123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256 |
- /*
- * OpenSimplex (Simplectic) Noise in C.
- * Ported by Stephen M. Cameron from Kurt Spencer's java implementation
- *
- * v1.1 (October 5, 2014)
- * - Added 2D and 4D implementations.
- * - Proper gradient sets for all dimensions, from a
- * dimensionally-generalizable scheme with an actual
- * rhyme and reason behind it.
- * - Removed default permutation array in favor of
- * default seed.
- * - Changed seed-based constructor to be independent
- * of any particular randomization library, so results
- * will be the same when ported to other languages.
- */
- // -- GODOT start --
- // Modified to work without allocating memory, also removed some unused function.
- // -- GODOT end --
- #include <math.h>
- #include <stdlib.h>
- #include <stdint.h>
- #include <string.h>
- #include <errno.h>
- #include "open-simplex-noise.h"
- #define STRETCH_CONSTANT_2D (-0.211324865405187) /* (1 / sqrt(2 + 1) - 1 ) / 2; */
- #define SQUISH_CONSTANT_2D (0.366025403784439) /* (sqrt(2 + 1) -1) / 2; */
- #define STRETCH_CONSTANT_3D (-1.0 / 6.0) /* (1 / sqrt(3 + 1) - 1) / 3; */
- #define SQUISH_CONSTANT_3D (1.0 / 3.0) /* (sqrt(3+1)-1)/3; */
- #define STRETCH_CONSTANT_4D (-0.138196601125011) /* (1 / sqrt(4 + 1) - 1) / 4; */
- #define SQUISH_CONSTANT_4D (0.309016994374947) /* (sqrt(4 + 1) - 1) / 4; */
-
- #define NORM_CONSTANT_2D (47.0)
- #define NORM_CONSTANT_3D (103.0)
- #define NORM_CONSTANT_4D (30.0)
-
- #define DEFAULT_SEED (0LL)
- // -- GODOT start --
- /*struct osn_context {
- int16_t *perm;
- int16_t *permGradIndex3D;
- };*/
- // -- GODOT end --
- #define ARRAYSIZE(x) (sizeof((x)) / sizeof((x)[0]))
- /*
- * Gradients for 2D. They approximate the directions to the
- * vertices of an octagon from the center.
- */
- static const int8_t gradients2D[] = {
- 5, 2, 2, 5,
- -5, 2, -2, 5,
- 5, -2, 2, -5,
- -5, -2, -2, -5,
- };
- /*
- * Gradients for 3D. They approximate the directions to the
- * vertices of a rhombicuboctahedron from the center, skewed so
- * that the triangular and square facets can be inscribed inside
- * circles of the same radius.
- */
- static const signed char gradients3D[] = {
- -11, 4, 4, -4, 11, 4, -4, 4, 11,
- 11, 4, 4, 4, 11, 4, 4, 4, 11,
- -11, -4, 4, -4, -11, 4, -4, -4, 11,
- 11, -4, 4, 4, -11, 4, 4, -4, 11,
- -11, 4, -4, -4, 11, -4, -4, 4, -11,
- 11, 4, -4, 4, 11, -4, 4, 4, -11,
- -11, -4, -4, -4, -11, -4, -4, -4, -11,
- 11, -4, -4, 4, -11, -4, 4, -4, -11,
- };
- /*
- * Gradients for 4D. They approximate the directions to the
- * vertices of a disprismatotesseractihexadecachoron from the center,
- * skewed so that the tetrahedral and cubic facets can be inscribed inside
- * spheres of the same radius.
