glDisableVertexAttribArray(i);
  1173. switch (i) {
  1174. case VS::ARRAY_NORMAL: {
  1175. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1176. } break;
  1177. case VS::ARRAY_COLOR: {
  1178. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1179. } break;
  1180. default: {
  1181. }
  1182. }
  1183. }
  1184. }
  1185. bool clear_skeleton_buffer = storage->config.use_skeleton_software;
  1186. if (p_skeleton) {
  1187. if (!storage->config.use_skeleton_software) {
  1188. //use float texture workflow
  1189. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 1);
  1190. glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id);
  1191. } else {
  1192. //use transform buffer workflow
  1193. ERR_FAIL_COND(p_skeleton->use_2d);
  1194. PoolVector<float> &transform_buffer = storage->resources.skeleton_transform_cpu_buffer;
  1195. if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1196. break; // the whole instance has a skeleton, but this surface is not affected by it.
  1197. }
  1198. // 3 * vec4 per vertex
  1199. if (transform_buffer.size() < s->array_len * 12) {
  1200. transform_buffer.resize(s->array_len * 12);
  1201. }
  1202. const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset;
  1203. const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride;
  1204. const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset;
  1205. const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride;
  1206. {
  1207. PoolVector<float>::Write write = transform_buffer.write();
  1208. float *buffer = write.ptr();
  1209. PoolVector<uint8_t>::Read vertex_array_read = s->data.read();
  1210. const uint8_t *vertex_data = vertex_array_read.ptr();
  1211. for (int i = 0; i < s->array_len; i++) {
  1212. // do magic
  1213. size_t bones[4];
  1214. float bone_weight[4];
  1215. if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) {
  1216. // read as byte
  1217. const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride);
  1218. bones[0] = bones_ptr[0];
  1219. bones[1] = bones_ptr[1];
  1220. bones[2] = bones_ptr[2];
  1221. bones[3] = bones_ptr[3];
  1222. } else {
  1223. // read as short
  1224. const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride));
  1225. bones[0] = bones_ptr[0];
  1226. bones[1] = bones_ptr[1];
  1227. bones[2] = bones_ptr[2];
  1228. bones[3] = bones_ptr[3];
  1229. }
  1230. if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) {
  1231. // read as float
  1232. const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1233. bone_weight[0] = weight_ptr[0];
  1234. bone_weight[1] = weight_ptr[1];
  1235. bone_weight[2] = weight_ptr[2];
  1236. bone_weight[3] = weight_ptr[3];
  1237. } else {
  1238. // read as half
  1239. const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1240. bone_weight[0] = (weight_ptr[0] / (float)0xFFFF);
  1241. bone_weight[1] = (weight_ptr[1] / (float)0xFFFF);
  1242. bone_weight[2] = (weight_ptr[2] / (float)0xFFFF);
  1243. bone_weight[3] = (weight_ptr[3] / (float)0xFFFF);
  1244. }
  1245. Transform transform;
  1246. Transform bone_transforms[4] = {
  1247. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]),
  1248. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]),
  1249. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]),
  1250. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]),
  1251. };
  1252. transform.origin =
  1253. bone_weight[0] * bone_transforms[0].origin +
  1254. bone_weight[1] * bone_transforms[1].origin +
  1255. bone_weight[2] * bone_transforms[2].origin +
  1256. bone_weight[3] * bone_transforms[3].origin;
  1257. transform.basis =
  1258. bone_transforms[0].basis * bone_weight[0] +
  1259. bone_transforms[1].basis * bone_weight[1] +
  1260. bone_transforms[2].basis * bone_weight[2] +
  1261. bone_transforms[3].basis * bone_weight[3];
  1262. float row[3][4] = {
  1263. { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] },
  1264. { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] },
  1265. { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] },
  1266. };
  1267. size_t transform_buffer_offset = i * 12;
  1268. memcpy(&buffer[transform_buffer_offset], row, sizeof(row));
  1269. }
  1270. }
  1271. storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12);
  1272. //enable transform buffer and bind it
  1273. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1274. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1275. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1276. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1277. glVertexAttribPointer(INSTANCE_BONE_BASE + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0));
  1278. glVertexAttribPointer(INSTANCE_BONE_BASE + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1));
  1279. glVertexAttribPointer(INSTANCE_BONE_BASE + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2));
  1280. clear_skeleton_buffer = false;
  1281. }
  1282. }
  1283. if (clear_skeleton_buffer) {
  1284. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1285. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1286. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1287. }
  1288. } break;
  1289. case VS::INSTANCE_MULTIMESH: {
  1290. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1291. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1292. if (s->index_array_len > 0) {
  1293. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1294. }
  1295. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1296. if (s->attribs[i].enabled) {
  1297. glEnableVertexAttribArray(i);
  1298. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, CAST_INT_TO_UCHAR_PTR(s->attribs[i].offset));
  1299. } else {
  1300. glDisableVertexAttribArray(i);
  1301. switch (i) {
  1302. case VS::ARRAY_NORMAL: {
  1303. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1304. } break;
  1305. case VS::ARRAY_COLOR: {
  1306. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1307. } break;
  1308. default: {
  1309. }
  1310. }
  1311. }
  1312. }
  1313. // prepare multimesh (disable)
  1314. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 0);
  1315. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 1);
  1316. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 2);
  1317. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 3);
  1318. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 4);
  1319. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1320. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1321. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1322. } break;
  1323. case VS::INSTANCE_IMMEDIATE: {
  1324. } break;
  1325. default: {
  1326. }
  1327. }
  1328. }
  1329. void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) {
  1330. switch (p_element->instance->base_type) {
  1331. case VS::INSTANCE_MESH: {
  1332. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1333. // drawing
  1334. if (s->index_array_len > 0) {
  1335. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, nullptr);
  1336. storage->info.render.vertices_count += s->index_array_len;
  1337. } else {
  1338. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1339. storage->info.render.vertices_count += s->array_len;
  1340. }
  1341. /*
  1342. if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1343. //clean up after skeleton
  1344. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1345. glDisableVertexAttribArray(VS::ARRAY_MAX + 0);
  1346. glDisableVertexAttribArray(VS::ARRAY_MAX + 1);
  1347. glDisableVertexAttribArray(VS::ARRAY_MAX + 2);
  1348. glVertexAttrib4f(VS::ARRAY_MAX + 0, 1, 0, 0, 0);
  1349. glVertexAttrib4f(VS::ARRAY_MAX + 1, 0, 1, 0, 0);
  1350. glVertexAttrib4f(VS::ARRAY_MAX + 2, 0, 0, 1, 0);
  1351. }
  1352. */
  1353. } break;
  1354. case VS::INSTANCE_MULTIMESH: {
  1355. RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner);
  1356. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1357. int amount = MIN(multi_mesh->size, multi_mesh->visible_instances);
  1358. if (amount == -1) {
  1359. amount = multi_mesh->size;
  1360. }
  1361. if (!amount) {
  1362. return;
  1363. }
  1364. int stride = multi_mesh->color_floats + multi_mesh->custom_data_floats + multi_mesh->xform_floats;
  1365. int color_ofs = multi_mesh->xform_floats;
  1366. int custom_data_ofs = color_ofs + multi_mesh->color_floats;
  1367. // drawing
  1368. const float *base_buffer = multi_mesh->data.ptr();
  1369. for (int i = 0; i < amount; i++) {
  1370. const float *buffer = base_buffer + i * stride;
  1371. {
  1372. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 0, &buffer[0]);
  1373. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 1, &buffer[4]);
  1374. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 2, &buffer[8]);
  1375. }
  1376. if (multi_mesh->color_floats) {
  1377. if (multi_mesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
  1378. uint8_t *color_data = (uint8_t *)(buffer + color_ofs);
  1379. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0);
  1380. } else {
  1381. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 3, buffer + color_ofs);
  1382. }
  1383. } else {
  1384. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, 1.0, 1.0, 1.0, 1.0);
  1385. }
  1386. if (multi_mesh->custom_data_floats) {
  1387. if (multi_mesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
  1388. uint8_t *custom_data = (uint8_t *)(buffer + custom_data_ofs);
  1389. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 4, custom_data[0] / 255.0, custom_data[1] / 255.0, custom_data[2] / 255.0, custom_data[3] / 255.0);
  1390. } else {
  1391. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 4, buffer + custom_data_ofs);
  1392. }
  1393. }
  1394. if (s->index_array_len > 0) {
  1395. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, nullptr);
  1396. storage->info.render.vertices_count += s->index_array_len;
  1397. } else {
  1398. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1399. storage->info.render.vertices_count += s->array_len;
  1400. }
  1401. }
  1402. } break;
  1403. case VS::INSTANCE_IMMEDIATE: {
  1404. const RasterizerStorageGLES2::Immediate *im = static_cast<const RasterizerStorageGLES2::Immediate *>(p_element->geometry);
  1405. if (im->building) {
  1406. return;
  1407. }
  1408. bool restore_tex = false;
  1409. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  1410. for (const List<RasterizerStorageGLES2::Immediate::Chunk>::Element *E = im->chunks.front(); E; E = E->next()) {
  1411. const RasterizerStorageGLES2::Immediate::Chunk &c = E->get();
  1412. if (c.vertices.empty()) {
  1413. continue;
  1414. }
  1415. int vertices = c.vertices.size();
  1416. uint32_t buf_ofs = 0;
  1417. storage->info.render.vertices_count += vertices;
  1418. if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) {
  1419. RasterizerStorageGLES2::Texture *t = storage->texture_owner.get(c.texture);
  1420. if (t->redraw_if_visible) {
  1421. VisualServerRaster::redraw_request(false);
  1422. }
  1423. t = t->get_ptr();
  1424. #ifdef TOOLS_ENABLED
  1425. if (t->detect_3d) {
  1426. t->detect_3d(t->detect_3d_ud);
  1427. }
  1428. #endif
  1429. if (t->render_target) {
  1430. t->render_target->used_in_frame = true;
  1431. }
  1432. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  1433. glBindTexture(t->target, t->tex_id);
  1434. restore_tex = true;
  1435. } else if (restore_tex) {
  1436. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  1437. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1438. restore_tex = false;
  1439. }
  1440. if (!c.normals.empty()) {
  1441. glEnableVertexAttribArray(VS::ARRAY_NORMAL);
  1442. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr());
  1443. glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1444. buf_ofs += sizeof(Vector3) * vertices;
  1445. } else {
  1446. glDisableVertexAttribArray(VS::ARRAY_NORMAL);
  1447. }
  1448. if (!c.tangents.empty()) {
  1449. glEnableVertexAttribArray(VS::ARRAY_TANGENT);
  1450. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr());
  1451. glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, GL_FALSE, sizeof(Plane), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1452. buf_ofs += sizeof(Plane) * vertices;
  1453. } else {
  1454. glDisableVertexAttribArray(VS::ARRAY_TANGENT);
  1455. }
  1456. if (!c.colors.empty()) {
  1457. glEnableVertexAttribArray(VS::ARRAY_COLOR);
  1458. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr());
  1459. glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(Color), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1460. buf_ofs += sizeof(Color) * vertices;
  1461. } else {
  1462. glDisableVertexAttribArray(VS::ARRAY_COLOR);
  1463. }
  1464. if (!c.uvs.empty()) {
  1465. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  1466. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr());
  1467. glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1468. buf_ofs += sizeof(Vector2) * vertices;
  1469. } else {
  1470. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  1471. }
  1472. if (!c.uv2s.empty()) {
  1473. glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1474. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uv2s.ptr());
  1475. glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1476. buf_ofs += sizeof(Vector2) * vertices;
  1477. } else {
  1478. glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1479. }
  1480. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  1481. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr());
  1482. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1483. glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size());
  1484. }
  1485. if (restore_tex) {
