123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 |
- <?xml version="1.0" encoding="UTF-8" ?>
- <class name="Vector3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
- <brief_description>
- Vector used for 3D math.
- </brief_description>
- <description>
- 3-element structure that can be used to represent positions in 3D space or any other triplet of numeric values.
- [b]Note:[/b] In a boolean context, a Vector3 will evaluate to [code]false[/code] if it's equal to [code]Vector3(0, 0, 0)[/code]. Otherwise, a Vector3 will always evaluate to [code]true[/code].
- </description>
- <tutorials>
- <link title="Math tutorial index">$DOCS_URL/tutorials/math/index.html</link>
- <link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
- <link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link>
- <link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
- <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
- <link title="All 3D Demos">https://github.com/godotengine/godot-demo-projects/tree/master/3d</link>
- </tutorials>
- <methods>
- <method name="Vector3">
- <return type="Vector3" />
- <argument index="0" name="x" type="float" />
- <argument index="1" name="y" type="float" />
- <argument index="2" name="z" type="float" />
- <description>
- Returns a Vector3 with the given components.
- </description>
- </method>
- <method name="abs">
- <return type="Vector3" />
- <description>
- Returns a new vector with all components in absolute values (i.e. positive).
- </description>
- </method>
- <method name="angle_to">
- <return type="float" />
- <argument index="0" name="to" type="Vector3" />
- <description>
- Returns the unsigned minimum angle to the given vector, in radians.
- </description>
- </method>
- <method name="bounce">
- <return type="Vector3" />
- <argument index="0" name="n" type="Vector3" />
- <description>
- Returns the vector "bounced off" from a plane defined by the given normal.
- </description>
- </method>
- <method name="ceil">
- <return type="Vector3" />
- <description>
- Returns a new vector with all components rounded up (towards positive infinity).
- </description>
- </method>
- <method name="cross">
- <return type="Vector3" />
- <argument index="0" name="b" type="Vector3" />
- <description>
- Returns the cross product of this vector and [code]b[/code].
- This returns a vector perpendicular to both this and [code]b[/code], which would be the normal vector of the plane defined by the two vectors. As there are two such vectors, in opposite directions, this method returns the vector defined by a right-handed coordinate system. If the two vectors are parallel this returns an empty vector, making it useful for testing if two vectors are parallel.
- </description>
- </method>
- <method name="cubic_interpolate">
- <return type="Vector3" />
- <argument index="0" name="b" type="Vector3" />
- <argument index="1" name="pre_a" type="Vector3" />
- <argument index="2" name="post_b" type="Vector3" />
- <argument index="3" name="weight" type="float" />
- <description>
- Performs a cubic interpolation between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
- </description>
- </method>
- <method name="direction_to">
- <return type="Vector3" />
- <argument index="0" name="b" type="Vector3" />
- <description>
- Returns the normalized vector pointing from this vector to [code]b[/code]. This is equivalent to using [code](b - a).normalized()[/code].
- </description>
- </method>
- <method name="distance_squared_to">
- <return type="float" />
- <argument index="0" name="b" type="Vector3" />
- <description>
- Returns the squared distance between this vector and [code]b[/code].
- This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
- </description>
- </method>
- <method name="distance_to">
- <return type="float" />
- <argument index="0" name="b" type="Vector3" />
- <description>
- Returns the distance between this vector and [code]b[/code].
- </description>
- </method>
- <method name="dot">
- <return type="float" />
- <argument index="0" name="b" type="Vector3" />
- <description>
- Returns the dot product of this vector and [code]b[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
- The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
- When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
- [b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
- </description>
- </method>
- <method name="floor">
- <return type="Vector3" />
- <description>
- Returns a new vector with all components rounded down (towards negative infinity).
- </description>
- </method>
- <method name="inverse">
- <return type="Vector3" />
- <description>
- Returns the inverse of the vector. This is the same as [code]Vector3( 1.0 / v.x, 1.0 / v.y, 1.0 / v.z )[/code].
- </description>
- </method>
- <method name="is_equal_approx">
- <return type="bool" />
- <argument index="0" name="v" type="Vector3" />
- <description>
- Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GDScript.is_equal_approx] on each component.
- </description>
- </method>
- <method name="is_normalized">
- <return type="bool" />
- <description>
- Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
- </description>
- </method>
- <method name="is_zero_approx">
- <return type="bool" />
- <description>
- Returns [code]true[/code] if this vector's values are approximately zero, by running [method @GDScript.is_zero_approx] on each component.
- This method is faster than using [method is_equal_approx] with one value as a zero vector.
- </description>
- </method>
- <method name="length">
- <return type="float" />
- <description>
- Returns the length (magnitude) of this vector.
- </description>
- </method>
- <method name="length_squared">
- <return type="float" />
- <description>
- Returns the squared length (squared magnitude) of this vector.
- This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
- </description>
- </method>
- <method name="limit_length">
- <return type="Vector3" />
- <argument index="0" name="length" type="float" default="1.0" />
- <description>
- Returns the vector with a maximum length by limiting its length to [code]length[/code].
- </description>
- </method>
- <method name="linear_interpolate">
- <return type="Vector3" />
- <argument index="0" name="to" type="Vector3" />
- <argument index="1" name="weight" type="float" />
- <description>
- Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]t[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
- </description>
- </method>
- <method name="max_axis">
- <return type="int" />
- <description>
- Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
- </description>
- </method>
- <method name="min_axis">
- <return type="int" />
- <description>
- Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Z].