- */
- static const signed char gradients4D[] = {
- 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3,
- -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3,
- 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3,
- -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3,
- 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3,
- -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3,
- 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3,
- -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3,
- 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3,
- -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3,
- 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3,
- -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3,
- 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3,
- -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3,
- 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3,
- -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3,
- };
- static double extrapolate2(const struct osn_context *ctx, int xsb, int ysb, double dx, double dy)
- {
- const int16_t *perm = ctx->perm;
- int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E;
- return gradients2D[index] * dx
- + gradients2D[index + 1] * dy;
- }
-
- static double extrapolate3(const struct osn_context *ctx, int xsb, int ysb, int zsb, double dx, double dy, double dz)
- {
- const int16_t *perm = ctx->perm;
- const int16_t *permGradIndex3D = ctx->permGradIndex3D;
- int index = permGradIndex3D[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF];
- return gradients3D[index] * dx
- + gradients3D[index + 1] * dy
- + gradients3D[index + 2] * dz;
- }
-
- static double extrapolate4(const struct osn_context *ctx, int xsb, int ysb, int zsb, int wsb, double dx, double dy, double dz, double dw)
- {
- const int16_t *perm = ctx->perm;
- int index = perm[(perm[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF] + wsb) & 0xFF] & 0xFC;
- return gradients4D[index] * dx
- + gradients4D[index + 1] * dy
- + gradients4D[index + 2] * dz
- + gradients4D[index + 3] * dw;
- }
-
- static INLINE int fastFloor(double x) {
- int xi = (int) x;
- return x < xi ? xi - 1 : xi;
- }
- // -- GODOT start --
- /*
- static int allocate_perm(struct osn_context *ctx, int nperm, int ngrad)
- {
- if (ctx->perm)
- free(ctx->perm);
- if (ctx->permGradIndex3D)
- free(ctx->permGradIndex3D);
- ctx->perm = (int16_t *) malloc(sizeof(*ctx->perm) * nperm);
- if (!ctx->perm)
- return -ENOMEM;
- ctx->permGradIndex3D = (int16_t *) malloc(sizeof(*ctx->permGradIndex3D) * ngrad);
- if (!ctx->permGradIndex3D) {
- free(ctx->perm);
- return -ENOMEM;
- }
- return 0;
- }
-
- int open_simplex_noise_init_perm(struct osn_context *ctx, int16_t p[], int nelements)
- {
- int i, rc;
- rc = allocate_perm(ctx, nelements, 256);
- if (rc)
- return rc;
- memcpy(ctx->perm, p, sizeof(*ctx->perm) * nelements);
-
- for (i = 0; i < 256; i++) {
- // Since 3D has 24 gradients, simple bitmask won't work, so precompute modulo array.
- ctx->permGradIndex3D[i] = (int16_t)((ctx->perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3);
- }
- return 0;
- }
- */
- // -- GODOT end --
- /*
- * Initializes using a permutation array generated from a 64-bit seed.
- * Generates a proper permutation (i.e. doesn't merely perform N successive pair
- * swaps on a base array). Uses a simple 64-bit LCG.
- */
- // -- GODOT start --
- int open_simplex_noise(int64_t seed, struct osn_context *ctx)
- {
- int rc;
- int16_t source[256];
- int i;
- int16_t *perm;
- int16_t *permGradIndex3D;
- int r;
- perm = ctx->perm;
- permGradIndex3D = ctx->permGradIndex3D;
- // -- GODOT end --
- uint64_t seedU = seed;
- for (i = 0; i < 256; i++)
- source[i] = (int16_t) i;
- seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL;
- seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL;
- seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL;
- for (i = 255; i >= 0; i--) {
- seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL;
- r = (int)((seedU + 31) % (i + 1));
- if (r < 0)
- r += (i + 1);
- perm[i] = source[r];
- permGradIndex3D[i] = (short)((perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3);
- source[r] = source[i];
- }
- return 0;
- }
- // -- GODOT start --
- /*
- void open_simplex_noise_free(struct osn_context *ctx)
- {
- if (!ctx)
- return;
- if (ctx->perm) {
- free(ctx->perm);
- ctx->perm = NULL;
- }
- if (ctx->permGradIndex3D) {
- free(ctx->permGradIndex3D);