  1486. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  1487. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1488. restore_tex = false;
  1489. }
  1490. } break;
  1491. default: {
  1492. }
  1493. }
  1494. }
  1495. void RasterizerSceneGLES2::_setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas) {
  1496. //turn off all by default
  1497. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1498. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1499. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, false);
  1500. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, false);
  1501. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, false);
  1502. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, false);
  1503. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, false);
  1504. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1505. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM3, false);
  1506. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1507. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1508. if (!p_light) { //no light, return off
  1509. return;
  1510. }
  1511. //turn on lighting
  1512. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, true);
  1513. switch (p_light->light_ptr->type) {
  1514. case VS::LIGHT_DIRECTIONAL: {
  1515. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, true);
  1516. switch (p_light->light_ptr->directional_shadow_mode) {
  1517. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1518. //no need
  1519. } break;
  1520. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1521. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true);
  1522. } break;
  1523. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_3_SPLITS: {
  1524. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM3, true);
  1525. } break;
  1526. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1527. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true);
  1528. } break;
  1529. }
  1530. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, p_light->light_ptr->directional_blend_splits);
  1531. if (!state.render_no_shadows && p_light->light_ptr->shadow) {
  1532. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1533. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1534. if (storage->config.use_rgba_3d_shadows) {
  1535. glBindTexture(GL_TEXTURE_2D, directional_shadow.color);
  1536. } else {
  1537. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  1538. }
  1539. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1540. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1541. }
  1542. } break;
  1543. case VS::LIGHT_OMNI: {
  1544. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, true);
  1545. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1546. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1547. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1548. if (storage->config.use_rgba_3d_shadows) {
  1549. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  1550. } else {
  1551. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1552. }
  1553. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1554. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1555. }
  1556. } break;
  1557. case VS::LIGHT_SPOT: {
  1558. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, true);
  1559. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1560. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1561. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1562. if (storage->config.use_rgba_3d_shadows) {
  1563. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  1564. } else {
  1565. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1566. }
  1567. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1568. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1569. }
  1570. } break;
  1571. }
  1572. }
  1573. void RasterizerSceneGLES2::_setup_light(LightInstance *light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform, bool accum_pass) {
  1574. RasterizerStorageGLES2::Light *light_ptr = light->light_ptr;
  1575. //common parameters
  1576. float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY];
  1577. float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
  1578. float sign = (light_ptr->negative && !accum_pass) ? -1 : 1; //inverse color for base pass lights only
  1579. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular);
  1580. Color color = light_ptr->color * sign * energy * Math_PI;
  1581. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color);
  1582. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_COLOR, light_ptr->shadow_color);
  1583. //specific parameters
  1584. switch (light_ptr->type) {
  1585. case VS::LIGHT_DIRECTIONAL: {
  1586. //not using inverse for performance, view should be normalized anyway
  1587. Vector3 direction = p_view_transform.basis.xform_inv(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1588. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1589. CameraMatrix matrices[4];
  1590. if (!state.render_no_shadows && light_ptr->shadow && directional_shadow.depth) {
  1591. int shadow_count = 0;
  1592. Color split_offsets;
  1593. switch (light_ptr->directional_shadow_mode) {
  1594. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1595. shadow_count = 1;
  1596. } break;
  1597. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1598. shadow_count = 2;
  1599. } break;
  1600. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_3_SPLITS: {
  1601. shadow_count = 3;
  1602. } break;
  1603. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1604. shadow_count = 4;
  1605. } break;
  1606. }
  1607. for (int k = 0; k < shadow_count; k++) {
  1608. uint32_t x = light->directional_rect.position.x;
  1609. uint32_t y = light->directional_rect.position.y;
  1610. uint32_t width = light->directional_rect.size.x;
  1611. uint32_t height = light->directional_rect.size.y;
  1612. if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_3_SPLITS || light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  1613. width /= 2;
  1614. height /= 2;
  1615. if (k == 1) {
  1616. x += width;
  1617. } else if (k == 2) {
  1618. y += height;
  1619. } else if (k == 3) {
  1620. x += width;
  1621. y += height;
  1622. }
  1623. } else if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  1624. height /= 2;
  1625. if (k != 0) {
  1626. y += height;
  1627. }
  1628. }
  1629. split_offsets[k] = light->shadow_transform[k].split;
  1630. Transform modelview = (p_view_transform.inverse() * light->shadow_transform[k].transform).affine_inverse();
  1631. CameraMatrix bias;
  1632. bias.set_light_bias();
  1633. CameraMatrix rectm;
  1634. Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size);
  1635. rectm.set_light_atlas_rect(atlas_rect);
  1636. CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview;
  1637. matrices[k] = shadow_mtx;
  1638. /*Color light_clamp;
  1639. light_clamp[0] = atlas_rect.position.x;
  1640. light_clamp[1] = atlas_rect.position.y;
  1641. light_clamp[2] = atlas_rect.size.x;
  1642. light_clamp[3] = atlas_rect.size.y;*/
  1643. }
  1644. // state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1645. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / directional_shadow.size, 1.0 / directional_shadow.size));
  1646. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets);
  1647. const float fade_start = light_ptr->param[VS::LIGHT_PARAM_SHADOW_FADE_START];
  1648. // Using 1.0 would break `smoothstep()` in the shader.
  1649. state.scene_shader.set_uniform(SceneShaderGLES2::FADE_FROM, -split_offsets[shadow_count - 1] * MIN(fade_start, 0.999));
  1650. state.scene_shader.set_uniform(SceneShaderGLES2::FADE_TO, -split_offsets[shadow_count - 1]);
  1651. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, matrices[0]);
  1652. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]);
  1653. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]);
  1654. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]);
  1655. }
  1656. } break;
  1657. case VS::LIGHT_OMNI: {
  1658. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1659. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1660. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1661. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1662. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1663. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1664. if (!state.render_no_shadows && light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1665. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1666. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1667. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1668. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1669. uint32_t atlas_size = shadow_atlas->size;
  1670. uint32_t quadrant_size = atlas_size >> 1;
  1671. uint32_t x = (quadrant & 1) * quadrant_size;
  1672. uint32_t y = (quadrant >> 1) * quadrant_size;
  1673. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1674. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1675. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1676. uint32_t width = shadow_size;
  1677. uint32_t height = shadow_size;
  1678. if (light->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  1679. height /= 2;
  1680. } else {
  1681. width /= 2;
  1682. }
  1683. Transform proj = (p_view_transform.inverse() * light->transform).inverse();
  1684. Color light_clamp;
  1685. light_clamp[0] = float(x) / atlas_size;
  1686. light_clamp[1] = float(y) / atlas_size;
  1687. light_clamp[2] = float(width) / atlas_size;
  1688. light_clamp[3] = float(height) / atlas_size;
  1689. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1690. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj);
  1691. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1692. }
  1693. } break;
  1694. case VS::LIGHT_SPOT: {
  1695. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1696. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1697. Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1698. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1699. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1700. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1701. float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION];
  1702. float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE];
  1703. angle = Math::cos(Math::deg2rad(angle));
  1704. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1705. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation);
  1706. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation);
  1707. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle);
  1708. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1709. if (!state.render_no_shadows && light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1710. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1711. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1712. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1713. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1714. uint32_t atlas_size = shadow_atlas->size;
  1715. uint32_t quadrant_size = atlas_size >> 1;
  1716. uint32_t x = (quadrant & 1) * quadrant_size;
  1717. uint32_t y = (quadrant >> 1) * quadrant_size;
  1718. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1719. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1720. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1721. uint32_t width = shadow_size;
  1722. uint32_t height = shadow_size;
  1723. Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size);
  1724. Color light_clamp;
  1725. light_clamp[0] = rect.position.x;
  1726. light_clamp[1] = rect.position.y;
  1727. light_clamp[2] = rect.size.x;
  1728. light_clamp[3] = rect.size.y;
  1729. Transform modelview = (p_view_transform.inverse() * light->transform).inverse();
  1730. CameraMatrix bias;
  1731. bias.set_light_bias();
  1732. CameraMatrix rectm;
  1733. rectm.set_light_atlas_rect(rect);
  1734. CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview;
  1735. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1736. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix);
  1737. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1738. }
  1739. } break;
  1740. default: {
  1741. }
  1742. }
  1743. }
  1744. void RasterizerSceneGLES2::_setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env) {
  1745. if (p_refprobe1) {
  1746. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_USE_BOX_PROJECT, p_refprobe1->probe_ptr->box_projection);
  1747. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_EXTENTS, p_refprobe1->probe_ptr->extents);
  1748. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_OFFSET, p_refprobe1->probe_ptr->origin_offset);
  1749. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_EXTERIOR, !p_refprobe1->probe_ptr->interior);
  1750. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_INTENSITY, p_refprobe1->probe_ptr->intensity);
  1751. Color ambient;
  1752. if (p_refprobe1->probe_ptr->interior) {
  1753. ambient = p_refprobe1->probe_ptr->interior_ambient * p_refprobe1->probe_ptr->interior_ambient_energy;
  1754. ambient.a = p_refprobe1->probe_ptr->interior_ambient_probe_contrib;
  1755. } else if (p_env) {
  1756. ambient = p_env->ambient_color * p_env->ambient_energy;
  1757. ambient.a = p_env->ambient_sky_contribution;
  1758. }
  1759. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_AMBIENT, ambient);
  1760. Transform proj = (p_view_transform.inverse() * p_refprobe1->transform).affine_inverse();
  1761. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_LOCAL_MATRIX, proj);
  1762. }
  1763. if (p_refprobe2) {
  1764. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_USE_BOX_PROJECT, p_refprobe2->probe_ptr->box_projection);
