123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- /*
- Bullet Continuous Collision Detection and Physics Library
- Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- #ifndef BT_OBJECT_ARRAY__
- #define BT_OBJECT_ARRAY__
- #include "btAlignedAllocator.h"
- #include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
- ///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW
- ///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors
- ///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator=
- ///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and
- ///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240
- #define BT_USE_PLACEMENT_NEW 1
- //#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
- #define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
- #ifdef BT_USE_MEMCPY
- #include <memory.h>
- #include <string.h>
- #endif //BT_USE_MEMCPY
- #ifdef BT_USE_PLACEMENT_NEW
- #include <new> //for placement new
- #endif //BT_USE_PLACEMENT_NEW
- // -- GODOT start --
- namespace VHACD {
- // -- GODOT end --
- ///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
- ///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
- template <typename T>
- //template <class T>
- class btAlignedObjectArray {
- btAlignedAllocator<T, 16> m_allocator;
- int32_t m_size;
- int32_t m_capacity;
- T* m_data;
- //PCK: added this line
- bool m_ownsMemory;
- #ifdef BT_ALLOW_ARRAY_COPY_OPERATOR
- public:
- SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other)
- {
- copyFromArray(other);
- return *this;
- }
- #else //BT_ALLOW_ARRAY_COPY_OPERATOR
- private:
- SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other);
- #endif //BT_ALLOW_ARRAY_COPY_OPERATOR
- protected:
- SIMD_FORCE_INLINE int32_t allocSize(int32_t size)
- {
- return (size ? size * 2 : 1);
- }
- SIMD_FORCE_INLINE void copy(int32_t start, int32_t end, T* dest) const
- {
- int32_t i;
- for (i = start; i < end; ++i)
- #ifdef BT_USE_PLACEMENT_NEW
- new (&dest[i]) T(m_data[i]);
- #else
- dest[i] = m_data[i];
- #endif //BT_USE_PLACEMENT_NEW
- }
- SIMD_FORCE_INLINE void init()
- {
- //PCK: added this line
- m_ownsMemory = true;
- m_data = 0;
- m_size = 0;
- m_capacity = 0;
- }
- SIMD_FORCE_INLINE void destroy(int32_t first, int32_t last)
- {
- int32_t i;
- for (i = first; i < last; i++) {
- m_data[i].~T();
- }
- }
- SIMD_FORCE_INLINE void* allocate(int32_t size)
- {
- if (size)
- return m_allocator.allocate(size);
- return 0;
- }
- SIMD_FORCE_INLINE void deallocate()
- {
- if (m_data) {
- //PCK: enclosed the deallocation in this block
- if (m_ownsMemory) {
- m_allocator.deallocate(m_data);
- }
- m_data = 0;
- }
- }
- public:
- btAlignedObjectArray()
- {
- init();
- }
- ~btAlignedObjectArray()
- {
- clear();
- }
- ///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
- btAlignedObjectArray(const btAlignedObjectArray& otherArray)
- {
- init();
- int32_t otherSize = otherArray.size();
- resize(otherSize);
- otherArray.copy(0, otherSize, m_data);
- }
- /// return the number of elements in the array
- SIMD_FORCE_INLINE int32_t size() const
- {
- return m_size;
- }
- SIMD_FORCE_INLINE const T& at(int32_t n) const
- {
- btAssert(n >= 0);
- btAssert(n < size());
- return m_data[n];
- }
- SIMD_FORCE_INLINE T& at(int32_t n)
- {
- btAssert(n >= 0);
- btAssert(n < size());
- return m_data[n];
- }
- SIMD_FORCE_INLINE const T& operator[](int32_t n) const
- {
- btAssert(n >= 0);
- btAssert(n < size());
- return m_data[n];
- }
- SIMD_FORCE_INLINE T& operator[](int32_t n)
- {
- btAssert(n >= 0);
- btAssert(n < size());
- return m_data[n];
- }
- ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
- SIMD_FORCE_INLINE void clear()
- {
- destroy(0, size());
- deallocate();
- init();
- }
- SIMD_FORCE_INLINE void pop_back()
- {
- btAssert(m_size > 0);
- m_size--;
- m_data[m_size].~T();
- }
- ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
- ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
- SIMD_FORCE_INLINE void resize(int32_t newsize, const T& fillData = T())
- {
- int32_t curSize = size();
- if (newsize < curSize) {
- for (int32_t i = newsize; i < curSize; i++) {
- m_data[i].~T();
- }
- }
- else {
- if (newsize > size()) {
- reserve(newsize);
- }
- #ifdef BT_USE_PLACEMENT_NEW
- for (int32_t i = curSize; i < newsize; i++) {
- new (&m_data[i]) T(fillData);
- }
- #endif //BT_USE_PLACEMENT_NEW
- }
- m_size = newsize;
- }
- SIMD_FORCE_INLINE T& expandNonInitializing()
- {
- int32_t sz = size();
- if (sz == capacity()) {
- reserve(allocSize(size()));
- }
- m_size++;
- return m_data[sz];
- }
- SIMD_FORCE_INLINE T& expand(const T& fillValue = T())