- ctx->permGradIndex3D = NULL;
- }
- free(ctx);
- }
- */
- // -- GODOT end --
-
- /* 2D OpenSimplex (Simplectic) Noise. */
- double open_simplex_noise2(const struct osn_context *ctx, double x, double y)
- {
-
- /* Place input coordinates onto grid. */
- double stretchOffset = (x + y) * STRETCH_CONSTANT_2D;
- double xs = x + stretchOffset;
- double ys = y + stretchOffset;
-
- /* Floor to get grid coordinates of rhombus (stretched square) super-cell origin. */
- int xsb = fastFloor(xs);
- int ysb = fastFloor(ys);
-
- /* Skew out to get actual coordinates of rhombus origin. We'll need these later. */
- double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D;
- double xb = xsb + squishOffset;
- double yb = ysb + squishOffset;
-
- /* Compute grid coordinates relative to rhombus origin. */
- double xins = xs - xsb;
- double yins = ys - ysb;
-
- /* Sum those together to get a value that determines which region we're in. */
- double inSum = xins + yins;
- /* Positions relative to origin point. */
- double dx0 = x - xb;
- double dy0 = y - yb;
-
- /* We'll be defining these inside the next block and using them afterwards. */
- double dx_ext, dy_ext;
- int xsv_ext, ysv_ext;
- double dx1;
- double dy1;
- double attn1;
- double dx2;
- double dy2;
- double attn2;
- double zins;
- double attn0;
- double attn_ext;
- double value = 0;
- /* Contribution (1,0) */
- dx1 = dx0 - 1 - SQUISH_CONSTANT_2D;
- dy1 = dy0 - 0 - SQUISH_CONSTANT_2D;
- attn1 = 2 - dx1 * dx1 - dy1 * dy1;
- if (attn1 > 0) {
- attn1 *= attn1;
- value += attn1 * attn1 * extrapolate2(ctx, xsb + 1, ysb + 0, dx1, dy1);
- }
- /* Contribution (0,1) */
- dx2 = dx0 - 0 - SQUISH_CONSTANT_2D;
- dy2 = dy0 - 1 - SQUISH_CONSTANT_2D;
- attn2 = 2 - dx2 * dx2 - dy2 * dy2;
- if (attn2 > 0) {
- attn2 *= attn2;
- value += attn2 * attn2 * extrapolate2(ctx, xsb + 0, ysb + 1, dx2, dy2);
- }
-
- if (inSum <= 1) { /* We're inside the triangle (2-Simplex) at (0,0) */
- zins = 1 - inSum;
- if (zins > xins || zins > yins) { /* (0,0) is one of the closest two triangular vertices */
- if (xins > yins) {
- xsv_ext = xsb + 1;
- ysv_ext = ysb - 1;
- dx_ext = dx0 - 1;
- dy_ext = dy0 + 1;
- } else {
- xsv_ext = xsb - 1;
- ysv_ext = ysb + 1;
- dx_ext = dx0 + 1;
- dy_ext = dy0 - 1;
- }
- } else { /* (1,0) and (0,1) are the closest two vertices. */
- xsv_ext = xsb + 1;
- ysv_ext = ysb + 1;
- dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D;
- dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D;
- }
- } else { /* We're inside the triangle (2-Simplex) at (1,1) */
- zins = 2 - inSum;
- if (zins < xins || zins < yins) { /* (0,0) is one of the closest two triangular vertices */
- if (xins > yins) {
- xsv_ext = xsb + 2;
- ysv_ext = ysb + 0;
- dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D;
- dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D;
- } else {
- xsv_ext = xsb + 0;
- ysv_ext = ysb + 2;
- dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D;
- dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D;
- }
- } else { /* (1,0) and (0,1) are the closest two vertices. */
- dx_ext = dx0;
- dy_ext = dy0;
- xsv_ext = xsb;
- ysv_ext = ysb;
- }
- xsb += 1;
- ysb += 1;
- dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D;
- dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D;
- }
-
- /* Contribution (0,0) or (1,1) */
- attn0 = 2 - dx0 * dx0 - dy0 * dy0;
- if (attn0 > 0) {
- attn0 *= attn0;
- value += attn0 * attn0 * extrapolate2(ctx, xsb, ysb, dx0, dy0);
- }
-
- /* Extra Vertex */
- attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext;
- if (attn_ext > 0) {
- attn_ext *= attn_ext;
- value += attn_ext * attn_ext * extrapolate2(ctx, xsv_ext, ysv_ext, dx_ext, dy_ext);
- }
-
- return value / NORM_CONSTANT_2D;
- }
-
- /*
- * 3D OpenSimplex (Simplectic) Noise
- */
- double open_simplex_noise3(const struct osn_context *ctx, double x, double y, double z)
- {
- /* Place input coordinates on simplectic honeycomb. */
- double stretchOffset = (x + y + z) * STRETCH_CONSTANT_3D;
- double xs = x + stretchOffset;
- double ys = y + stretchOffset;
- double zs = z + stretchOffset;
-
- /* Floor to get simplectic honeycomb coordinates of rhombohedron (stretched cube) super-cell origin. */
- int xsb = fastFloor(xs);
- int ysb = fastFloor(ys);
- int zsb = fastFloor(zs);
-
- /* Skew out to get actual coordinates of rhombohedron origin. We'll need these later. */
- double squishOffset = (xsb + ysb + zsb) * SQUISH_CONSTANT_3D;