  1765. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_EXTENTS, p_refprobe2->probe_ptr->extents);
  1766. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_OFFSET, p_refprobe2->probe_ptr->origin_offset);
  1767. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_EXTERIOR, !p_refprobe2->probe_ptr->interior);
  1768. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_INTENSITY, p_refprobe2->probe_ptr->intensity);
  1769. Color ambient;
  1770. if (p_refprobe2->probe_ptr->interior) {
  1771. ambient = p_refprobe2->probe_ptr->interior_ambient * p_refprobe2->probe_ptr->interior_ambient_energy;
  1772. ambient.a = p_refprobe2->probe_ptr->interior_ambient_probe_contrib;
  1773. } else if (p_env) {
  1774. ambient = p_env->ambient_color * p_env->ambient_energy;
  1775. ambient.a = p_env->ambient_sky_contribution;
  1776. }
  1777. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_AMBIENT, ambient);
  1778. Transform proj = (p_view_transform.inverse() * p_refprobe2->transform).affine_inverse();
  1779. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_LOCAL_MATRIX, proj);
  1780. }
  1781. }
  1782. void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, const int p_eye, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow) {
  1783. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  1784. Vector2 viewport_size = state.viewport_size;
  1785. Vector2 screen_pixel_size = state.screen_pixel_size;
  1786. bool use_radiance_map = false;
  1787. if (!p_shadow && p_base_env) {
  1788. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 2);
  1789. glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env);
  1790. use_radiance_map = true;
  1791. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, true); //since prev unshaded is false, this needs to be true if exists
  1792. }
  1793. bool prev_unshaded = false;
  1794. bool prev_instancing = false;
  1795. bool prev_depth_prepass = false;
  1796. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1797. RasterizerStorageGLES2::Material *prev_material = nullptr;
  1798. RasterizerStorageGLES2::Geometry *prev_geometry = nullptr;
  1799. RasterizerStorageGLES2::Skeleton *prev_skeleton = nullptr;
  1800. RasterizerStorageGLES2::GeometryOwner *prev_owner = nullptr;
  1801. bool prev_octahedral_compression = false;
  1802. Transform view_transform_inverse = p_view_transform.inverse();
  1803. CameraMatrix projection_inverse = p_projection.inverse();
  1804. bool prev_base_pass = false;
  1805. LightInstance *prev_light = nullptr;
  1806. bool prev_vertex_lit = false;
  1807. ReflectionProbeInstance *prev_refprobe_1 = nullptr;
  1808. ReflectionProbeInstance *prev_refprobe_2 = nullptr;
  1809. int prev_blend_mode = -2; //will always catch the first go
  1810. state.cull_front = false;
  1811. state.cull_disabled = false;
  1812. glCullFace(GL_BACK);
  1813. glEnable(GL_CULL_FACE);
  1814. if (p_alpha_pass) {
  1815. glEnable(GL_BLEND);
  1816. } else {
  1817. glDisable(GL_BLEND);
  1818. }
  1819. float fog_max_distance = 0;
  1820. bool using_fog = false;
  1821. if (p_env && !p_shadow && p_env->fog_enabled && (p_env->fog_depth_enabled || p_env->fog_height_enabled)) {
  1822. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, p_env->fog_depth_enabled);
  1823. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, p_env->fog_height_enabled);
  1824. if (p_env->fog_depth_end > 0) {
  1825. fog_max_distance = p_env->fog_depth_end;
  1826. } else {
  1827. fog_max_distance = p_projection.get_z_far();
  1828. }
  1829. using_fog = true;
  1830. }
  1831. RasterizerStorageGLES2::Texture *prev_lightmap = nullptr;
  1832. float lightmap_energy = 1.0;
  1833. bool prev_use_lightmap_capture = false;
  1834. storage->info.render.draw_call_count += p_element_count;
  1835. for (int i = 0; i < p_element_count; i++) {
  1836. RenderList::Element *e = p_elements[i];
  1837. RasterizerStorageGLES2::Material *material = e->material;
  1838. bool rebind = false;
  1839. bool accum_pass = *e->use_accum_ptr;
  1840. *e->use_accum_ptr = true; //set to accum for next time this is found
  1841. LightInstance *light = nullptr;
  1842. ReflectionProbeInstance *refprobe_1 = nullptr;
  1843. ReflectionProbeInstance *refprobe_2 = nullptr;
  1844. RasterizerStorageGLES2::Texture *lightmap = nullptr;
  1845. bool use_lightmap_capture = false;
  1846. bool rebind_light = false;
  1847. bool rebind_reflection = false;
  1848. bool rebind_lightmap = false;
  1849. if (!p_shadow && material->shader) {
  1850. bool unshaded = material->shader->spatial.unshaded;
  1851. if (unshaded != prev_unshaded) {
  1852. rebind = true;
  1853. if (unshaded) {
  1854. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, true);
  1855. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1856. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1857. } else {
  1858. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1859. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map);
  1860. }
  1861. prev_unshaded = unshaded;
  1862. }
  1863. bool base_pass = !accum_pass && !unshaded; //conditions for a base pass
  1864. if (base_pass != prev_base_pass) {
  1865. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, base_pass);
  1866. rebind = true;
  1867. prev_base_pass = base_pass;
  1868. }
  1869. if (!unshaded && e->light_index < RenderList::MAX_LIGHTS) {
  1870. light = render_light_instances[e->light_index];
  1871. if ((e->instance->baked_light && light->light_ptr->bake_mode == VS::LIGHT_BAKE_ALL) || (e->instance->layer_mask & light->light_ptr->cull_mask) == 0) {
  1872. light = nullptr; // Don't use this light, it is culled or already included in the lightmap
  1873. }
  1874. }
  1875. if (light != prev_light) {
  1876. _setup_light_type(light, shadow_atlas);
  1877. rebind = true;
  1878. rebind_light = true;
  1879. }
  1880. int blend_mode = p_alpha_pass ? material->shader->spatial.blend_mode : -1; // -1 no blend, no mix
  1881. if (accum_pass) { //accum pass force pass
  1882. blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD;
  1883. if (light && light->light_ptr->negative) {
  1884. blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB;
  1885. }
  1886. }
  1887. if (prev_blend_mode != blend_mode) {
  1888. if (prev_blend_mode == -1 && blend_mode != -1) {
  1889. //does blend
  1890. glEnable(GL_BLEND);
  1891. } else if (blend_mode == -1 && prev_blend_mode != -1) {
  1892. //do not blend
  1893. glDisable(GL_BLEND);
  1894. }
  1895. switch (blend_mode) {
  1896. //-1 not handled because not blend is enabled anyway
  1897. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: {
  1898. glBlendEquation(GL_FUNC_ADD);
  1899. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1900. glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  1901. } else {
  1902. glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
  1903. }
  1904. } break;
  1905. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: {
  1906. glBlendEquation(GL_FUNC_ADD);
  1907. glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
  1908. } break;
  1909. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: {
  1910. glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
  1911. glBlendFunc(GL_SRC_ALPHA, GL_ONE);
  1912. } break;
  1913. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: {
  1914. glBlendEquation(GL_FUNC_ADD);
  1915. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1916. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
  1917. } else {
  1918. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
  1919. }
  1920. } break;
  1921. }
  1922. prev_blend_mode = blend_mode;
  1923. }
  1924. //condition to enable vertex lighting on this object
  1925. bool vertex_lit = (material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading) && ((!unshaded && light) || using_fog); //fog forces vertex lighting because it still applies even if unshaded or no fog
  1926. if (vertex_lit != prev_vertex_lit) {
  1927. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, vertex_lit);
  1928. prev_vertex_lit = vertex_lit;
  1929. rebind = true;
  1930. }
  1931. if (!unshaded && !accum_pass && e->refprobe_0_index != RenderList::MAX_REFLECTION_PROBES) {
  1932. ERR_FAIL_INDEX(e->refprobe_0_index, reflection_probe_count);
  1933. refprobe_1 = reflection_probe_instances[e->refprobe_0_index];
  1934. }
  1935. if (!unshaded && !accum_pass && e->refprobe_1_index != RenderList::MAX_REFLECTION_PROBES) {
  1936. ERR_FAIL_INDEX(e->refprobe_1_index, reflection_probe_count);
  1937. refprobe_2 = reflection_probe_instances[e->refprobe_1_index];
  1938. }
  1939. if (refprobe_1 != prev_refprobe_1 || refprobe_2 != prev_refprobe_2) {
  1940. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, refprobe_1 != nullptr);
  1941. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, refprobe_2 != nullptr);
  1942. if (refprobe_1 != nullptr && refprobe_1 != prev_refprobe_1) {
  1943. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 5);
  1944. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_1->cubemap);
  1945. }
  1946. if (refprobe_2 != nullptr && refprobe_2 != prev_refprobe_2) {
  1947. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 6);
  1948. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_2->cubemap);
  1949. }
  1950. rebind = true;
  1951. rebind_reflection = true;
  1952. }
  1953. use_lightmap_capture = !unshaded && !accum_pass && !e->instance->lightmap_capture_data.empty();
  1954. if (use_lightmap_capture != prev_use_lightmap_capture) {
  1955. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, use_lightmap_capture);
  1956. rebind = true;
  1957. }
  1958. if (!unshaded && !accum_pass && e->instance->lightmap.is_valid()) {
  1959. lightmap = storage->texture_owner.getornull(e->instance->lightmap);
  1960. lightmap_energy = 1.0;
  1961. if (lightmap) {
  1962. RasterizerStorageGLES2::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base);
  1963. if (capture) {
  1964. lightmap_energy = capture->energy;
  1965. }
  1966. }
  1967. }
  1968. if (lightmap != prev_lightmap) {
  1969. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, lightmap != nullptr);
  1970. if (lightmap != nullptr) {
  1971. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  1972. glBindTexture(GL_TEXTURE_2D, lightmap->tex_id);
  1973. }
  1974. rebind = true;
  1975. rebind_lightmap = true;
  1976. }
  1977. }
  1978. bool depth_prepass = false;
  1979. if (!p_alpha_pass && material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  1980. depth_prepass = true;
  1981. }
  1982. if (depth_prepass != prev_depth_prepass) {
  1983. state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, depth_prepass);
  1984. prev_depth_prepass = depth_prepass;
  1985. rebind = true;
  1986. }
  1987. bool instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH;
  1988. if (instancing != prev_instancing) {
  1989. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, instancing);
  1990. rebind = true;
  1991. }
  1992. RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton);
  1993. if (skeleton != prev_skeleton) {
  1994. if ((prev_skeleton == nullptr) != (skeleton == nullptr)) {
  1995. if (skeleton) {
  1996. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true);
  1997. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, storage->config.use_skeleton_software);
  1998. } else {
  1999. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  2000. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false);
  2001. }
  2002. }
  2003. rebind = true;
  2004. }
  2005. if (e->owner != prev_owner || e->geometry != prev_geometry || skeleton != prev_skeleton) {
  2006. _setup_geometry(e, skeleton);
  2007. storage->info.render.surface_switch_count++;
  2008. }
  2009. state.scene_shader.set_conditional(SceneShaderGLES2::USE_PHYSICAL_LIGHT_ATTENUATION, storage->config.use_physical_light_attenuation);
  2010. bool octahedral_compression = e->instance->base_type != VS::INSTANCE_IMMEDIATE &&
  2011. ((RasterizerStorageGLES2::Surface *)e->geometry)->format & VisualServer::ArrayFormat::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION &&
  2012. (((RasterizerStorageGLES2::Surface *)e->geometry)->blend_shape_data.empty() || ((RasterizerStorageGLES2::Surface *)e->geometry)->blend_shape_buffer_size == 0);
  2013. if (octahedral_compression != prev_octahedral_compression) {
  2014. state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_OCTAHEDRAL_COMPRESSION, octahedral_compression);
  2015. rebind = true;
  2016. }
  2017. bool shader_rebind = false;
  2018. if (rebind || material != prev_material) {
  2019. storage->info.render.material_switch_count++;
  2020. shader_rebind = _setup_material(material, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0));
  2021. if (shader_rebind) {
  2022. storage->info.render.shader_rebind_count++;
  2023. }
  2024. }
  2025. _set_cull(e->front_facing, material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED, p_reverse_cull);
  2026. if (i == 0 || shader_rebind) { //first time must rebind
  2027. if (p_shadow) {
  2028. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias);
  2029. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias);
  2030. if (state.shadow_is_dual_parabolloid) {
  2031. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_SIDE, state.dual_parbolloid_direction);
  2032. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_ZFAR, state.dual_parbolloid_zfar);
  2033. }
  2034. } else {
  2035. if (use_radiance_map) {
  2036. if (p_env) {
  2037. Transform sky_orientation(p_env->sky_orientation, Vector3(0.0, 0.0, 0.0));
  2038. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, sky_orientation.affine_inverse() * p_view_transform);
  2039. } else {
  2040. // would be a bit weird if we don't have this...