- </description>
- </method>
- <method name="move_toward">
- <return type="Vector3" />
- <argument index="0" name="to" type="Vector3" />
- <argument index="1" name="delta" type="float" />
- <description>
- Returns a new vector moved toward [code]to[/code] by the fixed [code]delta[/code] amount. Will not go past the final value.
- </description>
- </method>
- <method name="normalized">
- <return type="Vector3" />
- <description>
- Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
- </description>
- </method>
- <method name="outer">
- <return type="Basis" />
- <argument index="0" name="b" type="Vector3" />
- <description>
- Returns the outer product with [code]b[/code].
- </description>
- </method>
- <method name="posmod">
- <return type="Vector3" />
- <argument index="0" name="mod" type="float" />
- <description>
- Returns a vector composed of the [method @GDScript.fposmod] of this vector's components and [code]mod[/code].
- </description>
- </method>
- <method name="posmodv">
- <return type="Vector3" />
- <argument index="0" name="modv" type="Vector3" />
- <description>
- Returns a vector composed of the [method @GDScript.fposmod] of this vector's components and [code]modv[/code]'s components.
- </description>
- </method>
- <method name="project">
- <return type="Vector3" />
- <argument index="0" name="b" type="Vector3" />
- <description>
- Returns this vector projected onto the vector [code]b[/code].
- </description>
- </method>
- <method name="reflect">
- <return type="Vector3" />
- <argument index="0" name="n" type="Vector3" />
- <description>
- Returns this vector reflected from a plane defined by the given normal.
- </description>
- </method>
- <method name="rotated">
- <return type="Vector3" />
- <argument index="0" name="axis" type="Vector3" />
- <argument index="1" name="angle" type="float" />
- <description>
- Rotates this vector around a given axis by [code]angle[/code] (in radians). The axis must be a normalized vector.
- </description>
- </method>
- <method name="round">
- <return type="Vector3" />
- <description>
- Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
- </description>
- </method>
- <method name="sign">
- <return type="Vector3" />
- <description>
- Returns a new vector with each component set to one or negative one, depending on the signs of the components. If a component is zero, it returns positive one.
- </description>
- </method>
- <method name="signed_angle_to">
- <return type="float" />
- <argument index="0" name="to" type="Vector3" />
- <argument index="1" name="axis" type="Vector3" />
- <description>
- Returns the signed angle to the given vector, in radians. The sign of the angle is positive in a counter-clockwise direction and negative in a clockwise direction when viewed from the side specified by the [code]axis[/code].
- </description>
- </method>
- <method name="slerp">
- <return type="Vector3" />
- <argument index="0" name="to" type="Vector3" />
- <argument index="1" name="weight" type="float" />
- <description>
- Returns the result of spherical linear interpolation between this vector and [code]to[/code], by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
- [b]Note:[/b] Both vectors must be normalized.
- </description>
- </method>
- <method name="slide">
- <return type="Vector3" />
- <argument index="0" name="n" type="Vector3" />
- <description>
- Returns this vector slid along a plane defined by the given normal.
- </description>
- </method>
- <method name="snapped">
- <return type="Vector3" />
- <argument index="0" name="by" type="Vector3" />
- <description>
- Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
- </description>
- </method>
- <method name="to_diagonal_matrix">
- <return type="Basis" />
- <description>
- Returns a diagonal matrix with the vector as main diagonal.
- This is equivalent to a Basis with no rotation or shearing and this vector's components set as the scale.
- </description>
- </method>
- </methods>
- <members>
- <member name="x" type="float" setter="" getter="" default="0.0">
- The vector's X component. Also accessible by using the index position [code][0][/code].
- </member>
- <member name="y" type="float" setter="" getter="" default="0.0">
- The vector's Y component. Also accessible by using the index position [code][1][/code].
- </member>
- <member name="z" type="float" setter="" getter="" default="0.0">
- The vector's Z component. Also accessible by using the index position [code][2][/code].
- </member>
- </members>
- <constants>
- <constant name="AXIS_X" value="0">
- Enumerated value for the X axis. Returned by [method max_axis] and [method min_axis].
- </constant>
- <constant name="AXIS_Y" value="1">
- Enumerated value for the Y axis. Returned by [method max_axis] and [method min_axis].
- </constant>
- <constant name="AXIS_Z" value="2">
- Enumerated value for the Z axis. Returned by [method max_axis] and [method min_axis].
- </constant>
- <constant name="ZERO" value="Vector3( 0, 0, 0 )">
- Zero vector, a vector with all components set to [code]0[/code].
- </constant>
- <constant name="ONE" value="Vector3( 1, 1, 1 )">
- One vector, a vector with all components set to [code]1[/code].
- </constant>
- <constant name="INF" value="Vector3( inf, inf, inf )">
- Infinity vector, a vector with all components set to [constant @GDScript.INF].
- </constant>
- <constant name="LEFT" value="Vector3( -1, 0, 0 )">
- Left unit vector. Represents the local direction of left, and the global direction of west.
- </constant>
- <constant name="RIGHT" value="Vector3( 1, 0, 0 )">
- Right unit vector. Represents the local direction of right, and the global direction of east.
- </constant>
- <constant name="UP" value="Vector3( 0, 1, 0 )">
- Up unit vector.
- </constant>
- <constant name="DOWN" value="Vector3( 0, -1, 0 )">
- Down unit vector.
- </constant>
- <constant name="FORWARD" value="Vector3( 0, 0, -1 )">
- Forward unit vector. Represents the local direction of forward, and the global direction of north.
- </constant>
- <constant name="BACK" value="Vector3( 0, 0, 1 )">
- Back unit vector. Represents the local direction of back, and the global direction of south.
- </constant>
- </constants>
- </class>
|