- double xb = xsb + squishOffset;
- double yb = ysb + squishOffset;
- double zb = zsb + squishOffset;
-
- /* Compute simplectic honeycomb coordinates relative to rhombohedral origin. */
- double xins = xs - xsb;
- double yins = ys - ysb;
- double zins = zs - zsb;
-
- /* Sum those together to get a value that determines which region we're in. */
- double inSum = xins + yins + zins;
- /* Positions relative to origin point. */
- double dx0 = x - xb;
- double dy0 = y - yb;
- double dz0 = z - zb;
-
- /* We'll be defining these inside the next block and using them afterwards. */
- double dx_ext0, dy_ext0, dz_ext0;
- double dx_ext1, dy_ext1, dz_ext1;
- int xsv_ext0, ysv_ext0, zsv_ext0;
- int xsv_ext1, ysv_ext1, zsv_ext1;
- double wins;
- int8_t c, c1, c2;
- int8_t aPoint, bPoint;
- double aScore, bScore;
- int aIsFurtherSide;
- int bIsFurtherSide;
- double p1, p2, p3;
- double score;
- double attn0, attn1, attn2, attn3, attn4, attn5, attn6;
- double dx1, dy1, dz1;
- double dx2, dy2, dz2;
- double dx3, dy3, dz3;
- double dx4, dy4, dz4;
- double dx5, dy5, dz5;
- double dx6, dy6, dz6;
- double attn_ext0, attn_ext1;
-
- double value = 0;
- if (inSum <= 1) { /* We're inside the tetrahedron (3-Simplex) at (0,0,0) */
-
- /* Determine which two of (0,0,1), (0,1,0), (1,0,0) are closest. */
- aPoint = 0x01;
- aScore = xins;
- bPoint = 0x02;
- bScore = yins;
- if (aScore >= bScore && zins > bScore) {
- bScore = zins;
- bPoint = 0x04;
- } else if (aScore < bScore && zins > aScore) {
- aScore = zins;
- aPoint = 0x04;
- }
-
- /* Now we determine the two lattice points not part of the tetrahedron that may contribute.
- This depends on the closest two tetrahedral vertices, including (0,0,0) */
- wins = 1 - inSum;
- if (wins > aScore || wins > bScore) { /* (0,0,0) is one of the closest two tetrahedral vertices. */
- c = (bScore > aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
-
- if ((c & 0x01) == 0) {
- xsv_ext0 = xsb - 1;
- xsv_ext1 = xsb;
- dx_ext0 = dx0 + 1;
- dx_ext1 = dx0;
- } else {
- xsv_ext0 = xsv_ext1 = xsb + 1;
- dx_ext0 = dx_ext1 = dx0 - 1;
- }
- if ((c & 0x02) == 0) {
- ysv_ext0 = ysv_ext1 = ysb;
- dy_ext0 = dy_ext1 = dy0;
- if ((c & 0x01) == 0) {
- ysv_ext1 -= 1;
- dy_ext1 += 1;
- } else {
- ysv_ext0 -= 1;
- dy_ext0 += 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysb + 1;
- dy_ext0 = dy_ext1 = dy0 - 1;
- }
- if ((c & 0x04) == 0) {
- zsv_ext0 = zsb;
- zsv_ext1 = zsb - 1;
- dz_ext0 = dz0;
- dz_ext1 = dz0 + 1;
- } else {
- zsv_ext0 = zsv_ext1 = zsb + 1;
- dz_ext0 = dz_ext1 = dz0 - 1;
- }
- } else { /* (0,0,0) is not one of the closest two tetrahedral vertices. */
- c = (int8_t)(aPoint | bPoint); /* Our two extra vertices are determined by the closest two. */
-
- if ((c & 0x01) == 0) {
- xsv_ext0 = xsb;
- xsv_ext1 = xsb - 1;
- dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_3D;
- dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D;
- } else {
- xsv_ext0 = xsv_ext1 = xsb + 1;
- dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
- dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
- }
- if ((c & 0x02) == 0) {
- ysv_ext0 = ysb;
- ysv_ext1 = ysb - 1;
- dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D;
- } else {
- ysv_ext0 = ysv_ext1 = ysb + 1;
- dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
- }
- if ((c & 0x04) == 0) {
- zsv_ext0 = zsb;
- zsv_ext1 = zsb - 1;
- dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D;
- } else {
- zsv_ext0 = zsv_ext1 = zsb + 1;
- dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
- }
- }
- /* Contribution (0,0,0) */
- attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0;
- if (attn0 > 0) {
- attn0 *= attn0;
- value += attn0 * attn0 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 0, dx0, dy0, dz0);
- }
- /* Contribution (1,0,0) */
- dx1 = dx0 - 1 - SQUISH_CONSTANT_3D;
- dy1 = dy0 - 0 - SQUISH_CONSTANT_3D;
- dz1 = dz0 - 0 - SQUISH_CONSTANT_3D;
- attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
- if (attn1 > 0) {
- attn1 *= attn1;
- value += attn1 * attn1 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1);
- }
- /* Contribution (0,1,0) */
- dx2 = dx0 - 0 - SQUISH_CONSTANT_3D;
- dy2 = dy0 - 1 - SQUISH_CONSTANT_3D;
- dz2 = dz1;
- attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
- if (attn2 > 0) {
- attn2 *= attn2;
- value += attn2 * attn2 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2);
- }
- /* Contribution (0,0,1) */
- dx3 = dx2;
- dy3 = dy1;
- dz3 = dz0 - 1 - SQUISH_CONSTANT_3D;
- attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
- if (attn3 > 0) {
- attn3 *= attn3;
- value += attn3 * attn3 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3);
- }
- } else if (inSum >= 2) { /* We're inside the tetrahedron (3-Simplex) at (1,1,1) */
-
- /* Determine which two tetrahedral vertices are the closest, out of (1,1,0), (1,0,1), (0,1,1) but not (1,1,1). */
- aPoint = 0x06;
- aScore = xins;
- bPoint = 0x05;
- bScore = yins;
- if (aScore <= bScore && zins < bScore) {
- bScore = zins;
- bPoint = 0x03;
- } else if (aScore > bScore && zins < aScore) {
- aScore = zins;
- aPoint = 0x03;
- }
-
- /* Now we determine the two lattice points not part of the tetrahedron that may contribute.
- This depends on the closest two tetrahedral vertices, including (1,1,1) */
- wins = 3 - inSum;
- if (wins < aScore || wins < bScore) { /* (1,1,1) is one of the closest two tetrahedral vertices. */
- c = (bScore < aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
-
- if ((c & 0x01) != 0) {
- xsv_ext0 = xsb + 2;
- xsv_ext1 = xsb + 1;
- dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_3D;
- dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
- } else {
- xsv_ext0 = xsv_ext1 = xsb;
- dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_3D;
- }
- if ((c & 0x02) != 0) {
- ysv_ext0 = ysv_ext1 = ysb + 1;
- dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
- if ((c & 0x01) != 0) {
- ysv_ext1 += 1;
- dy_ext1 -= 1;
- } else {
- ysv_ext0 += 1;
- dy_ext0 -= 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysb;
- dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_3D;
- }
- if ((c & 0x04) != 0) {
- zsv_ext0 = zsb + 1;
- zsv_ext1 = zsb + 2;
- dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 2 - 3 * SQUISH_CONSTANT_3D;
- } else {
- zsv_ext0 = zsv_ext1 = zsb;
- dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_3D;
- }
- } else { /* (1,1,1) is not one of the closest two tetrahedral vertices. */
- c = (int8_t)(aPoint & bPoint); /* Our two extra vertices are determined by the closest two. */
-
- if ((c & 0x01) != 0) {
- xsv_ext0 = xsb + 1;
- xsv_ext1 = xsb + 2;
- dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
- dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D;
- } else {
- xsv_ext0 = xsv_ext1 = xsb;
- dx_ext0 = dx0 - SQUISH_CONSTANT_3D;
- dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
- }
- if ((c & 0x02) != 0) {
- ysv_ext0 = ysb + 1;
- ysv_ext1 = ysb + 2;
- dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D;
- } else {
- ysv_ext0 = ysv_ext1 = ysb;
- dy_ext0 = dy0 - SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
- }
- if ((c & 0x04) != 0) {
- zsv_ext0 = zsb + 1;
- zsv_ext1 = zsb + 2;
- dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D;
- } else {
- zsv_ext0 = zsv_ext1 = zsb;
- dz_ext0 = dz0 - SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
- }
- }
-
- /* Contribution (1,1,0) */
- dx3 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
- dy3 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
- dz3 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D;
- attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
- if (attn3 > 0) {
- attn3 *= attn3;
- value += attn3 * attn3 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 0, dx3, dy3, dz3);
- }
- /* Contribution (1,0,1) */
- dx2 = dx3;
- dy2 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D;
- dz2 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
- attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
- if (attn2 > 0) {
- attn2 *= attn2;
- value += attn2 * attn2 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 1, dx2, dy2, dz2);
- }
- /* Contribution (0,1,1) */
- dx1 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D;
- dy1 = dy3;
- dz1 = dz2;
- attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
- if (attn1 > 0) {
- attn1 *= attn1;
- value += attn1 * attn1 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 1, dx1, dy1, dz1);
- }
- /* Contribution (1,1,1) */
- dx0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
- dy0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
- dz0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
- attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0;
- if (attn0 > 0) {
- attn0 *= attn0;
- value += attn0 * attn0 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 1, dx0, dy0, dz0);
- }
- } else { /* We're inside the octahedron (Rectified 3-Simplex) in between.