  2041. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform);
  2042. }
  2043. }
  2044. if (p_env) {
  2045. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy);
  2046. state.scene_shader.set_uniform(SceneShaderGLES2::BG_COLOR, p_env->bg_color);
  2047. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution);
  2048. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color);
  2049. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy);
  2050. } else {
  2051. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0);
  2052. state.scene_shader.set_uniform(SceneShaderGLES2::BG_COLOR, state.default_bg);
  2053. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0);
  2054. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, state.default_ambient);
  2055. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0);
  2056. }
  2057. //rebind all these
  2058. rebind_light = true;
  2059. rebind_reflection = true;
  2060. rebind_lightmap = true;
  2061. if (using_fog) {
  2062. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_COLOR_BASE, p_env->fog_color);
  2063. Color sun_color_amount = p_env->fog_sun_color;
  2064. sun_color_amount.a = p_env->fog_sun_amount;
  2065. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_SUN_COLOR_AMOUNT, sun_color_amount);
  2066. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_ENABLED, p_env->fog_transmit_enabled);
  2067. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_CURVE, p_env->fog_transmit_curve);
  2068. if (p_env->fog_depth_enabled) {
  2069. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_BEGIN, p_env->fog_depth_begin);
  2070. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_CURVE, p_env->fog_depth_curve);
  2071. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_MAX_DISTANCE, fog_max_distance);
  2072. }
  2073. if (p_env->fog_height_enabled) {
  2074. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MIN, p_env->fog_height_min);
  2075. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  2076. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  2077. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_CURVE, p_env->fog_height_curve);
  2078. }
  2079. }
  2080. }
  2081. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform);
  2082. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, view_transform_inverse);
  2083. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection);
  2084. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, projection_inverse);
  2085. state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]);
  2086. state.scene_shader.set_uniform(SceneShaderGLES2::VIEW_INDEX, p_eye == 2 ? 1 : 0);
  2087. state.scene_shader.set_uniform(SceneShaderGLES2::VIEWPORT_SIZE, viewport_size);
  2088. state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size);
  2089. }
  2090. if (rebind_light && light) {
  2091. _setup_light(light, shadow_atlas, p_view_transform, accum_pass);
  2092. }
  2093. if (rebind_reflection && (refprobe_1 || refprobe_2)) {
  2094. _setup_refprobes(refprobe_1, refprobe_2, p_view_transform, p_env);
  2095. }
  2096. if (rebind_lightmap && lightmap) {
  2097. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_ENERGY, lightmap_energy);
  2098. if (storage->config.use_lightmap_filter_bicubic) {
  2099. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_TEXTURE_SIZE, Vector2(lightmap->width, lightmap->height));
  2100. }
  2101. }
  2102. state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform);
  2103. if (use_lightmap_capture) { //this is per instance, must be set always if present
  2104. glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES2::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr());
  2105. }
  2106. _render_geometry(e);
  2107. prev_geometry = e->geometry;
  2108. prev_owner = e->owner;
  2109. prev_material = material;
  2110. prev_skeleton = skeleton;
  2111. prev_instancing = instancing;
  2112. prev_octahedral_compression = octahedral_compression;
  2113. prev_light = light;
  2114. prev_refprobe_1 = refprobe_1;
  2115. prev_refprobe_2 = refprobe_2;
  2116. prev_lightmap = lightmap;
  2117. prev_use_lightmap_capture = use_lightmap_capture;
  2118. }
  2119. _setup_light_type(nullptr, nullptr); //clear light stuff
  2120. state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_OCTAHEDRAL_COMPRESSION, false);
  2121. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  2122. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  2123. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, false);
  2124. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false);
  2125. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  2126. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  2127. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM3, false);
  2128. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  2129. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  2130. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, false);
  2131. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, false);
  2132. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, false);
  2133. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, false);
  2134. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, false);
  2135. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, false);
  2136. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, false);
  2137. state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, false);
  2138. }
  2139. void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) {
  2140. ERR_FAIL_COND(!p_sky);
  2141. RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(p_sky->panorama);
  2142. ERR_FAIL_COND(!tex);
  2143. tex = tex->get_ptr(); //resolve for proxies
  2144. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2145. glBindTexture(tex->target, tex->tex_id);
  2146. glDepthMask(GL_TRUE);
  2147. glEnable(GL_DEPTH_TEST);
  2148. glDisable(GL_CULL_FACE);
  2149. glDisable(GL_BLEND);
  2150. glDepthFunc(GL_LEQUAL);
  2151. // Camera
  2152. CameraMatrix camera;
  2153. if (p_custom_fov) {
  2154. float near_plane = p_projection.get_z_near();
  2155. float far_plane = p_projection.get_z_far();
  2156. float aspect = p_projection.get_aspect();
  2157. camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane);
  2158. } else {
  2159. camera = p_projection;
  2160. }
  2161. float flip_sign = p_vflip ? -1 : 1;
  2162. // If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR).
  2163. // To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced.
  2164. // It also means the uv coordinates are ignored in this mode and we don't need our loop.
  2165. bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0));
  2166. Vector3 vertices[8] = {
  2167. Vector3(-1, -1 * flip_sign, 1),
  2168. Vector3(0, 1, 0),
  2169. Vector3(1, -1 * flip_sign, 1),
  2170. Vector3(1, 1, 0),
  2171. Vector3(1, 1 * flip_sign, 1),
  2172. Vector3(1, 0, 0),
  2173. Vector3(-1, 1 * flip_sign, 1),
  2174. Vector3(0, 0, 0),
  2175. };
  2176. if (!asymmetrical) {
  2177. Vector2 vp_he = camera.get_viewport_half_extents();
  2178. float zn;
  2179. zn = p_projection.get_z_near();
  2180. for (int i = 0; i < 4; i++) {
  2181. Vector3 uv = vertices[i * 2 + 1];
  2182. uv.x = (uv.x * 2.0 - 1.0) * vp_he.x;
  2183. uv.y = -(uv.y * 2.0 - 1.0) * vp_he.y;
  2184. uv.z = -zn;
  2185. vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized();
  2186. vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z;
  2187. }
  2188. }
  2189. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  2190. glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, vertices, GL_DYNAMIC_DRAW);
  2191. // bind sky vertex array....
  2192. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, nullptr);
  2193. glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, CAST_INT_TO_UCHAR_PTR(sizeof(Vector3)));
  2194. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  2195. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  2196. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, asymmetrical);
  2197. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, !asymmetrical);
  2198. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, true);
  2199. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2200. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2201. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2202. if (storage->frame.current_rt) {
  2203. storage->shaders.copy.set_conditional(CopyShaderGLES2::OUTPUT_LINEAR, storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_KEEP_3D_LINEAR]);
  2204. } else {
  2205. storage->shaders.copy.set_conditional(CopyShaderGLES2::OUTPUT_LINEAR, false);
  2206. }
  2207. storage->shaders.copy.bind();
  2208. storage->shaders.copy.set_uniform(CopyShaderGLES2::MULTIPLIER, p_energy);
  2209. // don't know why but I always have problems setting a uniform mat3, so we're using a transform
  2210. storage->shaders.copy.set_uniform(CopyShaderGLES2::SKY_TRANSFORM, Transform(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse());
  2211. if (asymmetrical) {
  2212. // pack the bits we need from our projection matrix
  2213. storage->shaders.copy.set_uniform(CopyShaderGLES2::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]);
  2214. ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here.
  2215. storage->shaders.copy.set_uniform(CopyShaderGLES2::PANO_TRANSFORM, p_transform);
  2216. }
  2217. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  2218. glDisableVertexAttribArray(VS::ARRAY_VERTEX);
  2219. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  2220. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2221. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, false);
  2222. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2223. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2224. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2225. storage->shaders.copy.set_conditional(CopyShaderGLES2::OUTPUT_LINEAR, false);
  2226. }
  2227. void RasterizerSceneGLES2::_post_process(Environment *env, const CameraMatrix &p_cam_projection) {
  2228. //copy to front buffer
  2229. glDepthMask(GL_FALSE);
  2230. glDisable(GL_DEPTH_TEST);
  2231. glDisable(GL_CULL_FACE);
  2232. glDisable(GL_BLEND);
  2233. glDepthFunc(GL_LEQUAL);
  2234. glColorMask(1, 1, 1, 1);
  2235. //no post process on small or render targets without an env
  2236. bool use_post_process = env && storage->frame.current_rt->width >= 4 && storage->frame.current_rt->height >= 4;
  2237. use_post_process = use_post_process && storage->frame.current_rt->mip_maps_allocated;
  2238. if (env) {
  2239. use_post_process = use_post_process && (env->adjustments_enabled || env->glow_enabled || env->dof_blur_far_enabled || env->dof_blur_near_enabled);
  2240. }
  2241. use_post_process = use_post_process || storage->frame.current_rt->use_fxaa;
  2242. // If using multisample buffer, resolve to post_process_effect buffer or to front buffer
  2243. if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) {
  2244. GLuint next_buffer;
  2245. if (use_post_process) {
  2246. next_buffer = storage->frame.current_rt->mip_maps[0].sizes[0].fbo;
  2247. } else if (storage->frame.current_rt->external.fbo != 0) {
  2248. next_buffer = storage->frame.current_rt->external.fbo;
  2249. } else {
  2250. // set next_buffer to front buffer so multisample blit can happen if needed
  2251. next_buffer = storage->frame.current_rt->fbo;
  2252. }
  2253. #ifdef GLES_OVER_GL
  2254. glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo);
  2255. glReadBuffer(GL_COLOR_ATTACHMENT0);
  2256. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, next_buffer);
  2257. glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
  2258. glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
  2259. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
  2260. #elif defined(IPHONE_ENABLED)
  2261. glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo);
  2262. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, next_buffer);
  2263. glResolveMultisampleFramebufferAPPLE();
  2264. glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
  2265. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
  2266. #elif defined(ANDROID_ENABLED)
  2267. // In GLES2 Android Blit is not available, so just copy color texture manually
  2268. _copy_texture_to_buffer(storage->frame.current_rt->multisample_color, next_buffer);
  2269. #else
  2270. // TODO: any other platform not supported? this will fail.. maybe we should just call _copy_texture_to_buffer here as well?
  2271. (void)next_buffer; // Silence warning as it's unused.
