123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- <?xml version="1.0" encoding="UTF-8" ?>
- <class name="Basis" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
- <brief_description>
- 3×3 matrix datatype.
- </brief_description>
- <description>
- 3×3 matrix used for 3D rotation and scale. Almost always used as an orthogonal basis for a Transform.
- Contains 3 vector fields X, Y and Z as its columns, which are typically interpreted as the local basis vectors of a transformation. For such use, it is composed of a scaling and a rotation matrix, in that order (M = R.S).
- Can also be accessed as array of 3D vectors. These vectors are normally orthogonal to each other, but are not necessarily normalized (due to scaling).
- For more information, read the "Matrices and transforms" documentation article.
- </description>
- <tutorials>
- <link title="Math tutorial index">$DOCS_URL/tutorials/math/index.html</link>
- <link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
- <link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html</link>
- <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
- <link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
- <link title="3D Voxel Demo">https://godotengine.org/asset-library/asset/676</link>
- <link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
- </tutorials>
- <methods>
- <method name="Basis">
- <return type="Basis" />
- <argument index="0" name="from" type="Quat" />
- <description>
- Constructs a pure rotation basis matrix from the given quaternion.
- </description>
- </method>
- <method name="Basis">
- <return type="Basis" />
- <argument index="0" name="from" type="Vector3" />
- <description>
- Constructs a pure rotation basis matrix from the given Euler angles (in the YXZ convention: when *composing*, first Y, then X, and Z last), given in the vector format as (X angle, Y angle, Z angle).
- Consider using the [Quat] constructor instead, which uses a quaternion instead of Euler angles.
- </description>
- </method>
- <method name="Basis">
- <return type="Basis" />
- <argument index="0" name="axis" type="Vector3" />
- <argument index="1" name="angle" type="float" />
- <description>
- Constructs a pure rotation basis matrix, rotated around the given [code]axis[/code] by [code]angle[/code] (in radians). The axis must be a normalized vector.
- </description>
- </method>
- <method name="Basis">
- <return type="Basis" />
- <argument index="0" name="x_axis" type="Vector3" />
- <argument index="1" name="y_axis" type="Vector3" />
- <argument index="2" name="z_axis" type="Vector3" />
- <description>
- Constructs a basis matrix from 3 axis vectors (matrix columns).
- </description>
- </method>
- <method name="determinant">
- <return type="float" />
- <description>
- Returns the determinant of the basis matrix. If the basis is uniformly scaled, its determinant is the square of the scale.
- A negative determinant means the basis has a negative scale. A zero determinant means the basis isn't invertible, and is usually considered invalid.
- </description>
- </method>
- <method name="get_euler">
- <return type="Vector3" />
- <description>
- Returns the basis's rotation in the form of Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last). The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
- Consider using the [method get_rotation_quat] method instead, which returns a [Quat] quaternion instead of Euler angles.
- </description>
- </method>
- <method name="get_orthogonal_index">
- <return type="int" />
- <description>
- This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the [GridMap] editor. For further details, refer to the Godot source code.
- </description>
- </method>
- <method name="get_rotation_quat">
- <return type="Quat" />
- <description>
- Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles.
- </description>
- </method>
- <method name="get_scale">
- <return type="Vector3" />
- <description>
- Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
- </description>
- </method>
- <method name="inverse">
- <return type="Basis" />
- <description>
- Returns the inverse of the matrix.
- </description>
- </method>
- <method name="is_equal_approx">
- <return type="bool" />
- <argument index="0" name="b" type="Basis" />
- <argument index="1" name="epsilon" type="float" default="1e-05" />
- <description>
- Returns [code]true[/code] if this basis and [code]b[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
- [b]Note:[/b] For complicated reasons, the epsilon argument is always discarded. Don't use the epsilon argument, it does nothing.
- </description>
- </method>
- <method name="orthonormalized">
- <return type="Basis" />
- <description>
- Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
- </description>
- </method>
- <method name="rotated">
- <return type="Basis" />
- <argument index="0" name="axis" type="Vector3" />
- <argument index="1" name="angle" type="float" />
- <description>
- Introduce an additional rotation around the given axis by [code]angle[/code] (in radians). The axis must be a normalized vector.
- </description>
- </method>
- <method name="scaled">
- <return type="Basis" />
- <argument index="0" name="scale" type="Vector3" />
- <description>
- Introduce an additional scaling specified by the given 3D scaling factor.
- </description>
- </method>
- <method name="slerp">
- <return type="Basis" />
- <argument index="0" name="to" type="Basis" />
- <argument index="1" name="weight" type="float" />
- <description>
- Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
- </description>
- </method>
- <method name="tdotx">
- <return type="float" />
- <argument index="0" name="with" type="Vector3" />
- <description>
- Transposed dot product with the X axis of the matrix.
- </description>
- </method>
- <method name="tdoty">
- <return type="float" />
- <argument index="0" name="with" type="Vector3" />
- <description>
- Transposed dot product with the Y axis of the matrix.
- </description>
- </method>
- <method name="tdotz">
- <return type="float" />
- <argument index="0" name="with" type="Vector3" />
- <description>
- Transposed dot product with the Z axis of the matrix.
- </description>
- </method>
- <method name="transposed">
- <return type="Basis" />
- <description>
- Returns the transposed version of the matrix.
- </description>
- </method>
- <method name="xform">
- <return type="Vector3" />
- <argument index="0" name="v" type="Vector3" />
- <description>
- Returns a vector transformed (multiplied) by the matrix.
- </description>
- </method>
- <method name="xform_inv">
- <return type="Vector3" />
- <argument index="0" name="v" type="Vector3" />
- <description>
- Returns a vector transformed (multiplied) by the transposed basis matrix.
- [b]Note:[/b] This results in a multiplication by the inverse of the matrix only if it represents a rotation-reflection.
- </description>
- </method>
- </methods>
- <members>
- <member name="x" type="Vector3" setter="" getter="" default="Vector3( 1, 0, 0 )">
- The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
- </member>
- <member name="y" type="Vector3" setter="" getter="" default="Vector3( 0, 1, 0 )">
- The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
- </member>
- <member name="z" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 1 )">
- The basis matrix's Z vector (column 2). Equivalent to array index [code]2[/code].
- </member>
- </members>
- <constants>
- <constant name="IDENTITY" value="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )">
- The identity basis, with no rotation or scaling applied.
- This is identical to calling [code]Basis()[/code] without any parameters. This constant can be used to make your code clearer, and for consistency with C#.
- </constant>
- <constant name="FLIP_X" value="Basis( -1, 0, 0, 0, 1, 0, 0, 0, 1 )">
- The basis that will flip something along the X axis when used in a transformation.
- </constant>
- <constant name="FLIP_Y" value="Basis( 1, 0, 0, 0, -1, 0, 0, 0, 1 )">
- The basis that will flip something along the Y axis when used in a transformation.
- </constant>
- <constant name="FLIP_Z" value="Basis( 1, 0, 0, 0, 1, 0, 0, 0, -1 )">
- The basis that will flip something along the Z axis when used in a transformation.
- </constant>
- </constants>
- </class>
|