- Decide between point (0,0,1) and (1,1,0) as closest */
- p1 = xins + yins;
- if (p1 > 1) {
- aScore = p1 - 1;
- aPoint = 0x03;
- aIsFurtherSide = 1;
- } else {
- aScore = 1 - p1;
- aPoint = 0x04;
- aIsFurtherSide = 0;
- }
- /* Decide between point (0,1,0) and (1,0,1) as closest */
- p2 = xins + zins;
- if (p2 > 1) {
- bScore = p2 - 1;
- bPoint = 0x05;
- bIsFurtherSide = 1;
- } else {
- bScore = 1 - p2;
- bPoint = 0x02;
- bIsFurtherSide = 0;
- }
-
- /* The closest out of the two (1,0,0) and (0,1,1) will replace the furthest out of the two decided above, if closer. */
- p3 = yins + zins;
- if (p3 > 1) {
- score = p3 - 1;
- if (aScore <= bScore && aScore < score) {
- aScore = score;
- aPoint = 0x06;
- aIsFurtherSide = 1;
- } else if (aScore > bScore && bScore < score) {
- bScore = score;
- bPoint = 0x06;
- bIsFurtherSide = 1;
- }
- } else {
- score = 1 - p3;
- if (aScore <= bScore && aScore < score) {
- aScore = score;
- aPoint = 0x01;
- aIsFurtherSide = 0;
- } else if (aScore > bScore && bScore < score) {
- bScore = score;
- bPoint = 0x01;
- bIsFurtherSide = 0;
- }
- }
-
- /* Where each of the two closest points are determines how the extra two vertices are calculated. */
- if (aIsFurtherSide == bIsFurtherSide) {
- if (aIsFurtherSide) { /* Both closest points on (1,1,1) side */
- /* One of the two extra points is (1,1,1) */
- dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
- dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
- dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
- xsv_ext0 = xsb + 1;
- ysv_ext0 = ysb + 1;
- zsv_ext0 = zsb + 1;
- /* Other extra point is based on the shared axis. */
- c = (int8_t)(aPoint & bPoint);
- if ((c & 0x01) != 0) {
- dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
- xsv_ext1 = xsb + 2;
- ysv_ext1 = ysb;
- zsv_ext1 = zsb;
- } else if ((c & 0x02) != 0) {
- dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
- xsv_ext1 = xsb;
- ysv_ext1 = ysb + 2;
- zsv_ext1 = zsb;
- } else {
- dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D;
- xsv_ext1 = xsb;
- ysv_ext1 = ysb;
- zsv_ext1 = zsb + 2;
- }
- } else { /* Both closest points on (0,0,0) side */
- /* One of the two extra points is (0,0,0) */
- dx_ext0 = dx0;
- dy_ext0 = dy0;
- dz_ext0 = dz0;
- xsv_ext0 = xsb;
- ysv_ext0 = ysb;
- zsv_ext0 = zsb;
- /* Other extra point is based on the omitted axis. */
- c = (int8_t)(aPoint | bPoint);
- if ((c & 0x01) == 0) {
- dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
- xsv_ext1 = xsb - 1;
- ysv_ext1 = ysb + 1;
- zsv_ext1 = zsb + 1;
- } else if ((c & 0x02) == 0) {
- dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
- xsv_ext1 = xsb + 1;
- ysv_ext1 = ysb - 1;
- zsv_ext1 = zsb + 1;
- } else {
- dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D;
- xsv_ext1 = xsb + 1;
- ysv_ext1 = ysb + 1;
- zsv_ext1 = zsb - 1;
- }
- }
- } else { /* One point on (0,0,0) side, one point on (1,1,1) side */
- if (aIsFurtherSide) {
- c1 = aPoint;
- c2 = bPoint;
- } else {
- c1 = bPoint;
- c2 = aPoint;
- }
- /* One contribution is a permutation of (1,1,-1) */
- if ((c1 & 0x01) == 0) {
- dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_3D;
- dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
- dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
- xsv_ext0 = xsb - 1;
- ysv_ext0 = ysb + 1;
- zsv_ext0 = zsb + 1;
- } else if ((c1 & 0x02) == 0) {
- dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