  2272. #endif
  2273. } else if (use_post_process) {
  2274. if (storage->frame.current_rt->external.fbo != 0) {
  2275. _copy_texture_to_buffer(storage->frame.current_rt->external.color, storage->frame.current_rt->mip_maps[0].sizes[0].fbo);
  2276. } else {
  2277. _copy_texture_to_buffer(storage->frame.current_rt->color, storage->frame.current_rt->mip_maps[0].sizes[0].fbo);
  2278. }
  2279. }
  2280. if (!use_post_process) {
  2281. return;
  2282. }
  2283. // Order of operation
  2284. //1) DOF Blur (first blur, then copy to buffer applying the blur) //only on desktop
  2285. //2) FXAA
  2286. //3) Bloom (Glow) //only on desktop
  2287. //4) Adjustments
  2288. // DOF Blur
  2289. if (env && env->dof_blur_far_enabled) {
  2290. int vp_h = storage->frame.current_rt->height;
  2291. int vp_w = storage->frame.current_rt->width;
  2292. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal());
  2293. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_FAR_BLUR, true);
  2294. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_LOW, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_LOW);
  2295. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_MEDIUM, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_MEDIUM);
  2296. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_HIGH, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_HIGH);
  2297. state.effect_blur_shader.bind();
  2298. int qsteps[3] = { 4, 10, 20 };
  2299. float radius = (env->dof_blur_far_amount * env->dof_blur_far_amount) / qsteps[env->dof_blur_far_quality];
  2300. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_BEGIN, env->dof_blur_far_distance);
  2301. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_END, env->dof_blur_far_distance + env->dof_blur_far_transition);
  2302. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_DIR, Vector2(1, 0));
  2303. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_RADIUS, radius);
  2304. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
  2305. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
  2306. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_FAR, p_cam_projection.get_z_far());
  2307. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE1);
  2308. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
  2309. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2310. if (storage->frame.current_rt->mip_maps[0].color) {
  2311. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color);
  2312. } else {
  2313. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[0].color);
  2314. }
  2315. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2316. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2317. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2318. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2319. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first
  2320. storage->_copy_screen();
  2321. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2322. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color);
  2323. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_DIR, Vector2(0, 1));
  2324. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->mip_maps[0].sizes[0].fbo); // copy to base level
  2325. storage->_copy_screen();
  2326. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_FAR_BLUR, false);
  2327. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_LOW, false);
  2328. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_MEDIUM, false);
  2329. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_HIGH, false);
  2330. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_ORTHOGONAL_PROJECTION, false);
  2331. }
  2332. if (env && env->dof_blur_near_enabled) {
  2333. //convert texture to RGBA format if not already
  2334. if (!storage->frame.current_rt->used_dof_blur_near) {
  2335. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2336. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color);
  2337. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
  2338. }
  2339. int vp_h = storage->frame.current_rt->height;
  2340. int vp_w = storage->frame.current_rt->width;
  2341. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal());
  2342. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_BLUR, true);
  2343. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_FIRST_TAP, true);
  2344. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_LOW, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_LOW);
  2345. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_MEDIUM, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_MEDIUM);
  2346. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_HIGH, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_HIGH);
  2347. state.effect_blur_shader.bind();
  2348. int qsteps[3] = { 4, 10, 20 };
  2349. float radius = (env->dof_blur_near_amount * env->dof_blur_near_amount) / qsteps[env->dof_blur_near_quality];
  2350. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_BEGIN, env->dof_blur_near_distance);
  2351. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_END, env->dof_blur_near_distance - env->dof_blur_near_transition);
  2352. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_DIR, Vector2(1, 0));
  2353. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_RADIUS, radius);
  2354. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
  2355. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
  2356. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_FAR, p_cam_projection.get_z_far());
  2357. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE1);
  2358. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
  2359. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2360. if (storage->frame.current_rt->mip_maps[0].color) {
  2361. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color);
  2362. } else {
  2363. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[0].color);
  2364. }
  2365. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2366. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2367. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2368. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2369. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first
  2370. storage->_copy_screen();
  2371. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_FIRST_TAP, false);
  2372. state.effect_blur_shader.bind();
  2373. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_BEGIN, env->dof_blur_near_distance);
  2374. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_END, env->dof_blur_near_distance - env->dof_blur_near_transition);
  2375. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_DIR, Vector2(0, 1));
  2376. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_RADIUS, radius);
  2377. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
  2378. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
  2379. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_FAR, p_cam_projection.get_z_far());
  2380. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2381. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color);
  2382. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->mip_maps[0].sizes[0].fbo); // copy to base level
  2383. glEnable(GL_BLEND);
  2384. glBlendEquation(GL_FUNC_ADD);
  2385. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  2386. storage->_copy_screen();
  2387. glDisable(GL_BLEND);
  2388. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_BLUR, false);
  2389. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_FIRST_TAP, false);
  2390. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_LOW, false);
  2391. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_MEDIUM, false);
  2392. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_HIGH, false);
  2393. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_ORTHOGONAL_PROJECTION, false);
  2394. storage->frame.current_rt->used_dof_blur_near = true;
  2395. }
  2396. if (env && (env->dof_blur_near_enabled || env->dof_blur_far_enabled)) {
  2397. //these needed to disable filtering, reenamble
  2398. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2399. if (storage->frame.current_rt->mip_maps[0].color) {
  2400. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color);
  2401. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  2402. } else {
  2403. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[0].color);
  2404. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
  2405. }
  2406. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
  2407. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2408. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2409. }
  2410. //glow
  2411. int max_glow_level = -1;
  2412. int glow_mask = 0;
  2413. if (env && env->glow_enabled) {
  2414. for (int i = 0; i < VS::MAX_GLOW_LEVELS; i++) {
  2415. if (env->glow_levels & (1 << i)) {
  2416. if (i >= storage->frame.current_rt->mip_maps[1].sizes.size()) {
  2417. max_glow_level = storage->frame.current_rt->mip_maps[1].sizes.size() - 1;
  2418. glow_mask |= 1 << max_glow_level;
  2419. } else {
  2420. max_glow_level = i;
  2421. glow_mask |= (1 << i);
  2422. }
  2423. }
  2424. }
  2425. // If max_texture_image_units is 8, our max glow level is 5, which allows 6 layers of glow
  2426. max_glow_level = MIN(max_glow_level, storage->config.max_texture_image_units - 3);
  2427. for (int i = 0; i < (max_glow_level + 1); i++) {
  2428. int vp_w = storage->frame.current_rt->mip_maps[1].sizes[i].width;
  2429. int vp_h = storage->frame.current_rt->mip_maps[1].sizes[i].height;
  2430. glViewport(0, 0, vp_w, vp_h);
  2431. //horizontal pass
  2432. if (i == 0) {
  2433. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_FIRST_PASS, true);
  2434. }
  2435. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_GAUSSIAN_HORIZONTAL, true);
  2436. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_GLOW_HIGH_QUALITY, env->glow_high_quality);
  2437. state.effect_blur_shader.bind();
  2438. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
  2439. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::LOD, storage->frame.current_rt->mip_maps[0].color ? float(i) : 0.0);
  2440. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_STRENGTH, env->glow_strength);
  2441. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::LUMINANCE_CAP, env->glow_hdr_luminance_cap);
  2442. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2443. if (storage->frame.current_rt->mip_maps[0].color) {
  2444. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color);
  2445. } else {
  2446. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[i].color);
  2447. }
  2448. if (i == 0) {
  2449. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_BLOOM, env->glow_bloom);
  2450. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_HDR_THRESHOLD, env->glow_hdr_bleed_threshold);
  2451. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_HDR_SCALE, env->glow_hdr_bleed_scale);
  2452. }
  2453. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->mip_maps[1].sizes[i].fbo);
  2454. storage->_copy_screen();
  2455. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_GAUSSIAN_HORIZONTAL, false);
  2456. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_FIRST_PASS, false);
  2457. //vertical pass
  2458. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_GAUSSIAN_VERTICAL, true);
  2459. state.effect_blur_shader.bind();
  2460. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
  2461. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::LOD, storage->frame.current_rt->mip_maps[0].color ? float(i) : 0.0);
  2462. state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_STRENGTH, env->glow_strength);
  2463. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2464. if (storage->frame.current_rt->mip_maps[0].color) {
  2465. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[1].color);
  2466. } else {
  2467. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[1].sizes[i].color);
  2468. }
  2469. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->mip_maps[0].sizes[i + 1].fbo); //next level, since mipmaps[0] starts one level bigger
  2470. storage->_copy_screen();
  2471. state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_GAUSSIAN_VERTICAL, false);
  2472. }
  2473. glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
  2474. }
  2475. if (storage->frame.current_rt->external.fbo != 0) {
  2476. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->external.fbo);
  2477. } else {
  2478. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo);
  2479. }
  2480. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2481. if (storage->frame.current_rt->mip_maps[0].color) {
  2482. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color);
  2483. } else {
  2484. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[0].color);
  2485. }
  2486. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_FXAA, storage->frame.current_rt->use_fxaa);
  2487. if (env) {