- {
- int32_t sz = size();
- if (sz == capacity()) {
- reserve(allocSize(size()));
- }
- m_size++;
- #ifdef BT_USE_PLACEMENT_NEW
- new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
- #endif
- return m_data[sz];
- }
- SIMD_FORCE_INLINE void push_back(const T& _Val)
- {
- int32_t sz = size();
- if (sz == capacity()) {
- reserve(allocSize(size()));
- }
- #ifdef BT_USE_PLACEMENT_NEW
- new (&m_data[m_size]) T(_Val);
- #else
- m_data[size()] = _Val;
- #endif //BT_USE_PLACEMENT_NEW
- m_size++;
- }
- /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
- SIMD_FORCE_INLINE int32_t capacity() const
- {
- return m_capacity;
- }
- SIMD_FORCE_INLINE void reserve(int32_t _Count)
- { // determine new minimum length of allocated storage
- if (capacity() < _Count) { // not enough room, reallocate
- T* s = (T*)allocate(_Count);
- copy(0, size(), s);
- destroy(0, size());
- deallocate();
- //PCK: added this line
- m_ownsMemory = true;
- m_data = s;
- m_capacity = _Count;
- }
- }
- class less {
- public:
- bool operator()(const T& a, const T& b)
- {
- return (a < b);
- }
- };
- template <typename L>
- void quickSortInternal(const L& CompareFunc, int32_t lo, int32_t hi)
- {
- // lo is the lower index, hi is the upper index
- // of the region of array a that is to be sorted
- int32_t i = lo, j = hi;
- T x = m_data[(lo + hi) / 2];
- // partition
- do {
- while (CompareFunc(m_data[i], x))
- i++;
- while (CompareFunc(x, m_data[j]))
- j--;
- if (i <= j) {
- swap(i, j);
- i++;
- j--;
- }
- } while (i <= j);
- // recursion
- if (lo < j)
- quickSortInternal(CompareFunc, lo, j);
- if (i < hi)
- quickSortInternal(CompareFunc, i, hi);
- }
- template <typename L>
- void quickSort(const L& CompareFunc)
- {
- //don't sort 0 or 1 elements
- if (size() > 1) {
- quickSortInternal(CompareFunc, 0, size() - 1);
- }
- }
- ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
- template <typename L>
- void downHeap(T* pArr, int32_t k, int32_t n, const L& CompareFunc)
- {
- /* PRE: a[k+1..N] is a heap */
- /* POST: a[k..N] is a heap */
- T temp = pArr[k - 1];
- /* k has child(s) */
- while (k <= n / 2) {
- int32_t child = 2 * k;
- if ((child < n) && CompareFunc(pArr[child - 1], pArr[child])) {
- child++;
- }
- /* pick larger child */
- if (CompareFunc(temp, pArr[child - 1])) {
- /* move child up */
- pArr[k - 1] = pArr[child - 1];
- k = child;
- }
- else {
- break;
- }
- }
- pArr[k - 1] = temp;
- } /*downHeap*/
- void swap(int32_t index0, int32_t index1)
- {
- #ifdef BT_USE_MEMCPY
- char temp[sizeof(T)];
- memcpy(temp, &m_data[index0], sizeof(T));
- memcpy(&m_data[index0], &m_data[index1], sizeof(T));
- memcpy(&m_data[index1], temp, sizeof(T));
- #else
- T temp = m_data[index0];
- m_data[index0] = m_data[index1];
- m_data[index1] = temp;
- #endif //BT_USE_PLACEMENT_NEW
- }
- template <typename L>
- void heapSort(const L& CompareFunc)
- {
- /* sort a[0..N-1], N.B. 0 to N-1 */
- int32_t k;
- int32_t n = m_size;
- for (k = n / 2; k > 0; k--) {
- downHeap(m_data, k, n, CompareFunc);
- }
- /* a[1..N] is now a heap */
- while (n >= 1) {
- swap(0, n - 1); /* largest of a[0..n-1] */
- n = n - 1;
- /* restore a[1..i-1] heap */
- downHeap(m_data, 1, n, CompareFunc);
- }
- }
- ///non-recursive binary search, assumes sorted array
- int32_t findBinarySearch(const T& key) const
- {
- int32_t first = 0;
- int32_t last = size() - 1;
- //assume sorted array
- while (first <= last) {
- int32_t mid = (first + last) / 2; // compute mid point.
- if (key > m_data[mid])
- first = mid + 1; // repeat search in top half.
- else if (key < m_data[mid])
- last = mid - 1; // repeat search in bottom half.
- else
- return mid; // found it. return position /////
- }
- return size(); // failed to find key
- }
- int32_t findLinearSearch(const T& key) const
- {
- int32_t index = size();
- int32_t i;
- for (i = 0; i < size(); i++) {
- if (m_data[i] == key) {
- index = i;
- break;
- }
- }
- return index;
- }
- void remove(const T& key)
- {
- int32_t findIndex = findLinearSearch(key);
- if (findIndex < size()) {
- swap(findIndex, size() - 1);
- pop_back();
- }
- }
- //PCK: whole function
- void initializeFromBuffer(void* buffer, int32_t size, int32_t capacity)
- {
- clear();
- m_ownsMemory = false;
- m_data = (T*)buffer;
- m_size = size;
- m_capacity = capacity;
- }
- void copyFromArray(const btAlignedObjectArray& otherArray)
- {
- int32_t otherSize = otherArray.size();
- resize(otherSize);
- otherArray.copy(0, otherSize, m_data);
- }
- };
- // -- GODOT start --
- }; // namespace VHACD
- // -- GODOT end --
- #endif //BT_OBJECT_ARRAY__
|