- dy_ext0 = dy0 + 1 - SQUISH_CONSTANT_3D;
- dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
- xsv_ext0 = xsb + 1;
- ysv_ext0 = ysb - 1;
- zsv_ext0 = zsb + 1;
- } else {
- dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
- dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
- dz_ext0 = dz0 + 1 - SQUISH_CONSTANT_3D;
- xsv_ext0 = xsb + 1;
- ysv_ext0 = ysb + 1;
- zsv_ext0 = zsb - 1;
- }
- /* One contribution is a permutation of (0,0,2) */
- dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
- dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
- dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
- xsv_ext1 = xsb;
- ysv_ext1 = ysb;
- zsv_ext1 = zsb;
- if ((c2 & 0x01) != 0) {
- dx_ext1 -= 2;
- xsv_ext1 += 2;
- } else if ((c2 & 0x02) != 0) {
- dy_ext1 -= 2;
- ysv_ext1 += 2;
- } else {
- dz_ext1 -= 2;
- zsv_ext1 += 2;
- }
- }
- /* Contribution (1,0,0) */
- dx1 = dx0 - 1 - SQUISH_CONSTANT_3D;
- dy1 = dy0 - 0 - SQUISH_CONSTANT_3D;
- dz1 = dz0 - 0 - SQUISH_CONSTANT_3D;
- attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
- if (attn1 > 0) {
- attn1 *= attn1;
- value += attn1 * attn1 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1);
- }
- /* Contribution (0,1,0) */
- dx2 = dx0 - 0 - SQUISH_CONSTANT_3D;
- dy2 = dy0 - 1 - SQUISH_CONSTANT_3D;
- dz2 = dz1;
- attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
- if (attn2 > 0) {
- attn2 *= attn2;
- value += attn2 * attn2 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2);
- }
- /* Contribution (0,0,1) */
- dx3 = dx2;
- dy3 = dy1;
- dz3 = dz0 - 1 - SQUISH_CONSTANT_3D;
- attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
- if (attn3 > 0) {
- attn3 *= attn3;
- value += attn3 * attn3 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3);
- }
- /* Contribution (1,1,0) */
- dx4 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
- dy4 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
- dz4 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D;
- attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4;
- if (attn4 > 0) {
- attn4 *= attn4;
- value += attn4 * attn4 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 0, dx4, dy4, dz4);
- }
- /* Contribution (1,0,1) */
- dx5 = dx4;
- dy5 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D;
- dz5 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
- attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5;
- if (attn5 > 0) {
- attn5 *= attn5;
- value += attn5 * attn5 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 1, dx5, dy5, dz5);
- }
- /* Contribution (0,1,1) */
- dx6 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D;
- dy6 = dy4;
- dz6 = dz5;
- attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6;
- if (attn6 > 0) {
- attn6 *= attn6;
- value += attn6 * attn6 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 1, dx6, dy6, dz6);
- }
- }
- /* First extra vertex */
- attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0;
- if (attn_ext0 > 0)
- {
- attn_ext0 *= attn_ext0;
- value += attn_ext0 * attn_ext0 * extrapolate3(ctx, xsv_ext0, ysv_ext0, zsv_ext0, dx_ext0, dy_ext0, dz_ext0);
- }
- /* Second extra vertex */
- attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1;
- if (attn_ext1 > 0)
- {
- attn_ext1 *= attn_ext1;
- value += attn_ext1 * attn_ext1 * extrapolate3(ctx, xsv_ext1, ysv_ext1, zsv_ext1, dx_ext1, dy_ext1, dz_ext1);
- }
-
- return value / NORM_CONSTANT_3D;
- }
-
- /*
- * 4D OpenSimplex (Simplectic) Noise.