  2488. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_FILTER_BICUBIC, env->glow_bicubic_upscale);
  2489. if (max_glow_level >= 0) {
  2490. if (storage->frame.current_rt->mip_maps[0].color) {
  2491. for (int i = 0; i < (max_glow_level + 1); i++) {
  2492. if (glow_mask & (1 << i)) {
  2493. if (i == 0) {
  2494. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL1, true);
  2495. }
  2496. if (i == 1) {
  2497. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL2, true);
  2498. }
  2499. if (i == 2) {
  2500. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL3, true);
  2501. }
  2502. if (i == 3) {
  2503. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL4, true);
  2504. }
  2505. if (i == 4) {
  2506. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL5, true);
  2507. }
  2508. if (i == 5) {
  2509. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL6, true);
  2510. }
  2511. if (i == 6) {
  2512. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL7, true);
  2513. }
  2514. }
  2515. }
  2516. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE2);
  2517. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color);
  2518. } else {
  2519. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_MULTI_TEXTURE_GLOW, true);
  2520. int active_glow_level = 0;
  2521. for (int i = 0; i < (max_glow_level + 1); i++) {
  2522. if (glow_mask & (1 << i)) {
  2523. active_glow_level++;
  2524. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE1 + active_glow_level);
  2525. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[i + 1].color);
  2526. if (active_glow_level == 1) {
  2527. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL1, true);
  2528. }
  2529. if (active_glow_level == 2) {
  2530. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL2, true);
  2531. }
  2532. if (active_glow_level == 3) {
  2533. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL3, true);
  2534. }
  2535. if (active_glow_level == 4) {
  2536. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL4, true);
  2537. }
  2538. if (active_glow_level == 5) {
  2539. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL5, true);
  2540. }
  2541. if (active_glow_level == 6) {
  2542. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL6, true);
  2543. }
  2544. if (active_glow_level == 7) {
  2545. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL7, true);
  2546. }
  2547. }
  2548. }
  2549. }
  2550. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_SCREEN, env->glow_blend_mode == VS::GLOW_BLEND_MODE_SCREEN);
  2551. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_SOFTLIGHT, env->glow_blend_mode == VS::GLOW_BLEND_MODE_SOFTLIGHT);
  2552. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_REPLACE, env->glow_blend_mode == VS::GLOW_BLEND_MODE_REPLACE);
  2553. }
  2554. }
  2555. //Adjustments
  2556. if (env && env->adjustments_enabled) {
  2557. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_BCS, true);
  2558. RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(env->color_correction);
  2559. if (tex) {
  2560. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_COLOR_CORRECTION, true);
  2561. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE1);
  2562. glBindTexture(tex->target, tex->tex_id);
  2563. }
  2564. }
  2565. state.tonemap_shader.set_conditional(TonemapShaderGLES2::DISABLE_ALPHA, !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]);
  2566. state.tonemap_shader.bind();
  2567. if (env) {
  2568. if (max_glow_level >= 0) {
  2569. state.tonemap_shader.set_uniform(TonemapShaderGLES2::GLOW_INTENSITY, env->glow_intensity);
  2570. int ss[2] = {
  2571. storage->frame.current_rt->width,
  2572. storage->frame.current_rt->height,
  2573. };
  2574. glUniform2iv(state.tonemap_shader.get_uniform(TonemapShaderGLES2::GLOW_TEXTURE_SIZE), 1, ss);
  2575. }
  2576. if (env->adjustments_enabled) {
  2577. state.tonemap_shader.set_uniform(TonemapShaderGLES2::BCS, Vector3(env->adjustments_brightness, env->adjustments_contrast, env->adjustments_saturation));
  2578. }
  2579. }
  2580. if (storage->frame.current_rt->use_fxaa) {
  2581. state.tonemap_shader.set_uniform(TonemapShaderGLES2::PIXEL_SIZE, Vector2(1.0 / storage->frame.current_rt->width, 1.0 / storage->frame.current_rt->height));
  2582. }
  2583. storage->_copy_screen();
  2584. //turn off everything used
  2585. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_FXAA, false);
  2586. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL1, false);
  2587. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL2, false);
  2588. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL3, false);
  2589. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL4, false);
  2590. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL5, false);
  2591. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL6, false);
  2592. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL7, false);
  2593. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_REPLACE, false);
  2594. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_SCREEN, false);
  2595. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_SOFTLIGHT, false);
  2596. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_FILTER_BICUBIC, false);
  2597. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_MULTI_TEXTURE_GLOW, false);
  2598. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_BCS, false);
  2599. state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_COLOR_CORRECTION, false);
  2600. state.tonemap_shader.set_conditional(TonemapShaderGLES2::DISABLE_ALPHA, false);
  2601. }
  2602. void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, const int p_eye, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
  2603. Transform cam_transform = p_cam_transform;
  2604. storage->info.render.object_count += p_cull_count;
  2605. GLuint current_fb = 0;
  2606. Environment *env = nullptr;
  2607. int viewport_width, viewport_height;
  2608. int viewport_x = 0;
  2609. int viewport_y = 0;
  2610. bool probe_interior = false;
  2611. bool reverse_cull = false;
  2612. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
  2613. cam_transform.basis.set_axis(1, -cam_transform.basis.get_axis(1));
  2614. reverse_cull = true;
  2615. }
  2616. if (p_reflection_probe.is_valid()) {
  2617. ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe);
  2618. ERR_FAIL_COND(!probe);
  2619. state.render_no_shadows = !probe->probe_ptr->enable_shadows;
  2620. if (!probe->probe_ptr->interior) { //use env only if not interior
  2621. env = environment_owner.getornull(p_environment);
  2622. }
  2623. current_fb = probe->fbo[p_reflection_probe_pass];
  2624. viewport_width = probe->probe_ptr->resolution;
  2625. viewport_height = probe->probe_ptr->resolution;
  2626. probe_interior = probe->probe_ptr->interior;
  2627. } else {
  2628. state.render_no_shadows = false;
  2629. if (storage->frame.current_rt->multisample_active) {
  2630. current_fb = storage->frame.current_rt->multisample_fbo;
  2631. } else if (storage->frame.current_rt->external.fbo != 0) {
  2632. current_fb = storage->frame.current_rt->external.fbo;
  2633. } else {
  2634. current_fb = storage->frame.current_rt->fbo;
  2635. }
  2636. env = environment_owner.getornull(p_environment);
  2637. viewport_width = storage->frame.current_rt->width;
  2638. viewport_height = storage->frame.current_rt->height;
  2639. viewport_x = storage->frame.current_rt->x;
  2640. if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) {
  2641. viewport_y = OS::get_singleton()->get_window_size().height - viewport_height - storage->frame.current_rt->y;
  2642. } else {
  2643. viewport_y = storage->frame.current_rt->y;
  2644. }
  2645. }
  2646. state.used_screen_texture = false;
  2647. state.viewport_size.x = viewport_width;
  2648. state.viewport_size.y = viewport_height;
  2649. state.screen_pixel_size.x = 1.0 / viewport_width;
  2650. state.screen_pixel_size.y = 1.0 / viewport_height;
  2651. //push back the directional lights
  2652. if (p_light_cull_count) {
  2653. //hardcoded limit of 256 lights
  2654. render_light_instance_count = MIN(RenderList::MAX_LIGHTS, p_light_cull_count);
  2655. render_light_instances = (LightInstance **)alloca(sizeof(LightInstance *) * render_light_instance_count);
  2656. render_directional_lights = 0;
  2657. //doing this because directional lights are at the end, put them at the beginning
  2658. int index = 0;
  2659. for (int i = render_light_instance_count - 1; i >= 0; i--) {
  2660. RID light_rid = p_light_cull_result[i];
  2661. LightInstance *light = light_instance_owner.getornull(light_rid);
  2662. if (light->light_ptr->type == VS::LIGHT_DIRECTIONAL) {
  2663. render_directional_lights++;
  2664. //as going in reverse, directional lights are always first anyway
  2665. }
  2666. light->light_index = index;
  2667. render_light_instances[index] = light;
  2668. index++;
  2669. }
  2670. // for fog transmission, we want some kind of consistent ordering of lights
  2671. // add any more conditions here in which we need consistent light ordering
  2672. // (perhaps we always should have it, but don't know yet)
  2673. if (env && env->fog_transmit_enabled) {
  2674. struct _LightSort {
  2675. bool operator()(LightInstance *A, LightInstance *B) const {
  2676. return A->light_counter > B->light_counter;
  2677. }
  2678. };
  2679. int num_lights_to_sort = render_light_instance_count - render_directional_lights;
  2680. if (num_lights_to_sort) {
  2681. SortArray<LightInstance *, _LightSort> sorter;
  2682. sorter.sort(&render_light_instances[render_directional_lights], num_lights_to_sort);
  2683. // rejig indices
  2684. for (int i = render_directional_lights; i < render_light_instance_count; i++) {
  2685. render_light_instances[i]->light_index = i;
  2686. }
  2687. }
  2688. }
  2689. } else {
  2690. render_light_instances = nullptr;
  2691. render_directional_lights = 0;
  2692. render_light_instance_count = 0;
  2693. }
  2694. if (p_reflection_probe_cull_count) {
  2695. reflection_probe_instances = (ReflectionProbeInstance **)alloca(sizeof(ReflectionProbeInstance *) * p_reflection_probe_cull_count);
  2696. reflection_probe_count = p_reflection_probe_cull_count;
  2697. for (int i = 0; i < p_reflection_probe_cull_count; i++) {
  2698. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]);
  2699. ERR_CONTINUE(!rpi);
  2700. rpi->last_pass = render_pass + 1; //will be incremented later
  2701. rpi->index = i;
  2702. reflection_probe_instances[i] = rpi;
  2703. }
  2704. } else {
  2705. reflection_probe_instances = nullptr;
  2706. reflection_probe_count = 0;
  2707. }
  2708. if (env && env->bg_mode == VS::ENV_BG_CANVAS) {
  2709. // If using canvas background, copy 2d to screen copy texture
  2710. // TODO: When GLES2 renders to current_rt->mip_maps[], this copy will no longer be needed
  2711. _copy_texture_to_buffer(storage->frame.current_rt->color, storage->frame.current_rt->copy_screen_effect.fbo);
  2712. }
  2713. // render list stuff
  2714. render_list.clear();
  2715. _fill_render_list(p_cull_result, p_cull_count, false, false);
  2716. // other stuff
  2717. glBindFramebuffer(GL_FRAMEBUFFER, current_fb);
  2718. glViewport(viewport_x, viewport_y, viewport_width, viewport_height);
  2719. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) {
  2720. glScissor(viewport_x, viewport_y, viewport_width, viewport_height);
  2721. glEnable(GL_SCISSOR_TEST);
  2722. }
  2723. glDepthFunc(GL_LEQUAL);
  2724. glDepthMask(GL_TRUE);
  2725. glClearDepth(1.0f);
  2726. glEnable(GL_DEPTH_TEST);
  2727. glClear(GL_DEPTH_BUFFER_BIT);
  2728. // clear color
  2729. Color clear_color(0, 0, 0, 1);
  2730. Ref<CameraFeed> feed;
  2731. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  2732. clear_color = Color(0, 0, 0, 0);
  2733. storage->frame.clear_request = false;
  2734. } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR || env->bg_mode == VS::ENV_BG_SKY) {
  2735. if (storage->frame.clear_request) {
  2736. clear_color = storage->frame.clear_request_color;
  2737. storage->frame.clear_request = false;
  2738. }
  2739. } else if (env->bg_mode == VS::ENV_BG_CANVAS || env->bg_mode == VS::ENV_BG_COLOR || env->bg_mode == VS::ENV_BG_COLOR_SKY) {
  2740. clear_color = env->bg_color;
  2741. storage->frame.clear_request = false;
  2742. } else if (env->bg_mode == VS::ENV_BG_CAMERA_FEED) {
  2743. feed = CameraServer::get_singleton()->get_feed_by_id(env->camera_feed_id);
  2744. storage->frame.clear_request = false;
  2745. } else {
  2746. storage->frame.clear_request = false;
  2747. }
  2748. if (!env || env->bg_mode != VS::ENV_BG_KEEP) {
  2749. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_KEEP_3D_LINEAR]) {
  2750. // convert to linear here
  2751. Color linear_color = clear_color.to_linear();
  2752. glClearColor(linear_color.r, linear_color.g, linear_color.b, linear_color.a);
  2753. // leave clear_color in sRGB as most of the render pipeline remains in sRGB color space until writing out to frag_color
