123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- <?xml version="1.0" encoding="UTF-8" ?>
- <class name="Transform2D" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
- <brief_description>
- 2D transformation (2×3 matrix).
- </brief_description>
- <description>
- 2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
- For more information, read the "Matrices and transforms" documentation article.
- </description>
- <tutorials>
- <link title="Math tutorial index">$DOCS_URL/tutorials/math/index.html</link>
- <link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
- <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
- <link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
- </tutorials>
- <methods>
- <method name="Transform2D">
- <return type="Transform2D" />
- <argument index="0" name="from" type="Transform" />
- <description>
- Constructs the transform from a 3D [Transform].
- </description>
- </method>
- <method name="Transform2D">
- <return type="Transform2D" />
- <argument index="0" name="x_axis" type="Vector2" />
- <argument index="1" name="y_axis" type="Vector2" />
- <argument index="2" name="origin" type="Vector2" />
- <description>
- Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
- </description>
- </method>
- <method name="Transform2D">
- <return type="Transform2D" />
- <argument index="0" name="rotation" type="float" />
- <argument index="1" name="position" type="Vector2" />
- <description>
- Constructs the transform from a given angle (in radians) and position.
- </description>
- </method>
- <method name="affine_inverse">
- <return type="Transform2D" />
- <description>
- Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
- </description>
- </method>
- <method name="basis_xform">
- <return type="Vector2" />
- <argument index="0" name="v" type="Vector2" />
- <description>
- Returns a vector transformed (multiplied) by the basis matrix.
- This method does not account for translation (the origin vector).
- </description>
- </method>
- <method name="basis_xform_inv">
- <return type="Vector2" />
- <argument index="0" name="v" type="Vector2" />
- <description>
- Returns a vector transformed (multiplied) by the inverse basis matrix.
- This method does not account for translation (the origin vector).
- </description>
- </method>
- <method name="determinant">
- <return type="float" />
- <description>
- Returns the determinant of the basis matrix. If the basis is uniformly scaled, then its determinant equals the square of the scale factor.
- A negative determinant means the basis was flipped, so one part of the scale is negative. A zero determinant means the basis isn't invertible, and is usually considered invalid.
- </description>
- </method>
- <method name="get_origin">
- <return type="Vector2" />
- <description>
- Returns the transform's origin (translation).
- </description>
- </method>
- <method name="get_rotation">
- <return type="float" />
- <description>
- Returns the transform's rotation (in radians).
- </description>
- </method>
- <method name="get_scale">
- <return type="Vector2" />
- <description>
- Returns the scale.
- </description>
- </method>
- <method name="interpolate_with">
- <return type="Transform2D" />
- <argument index="0" name="transform" type="Transform2D" />
- <argument index="1" name="weight" type="float" />
- <description>
- Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
- </description>
- </method>
- <method name="inverse">
- <return type="Transform2D" />
- <description>
- Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
- </description>
- </method>
- <method name="is_equal_approx">
- <return type="bool" />
- <argument index="0" name="transform" type="Transform2D" />
- <description>
- Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
- </description>
- </method>
- <method name="orthonormalized">
- <return type="Transform2D" />
- <description>
- Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
- </description>
- </method>
- <method name="rotated">
- <return type="Transform2D" />
- <argument index="0" name="angle" type="float" />
- <description>
- Returns a copy of the transform rotated by the given [code]angle[/code] (in radians), using matrix multiplication.
- </description>
- </method>
- <method name="scaled">
- <return type="Transform2D" />
- <argument index="0" name="scale" type="Vector2" />
- <description>
- Returns a copy of the transform scaled by the given [code]scale[/code] factor, using matrix multiplication.
- [b]Note:[/b] Negative X scales in 2D are not decomposable from the transformation matrix. Due to the way scale is represented with transformation matrices in Godot, negative scales on the X axis will be changed to negative scales on the Y axis and a rotation of 180 degrees when decomposed.
- </description>
- </method>
- <method name="translated">
- <return type="Transform2D" />
- <argument index="0" name="offset" type="Vector2" />
- <description>
- Returns a copy of the transform translated by the given [code]offset[/code], relative to the transform's basis vectors.
- Unlike [method rotated] and [method scaled], this does not use matrix multiplication.
- </description>
- </method>
- <method name="xform">
- <return type="Variant" />
- <argument index="0" name="v" type="Variant" />
- <description>
- Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
- </description>
- </method>
- <method name="xform_inv">
- <return type="Variant" />
- <argument index="0" name="v" type="Variant" />
- <description>
- Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling [code]inverse().xform(v)[/code] on this transform. For affine transformations (e.g. with scaling) see [method affine_inverse] method.
- </description>
- </method>
- </methods>
- <members>
- <member name="origin" type="Vector2" setter="" getter="" default="Vector2( 0, 0 )">
- The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
- </member>
- <member name="x" type="Vector2" setter="" getter="" default="Vector2( 1, 0 )">
- The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
- </member>
- <member name="y" type="Vector2" setter="" getter="" default="Vector2( 0, 1 )">
- The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
- </member>
- </members>
- <constants>
- <constant name="IDENTITY" value="Transform2D( 1, 0, 0, 1, 0, 0 )">
- The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
- </constant>
- <constant name="FLIP_X" value="Transform2D( -1, 0, 0, 1, 0, 0 )">
- The [Transform2D] that will flip something along the X axis.
- </constant>
- <constant name="FLIP_Y" value="Transform2D( 1, 0, 0, -1, 0, 0 )">
- The [Transform2D] that will flip something along the Y axis.
- </constant>
- </constants>
- </class>
|