  2754. } else {
  2755. glClearColor(clear_color.r, clear_color.g, clear_color.b, clear_color.a);
  2756. }
  2757. glClear(GL_COLOR_BUFFER_BIT);
  2758. }
  2759. state.default_ambient = Color(clear_color.r, clear_color.g, clear_color.b, 1.0);
  2760. state.default_bg = Color(clear_color.r, clear_color.g, clear_color.b, 1.0);
  2761. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) {
  2762. glDisable(GL_SCISSOR_TEST);
  2763. }
  2764. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  2765. glBlendEquation(GL_FUNC_ADD);
  2766. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  2767. // render sky
  2768. RasterizerStorageGLES2::Sky *sky = nullptr;
  2769. GLuint env_radiance_tex = 0;
  2770. if (env) {
  2771. switch (env->bg_mode) {
  2772. case VS::ENV_BG_COLOR_SKY:
  2773. case VS::ENV_BG_SKY: {
  2774. sky = storage->sky_owner.getornull(env->sky);
  2775. if (sky) {
  2776. env_radiance_tex = sky->radiance;
  2777. }
  2778. } break;
  2779. case VS::ENV_BG_CAMERA_FEED: {
  2780. if (feed.is_valid() && (feed->get_base_width() > 0) && (feed->get_base_height() > 0)) {
  2781. // copy our camera feed to our background
  2782. glDisable(GL_BLEND);
  2783. glDepthMask(GL_FALSE);
  2784. glDisable(GL_DEPTH_TEST);
  2785. glDisable(GL_CULL_FACE);
  2786. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_NO_ALPHA, true);
  2787. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_DISPLAY_TRANSFORM, true);
  2788. if (feed->get_datatype() == CameraFeed::FEED_RGB) {
  2789. RID camera_RGBA = feed->get_texture(CameraServer::FEED_RGBA_IMAGE);
  2790. VS::get_singleton()->texture_bind(camera_RGBA, 0);
  2791. } else if (feed->get_datatype() == CameraFeed::FEED_YCBCR) {
  2792. RID camera_YCbCr = feed->get_texture(CameraServer::FEED_YCBCR_IMAGE);
  2793. VS::get_singleton()->texture_bind(camera_YCbCr, 0);
  2794. storage->shaders.copy.set_conditional(CopyShaderGLES2::YCBCR_TO_RGB, true);
  2795. } else if (feed->get_datatype() == CameraFeed::FEED_YCBCR_SEP) {
  2796. RID camera_Y = feed->get_texture(CameraServer::FEED_Y_IMAGE);
  2797. RID camera_CbCr = feed->get_texture(CameraServer::FEED_CBCR_IMAGE);
  2798. VS::get_singleton()->texture_bind(camera_Y, 0);
  2799. VS::get_singleton()->texture_bind(camera_CbCr, 1);
  2800. storage->shaders.copy.set_conditional(CopyShaderGLES2::SEP_CBCR_TEXTURE, true);
  2801. storage->shaders.copy.set_conditional(CopyShaderGLES2::YCBCR_TO_RGB, true);
  2802. };
  2803. storage->shaders.copy.bind();
  2804. storage->shaders.copy.set_uniform(CopyShaderGLES2::DISPLAY_TRANSFORM, feed->get_transform());
  2805. storage->bind_quad_array();
  2806. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  2807. glDisableVertexAttribArray(VS::ARRAY_VERTEX);
  2808. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  2809. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2810. // turn off everything used
  2811. storage->shaders.copy.set_conditional(CopyShaderGLES2::SEP_CBCR_TEXTURE, false);
  2812. storage->shaders.copy.set_conditional(CopyShaderGLES2::YCBCR_TO_RGB, false);
  2813. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_NO_ALPHA, false);
  2814. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_DISPLAY_TRANSFORM, false);
  2815. //restore
  2816. glEnable(GL_BLEND);
  2817. glDepthMask(GL_TRUE);
  2818. glEnable(GL_DEPTH_TEST);
  2819. glEnable(GL_CULL_FACE);
  2820. } else {
  2821. // don't have a feed, just show greenscreen :)
  2822. clear_color = Color(0.0, 1.0, 0.0, 1.0);
  2823. }
  2824. } break;
  2825. case VS::ENV_BG_CANVAS: {
  2826. // use screen copy as background
  2827. _copy_texture_to_buffer(storage->frame.current_rt->copy_screen_effect.color, current_fb);
  2828. } break;
  2829. default: {
  2830. } break;
  2831. }
  2832. }
  2833. if (probe_interior) {
  2834. env_radiance_tex = 0; //do not use radiance texture on interiors
  2835. state.default_ambient = Color(0, 0, 0, 1); //black as default ambient for interior
  2836. state.default_bg = Color(0, 0, 0, 1); //black as default background for interior
  2837. }
  2838. // make sure we set our output mode correctly
  2839. if (storage->frame.current_rt) {
  2840. state.scene_shader.set_conditional(SceneShaderGLES2::OUTPUT_LINEAR, storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_KEEP_3D_LINEAR]);
  2841. } else {
  2842. state.scene_shader.set_conditional(SceneShaderGLES2::OUTPUT_LINEAR, false);
  2843. }
  2844. // render opaque things first
  2845. render_list.sort_by_key(false);
  2846. _render_render_list(render_list.elements, render_list.element_count, cam_transform, p_cam_projection, p_eye, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, false, false);
  2847. // then draw the sky after
  2848. if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT])) {
  2849. if (sky && sky->panorama.is_valid()) {
  2850. _draw_sky(sky, p_cam_projection, cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation);
  2851. }
  2852. }
  2853. if (storage->frame.current_rt && state.used_screen_texture) {
  2854. //copy screen texture
  2855. if (storage->frame.current_rt->multisample_active) {
  2856. // Resolve framebuffer to front buffer before copying
  2857. #ifdef GLES_OVER_GL
  2858. glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo);
  2859. glReadBuffer(GL_COLOR_ATTACHMENT0);
  2860. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
  2861. glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
  2862. glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
  2863. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
  2864. #elif defined(IPHONE_ENABLED)
  2865. glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo);
  2866. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
  2867. glResolveMultisampleFramebufferAPPLE();
  2868. glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
  2869. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
  2870. #elif defined(ANDROID_ENABLED)
  2871. // In GLES2 AndroidBlit is not available, so just copy color texture manually
  2872. _copy_texture_to_buffer(storage->frame.current_rt->multisample_color, storage->frame.current_rt->fbo);
  2873. #endif
  2874. }
  2875. storage->canvas->_copy_screen(Rect2());
  2876. if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) {
  2877. // Rebind the current framebuffer
  2878. glBindFramebuffer(GL_FRAMEBUFFER, current_fb);
  2879. glViewport(0, 0, viewport_width, viewport_height);
  2880. }
  2881. }
  2882. // alpha pass
  2883. glBlendEquation(GL_FUNC_ADD);
  2884. glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  2885. render_list.sort_by_reverse_depth_and_priority(true);
  2886. _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, cam_transform, p_cam_projection, p_eye, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, true, false);
  2887. if (p_reflection_probe.is_valid()) {
  2888. // Rendering to a probe so no need for post_processing
  2889. return;
  2890. }
  2891. //post process
  2892. _post_process(env, p_cam_projection);
  2893. //#define GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2894. #ifdef GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2895. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2896. if (shadow_atlas) {
  2897. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2898. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  2899. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2900. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2901. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2902. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2903. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2904. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2905. storage->shaders.copy.bind();
  2906. storage->_copy_screen();
  2907. }
  2908. #endif
  2909. //#define GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2910. #ifdef GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2911. if (true) {
  2912. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  2913. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2914. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2915. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2916. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2917. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2918. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2919. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2920. storage->shaders.copy.bind();
  2921. storage->_copy_screen();
  2922. }
  2923. #endif
  2924. // return to default
  2925. state.scene_shader.set_conditional(SceneShaderGLES2::OUTPUT_LINEAR, false);
  2926. }
  2927. void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
  2928. state.render_no_shadows = false;
  2929. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  2930. ERR_FAIL_COND(!light_instance);
  2931. RasterizerStorageGLES2::Light *light = light_instance->light_ptr;
  2932. ERR_FAIL_COND(!light);
  2933. uint32_t x;
  2934. uint32_t y;
  2935. uint32_t width;
  2936. uint32_t height;
  2937. float zfar = 0;
  2938. bool flip_facing = false;
  2939. int custom_vp_size = 0;
  2940. GLuint fbo = 0;
  2941. state.shadow_is_dual_parabolloid = false;
  2942. state.dual_parbolloid_direction = 0.0;
  2943. int current_cubemap = -1;
  2944. float bias = 0;
  2945. float normal_bias = 0;
  2946. CameraMatrix light_projection;
  2947. Transform light_transform;
  2948. // TODO directional light
  2949. if (light->type == VS::LIGHT_DIRECTIONAL) {
  2950. // set pssm stuff
  2951. // TODO set this only when changed
  2952. light_instance->light_directional_index = directional_shadow.current_light;
  2953. light_instance->last_scene_shadow_pass = scene_pass;
  2954. directional_shadow.current_light++;
  2955. if (directional_shadow.light_count == 1) {
  2956. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size);
  2957. } else if (directional_shadow.light_count == 2) {
  2958. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2);
  2959. if (light_instance->light_directional_index == 1) {
  2960. light_instance->directional_rect.position.y += light_instance->directional_rect.size.y;
  2961. }
  2962. } else { //3 and 4
  2963. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2);
  2964. if (light_instance->light_directional_index & 1) {
  2965. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2966. }
  2967. if (light_instance->light_directional_index / 2) {
  2968. light_instance->directional_rect.position.y += light_instance->directional_rect.size.y;
  2969. }
  2970. }
  2971. light_projection = light_instance->shadow_transform[p_pass].camera;
  2972. light_transform = light_instance->shadow_transform[p_pass].transform;
  2973. x = light_instance->directional_rect.position.x;
  2974. y = light_instance->directional_rect.position.y;
  2975. width = light_instance->directional_rect.size.width;
  2976. height = light_instance->directional_rect.size.height;
  2977. if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_3_SPLITS || light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2978. width /= 2;
  2979. height /= 2;
  2980. if (p_pass == 1) {
  2981. x += width;
  2982. } else if (p_pass == 2) {
  2983. y += height;
  2984. } else if (p_pass == 3) {
  2985. x += width;
  2986. y += height;
  2987. }
  2988. } else if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2989. height /= 2;
  2990. if (p_pass == 0) {
  2991. } else {
  2992. y += height;
  2993. }
  2994. }
  2995. float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]);
  2996. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2997. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult;
  2998. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult;
  2999. fbo = directional_shadow.fbo;
  3000. } else {
  3001. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  3002. ERR_FAIL_COND(!shadow_atlas);
  3003. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  3004. fbo = shadow_atlas->fbo;
  3005. uint32_t key = shadow_atlas->shadow_owners[p_light];
  3006. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  3007. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3008. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  3009. uint32_t quadrant_size = shadow_atlas->size >> 1;
  3010. x = (quadrant & 1) * quadrant_size;
  3011. y = (quadrant >> 1) * quadrant_size;
  3012. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  3013. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  3014. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  3015. width = shadow_size;
  3016. height = shadow_size;
  3017. if (light->type == VS::LIGHT_OMNI) {
  3018. // cubemap only
  3019. if (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) {
  3020. int cubemap_index = shadow_cubemaps.size() - 1;
  3021. // find an appropriate cubemap to render to
  3022. for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) {
  3023. if (shadow_cubemaps[i].size > shadow_size) {
  3024. break;
  3025. }
  3026. cubemap_index = i;
  3027. }
  3028. fbo = shadow_cubemaps[cubemap_index].fbo[p_pass];
  3029. light_projection = light_instance->shadow_transform[0].camera;
  3030. light_transform = light_instance->shadow_transform[0].transform;
  3031. custom_vp_size = shadow_cubemaps[cubemap_index].size;
  3032. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  3033. current_cubemap = cubemap_index;
  3034. } else {
  3035. //dual parabolloid
  3036. state.shadow_is_dual_parabolloid = true;
  3037. light_projection = light_instance->shadow_transform[0].camera;
  3038. light_transform = light_instance->shadow_transform[0].transform;
  3039. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  3040. height /= 2;
  3041. y += p_pass * height;
  3042. } else {
  3043. width /= 2;
  3044. x += p_pass * width;
  3045. }
  3046. state.dual_parbolloid_direction = p_pass == 0 ? 1.0 : -1.0;
  3047. flip_facing = (p_pass == 1);
  3048. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  3049. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  3050. state.dual_parbolloid_zfar = zfar;
  3051. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, true);
  3052. }
  3053. } else if (light->type == VS::LIGHT_SPOT) {
  3054. light_projection = light_instance->shadow_transform[0].camera;
  3055. light_transform = light_instance->shadow_transform[0].transform;
  3056. flip_facing = false;
  3057. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  3058. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  3059. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
  3060. }
  3061. }
  3062. render_list.clear();
  3063. _fill_render_list(p_cull_result, p_cull_count, true, true);
  3064. render_list.sort_by_depth(false);
  3065. glDisable(GL_BLEND);
  3066. glDisable(GL_DITHER);
  3067. glEnable(GL_DEPTH_TEST);
  3068. glBindFramebuffer(GL_FRAMEBUFFER, fbo);
  3069. glDepthMask(GL_TRUE);
  3070. if (!storage->config.use_rgba_3d_shadows) {
  3071. glColorMask(0, 0, 0, 0);
  3072. }
  3073. if (custom_vp_size) {
  3074. glViewport(0, 0, custom_vp_size, custom_vp_size);
  3075. glScissor(0, 0, custom_vp_size, custom_vp_size);
  3076. } else {
  3077. glViewport(x, y, width, height);
  3078. glScissor(x, y, width, height);
  3079. }
  3080. glEnable(GL_SCISSOR_TEST);
  3081. glClearDepth(1.0f);
  3082. glClear(GL_DEPTH_BUFFER_BIT);
  3083. if (storage->config.use_rgba_3d_shadows) {
  3084. glClearColor(1.0, 1.0, 1.0, 1.0);
  3085. glClear(GL_COLOR_BUFFER_BIT);
  3086. }
  3087. glDisable(GL_SCISSOR_TEST);
  3088. if (light->reverse_cull) {
  3089. flip_facing = !flip_facing;
  3090. }
  3091. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, true);
  3092. state.scene_shader.set_conditional(SceneShaderGLES2::OUTPUT_LINEAR, false); // just in case, should be false already
  3093. _render_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, 0, RID(), nullptr, 0, bias, normal_bias, flip_facing, false, true);
  3094. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, false);
  3095. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, false);
  3096. // convert cubemap to dual paraboloid if needed
  3097. if (light->type == VS::LIGHT_OMNI && (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) && p_pass == 5) {
  3098. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  3099. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  3100. state.cube_to_dp_shader.bind();
  3101. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  3102. glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap);
  3103. glDisable(GL_CULL_FACE);
  3104. for (int i = 0; i < 2; i++) {
  3105. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FLIP, i == 1);
  3106. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_NEAR, light_projection.get_z_near());
  3107. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FAR, light_projection.get_z_far());
  3108. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]);
  3109. uint32_t local_width = width;
  3110. uint32_t local_height = height;
  3111. uint32_t local_x = x;
  3112. uint32_t local_y = y;
  3113. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  3114. local_height /= 2;
  3115. local_y += i * local_height;
  3116. } else {
  3117. local_width /= 2;
  3118. local_x += i * local_width;
  3119. }
  3120. glViewport(local_x, local_y, local_width, local_height);
  3121. glScissor(local_x, local_y, local_width, local_height);
  3122. glEnable(GL_SCISSOR_TEST);
  3123. glClearDepth(1.0f);
  3124. glClear(GL_DEPTH_BUFFER_BIT);
  3125. glDisable(GL_SCISSOR_TEST);
  3126. glDisable(GL_BLEND);
  3127. storage->_copy_screen();
  3128. }
  3129. }
  3130. if (storage->frame.current_rt) {
  3131. glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
  3132. }
  3133. if (!storage->config.use_rgba_3d_shadows) {
  3134. glColorMask(1, 1, 1, 1);
  3135. }
  3136. }
  3137. void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) {
  3138. scene_pass = p_pass;
  3139. }
  3140. bool RasterizerSceneGLES2::free(RID p_rid) {
  3141. if (light_instance_owner.owns(p_rid)) {
  3142. LightInstance *light_instance = light_instance_owner.getptr(p_rid);
  3143. //remove from shadow atlases..
  3144. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  3145. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get());
  3146. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  3147. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  3148. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3149. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3150. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  3151. shadow_atlas->shadow_owners.erase(p_rid);
  3152. }
  3153. light_instance_owner.free(p_rid);
  3154. memdelete(light_instance);
  3155. } else if (shadow_atlas_owner.owns(p_rid)) {
  3156. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid);
  3157. shadow_atlas_set_size(p_rid, 0);
  3158. shadow_atlas_owner.free(p_rid);
  3159. memdelete(shadow_atlas);
  3160. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  3161. ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid);
  3162. for (int i = 0; i < 6; i++) {
  3163. glDeleteFramebuffers(1, &reflection_instance->fbo[i]);
  3164. glDeleteTextures(1, &reflection_instance->color[i]);
  3165. }
  3166. if (reflection_instance->cubemap != 0) {
  3167. glDeleteTextures(1, &reflection_instance->cubemap);
  3168. }
  3169. glDeleteRenderbuffers(1, &reflection_instance->depth);
  3170. reflection_probe_release_atlas_index(p_rid);
  3171. reflection_probe_instance_owner.free(p_rid);
  3172. memdelete(reflection_instance);
  3173. } else if (environment_owner.owns(p_rid)) {
  3174. Environment *environment = environment_owner.get(p_rid);
  3175. environment_owner.free(p_rid);
  3176. memdelete(environment);
  3177. } else {
  3178. return false;
  3179. }
  3180. return true;
  3181. }
  3182. void RasterizerSceneGLES2::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) {
  3183. }
  3184. void RasterizerSceneGLES2::initialize() {
  3185. state.scene_shader.init();
  3186. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RGBA_SHADOWS, storage->config.use_rgba_3d_shadows);
  3187. state.cube_to_dp_shader.init();
  3188. state.effect_blur_shader.init();
  3189. state.tonemap_shader.init();
  3190. render_list.init();
  3191. render_pass = 1;
  3192. shadow_atlas_realloc_tolerance_msec = 500;
  3193. {
  3194. //default material and shader
  3195. default_shader = RID_PRIME(storage->shader_create());
  3196. storage->shader_set_code(default_shader, "shader_type spatial;\n");
  3197. default_material = RID_PRIME(storage->material_create());
  3198. storage->material_set_shader(default_material, default_shader);
  3199. default_shader_twosided = RID_PRIME(storage->shader_create());
  3200. default_material_twosided = RID_PRIME(storage->material_create());
  3201. storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n");
  3202. storage->material_set_shader(default_material_twosided, default_shader_twosided);
  3203. }
  3204. {
  3205. default_worldcoord_shader = RID_PRIME(storage->shader_create());
  3206. storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n");
  3207. default_worldcoord_material = RID_PRIME(storage->material_create());
  3208. storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader);
  3209. default_worldcoord_shader_twosided = RID_PRIME(storage->shader_create());
  3210. default_worldcoord_material_twosided = RID_PRIME(storage->material_create());
  3211. storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n");
  3212. storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided);
  3213. }
  3214. {
  3215. //default material and shader
  3216. default_overdraw_shader = RID_PRIME(storage->shader_create());
  3217. // Use relatively low opacity so that more "layers" of overlapping objects can be distinguished.
  3218. storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.1; }");
  3219. default_overdraw_material = RID_PRIME(storage->material_create());
  3220. storage->material_set_shader(default_overdraw_material, default_overdraw_shader);
  3221. }
  3222. {
  3223. glGenBuffers(1, &state.sky_verts);
  3224. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  3225. glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, nullptr, GL_DYNAMIC_DRAW);
  3226. glBindBuffer(GL_ARRAY_BUFFER, 0);
  3227. }
  3228. {
  3229. uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048);
  3230. ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater"));
  3231. glGenBuffers(1, &state.immediate_buffer);
  3232. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  3233. glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, nullptr, GL_DYNAMIC_DRAW);
  3234. glBindBuffer(GL_ARRAY_BUFFER, 0);
  3235. }
  3236. // cubemaps for shadows
  3237. if (storage->config.support_shadow_cubemaps) { //not going to be used
  3238. int max_shadow_cubemap_sampler_size = MIN(int(GLOBAL_GET("rendering/quality/shadow_atlas/cubemap_size")), storage->config.max_cubemap_texture_size);
  3239. int cube_size = max_shadow_cubemap_sampler_size;
  3240. WRAPPED_GL_ACTIVE_TEXTURE(GL_TEXTURE0);
  3241. while (cube_size >= 32) {
  3242. ShadowCubeMap cube;
  3243. cube.size = cube_size;
  3244. glGenTextures(1, &cube.cubemap);
  3245. glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap);
  3246. for (int i = 0; i < 6; i++) {
  3247. glTexImage2D(_cube_side_enum[i], 0, storage->config.depth_internalformat, cube_size, cube_size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, nullptr);
  3248. }
  3249. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  3250. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  3251. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  3252. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  3253. glGenFramebuffers(6, cube.fbo);
  3254. for (int i = 0; i < 6; i++) {
  3255. glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo[i]);
  3256. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0);
  3257. }
  3258. shadow_cubemaps.push_back(cube);
  3259. cube_size >>= 1;
  3260. }
  3261. }
  3262. directional_shadow_create();
  3263. if (storage->config.use_lightmap_filter_bicubic) {
  3264. state.scene_shader.add_custom_define("#define USE_LIGHTMAP_FILTER_BICUBIC\n");
  3265. }
  3266. shadow_filter_mode = SHADOW_FILTER_NEAREST;
  3267. glFrontFace(GL_CW);
  3268. }
  3269. void RasterizerSceneGLES2::iteration() {
  3270. shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode")));
  3271. const int directional_shadow_size_new = next_power_of_2(int(GLOBAL_GET("rendering/quality/directional_shadow/size")));
  3272. if (directional_shadow_size != directional_shadow_size_new) {
  3273. directional_shadow_size = directional_shadow_size_new;
  3274. directional_shadow_create();
  3275. }
  3276. }
  3277. void RasterizerSceneGLES2::finalize() {
  3278. }
  3279. RasterizerSceneGLES2::RasterizerSceneGLES2() {
  3280. _light_counter = 0;
  3281. directional_shadow_size = next_power_of_2(int(GLOBAL_GET("rendering/quality/directional_shadow/size")));
  3282. }
  3283. RasterizerSceneGLES2::~RasterizerSceneGLES2() {
  3284. storage->free(default_material);
  3285. default_material = RID();
  3286. storage->free(default_material_twosided);
  3287. default_material_twosided = RID();
  3288. storage->free(default_shader);
  3289. default_shader = RID();
  3290. storage->free(default_shader_twosided);
  3291. default_shader_twosided = RID();
  3292. storage->free(default_worldcoord_material);
  3293. default_worldcoord_material = RID();
  3294. storage->free(default_worldcoord_material_twosided);
  3295. default_worldcoord_material_twosided = RID();
  3296. storage->free(default_worldcoord_shader);
  3297. default_worldcoord_shader = RID();
  3298. storage->free(default_worldcoord_shader_twosided);
  3299. default_worldcoord_shader_twosided = RID();
  3300. storage->free(default_overdraw_material);
  3301. default_overdraw_material = RID();
  3302. storage->free(default_overdraw_shader);
  3303. default_overdraw_shader = RID();
  3304. }