- */
- double open_simplex_noise4(const struct osn_context *ctx, double x, double y, double z, double w)
- {
- double uins;
- double dx1, dy1, dz1, dw1;
- double dx2, dy2, dz2, dw2;
- double dx3, dy3, dz3, dw3;
- double dx4, dy4, dz4, dw4;
- double dx5, dy5, dz5, dw5;
- double dx6, dy6, dz6, dw6;
- double dx7, dy7, dz7, dw7;
- double dx8, dy8, dz8, dw8;
- double dx9, dy9, dz9, dw9;
- double dx10, dy10, dz10, dw10;
- double attn0, attn1, attn2, attn3, attn4;
- double attn5, attn6, attn7, attn8, attn9, attn10;
- double attn_ext0, attn_ext1, attn_ext2;
- int8_t c, c1, c2;
- int8_t aPoint, bPoint;
- double aScore, bScore;
- int aIsBiggerSide;
- int bIsBiggerSide;
- double p1, p2, p3, p4;
- double score;
- /* Place input coordinates on simplectic honeycomb. */
- double stretchOffset = (x + y + z + w) * STRETCH_CONSTANT_4D;
- double xs = x + stretchOffset;
- double ys = y + stretchOffset;
- double zs = z + stretchOffset;
- double ws = w + stretchOffset;
-
- /* Floor to get simplectic honeycomb coordinates of rhombo-hypercube super-cell origin. */
- int xsb = fastFloor(xs);
- int ysb = fastFloor(ys);
- int zsb = fastFloor(zs);
- int wsb = fastFloor(ws);
-
- /* Skew out to get actual coordinates of stretched rhombo-hypercube origin. We'll need these later. */
- double squishOffset = (xsb + ysb + zsb + wsb) * SQUISH_CONSTANT_4D;
- double xb = xsb + squishOffset;
- double yb = ysb + squishOffset;
- double zb = zsb + squishOffset;
- double wb = wsb + squishOffset;
-
- /* Compute simplectic honeycomb coordinates relative to rhombo-hypercube origin. */
- double xins = xs - xsb;
- double yins = ys - ysb;
- double zins = zs - zsb;
- double wins = ws - wsb;
-
- /* Sum those together to get a value that determines which region we're in. */
- double inSum = xins + yins + zins + wins;
- /* Positions relative to origin point. */
- double dx0 = x - xb;
- double dy0 = y - yb;
- double dz0 = z - zb;
- double dw0 = w - wb;
-
- /* We'll be defining these inside the next block and using them afterwards. */
- double dx_ext0, dy_ext0, dz_ext0, dw_ext0;
- double dx_ext1, dy_ext1, dz_ext1, dw_ext1;
- double dx_ext2, dy_ext2, dz_ext2, dw_ext2;
- int xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0;
- int xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1;
- int xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2;
-
- double value = 0;
- if (inSum <= 1) { /* We're inside the pentachoron (4-Simplex) at (0,0,0,0) */
- /* Determine which two of (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) are closest. */
- aPoint = 0x01;
- aScore = xins;
- bPoint = 0x02;
- bScore = yins;
- if (aScore >= bScore && zins > bScore) {
- bScore = zins;
- bPoint = 0x04;
- } else if (aScore < bScore && zins > aScore) {
- aScore = zins;
- aPoint = 0x04;
- }
- if (aScore >= bScore && wins > bScore) {
- bScore = wins;
- bPoint = 0x08;
- } else if (aScore < bScore && wins > aScore) {
- aScore = wins;
- aPoint = 0x08;
- }
-
- /* Now we determine the three lattice points not part of the pentachoron that may contribute.
- This depends on the closest two pentachoron vertices, including (0,0,0,0) */
- uins = 1 - inSum;
- if (uins > aScore || uins > bScore) { /* (0,0,0,0) is one of the closest two pentachoron vertices. */
- c = (bScore > aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
- if ((c & 0x01) == 0) {
- xsv_ext0 = xsb - 1;
- xsv_ext1 = xsv_ext2 = xsb;
- dx_ext0 = dx0 + 1;
- dx_ext1 = dx_ext2 = dx0;
- } else {
- xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1;
- dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 1;
- }
- if ((c & 0x02) == 0) {
- ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
- dy_ext0 = dy_ext1 = dy_ext2 = dy0;
- if ((c & 0x01) == 0x01) {
- ysv_ext0 -= 1;
- dy_ext0 += 1;
- } else {
- ysv_ext1 -= 1;
- dy_ext1 += 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
- dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1;
- }
-
- if ((c & 0x04) == 0) {
- zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
- dz_ext0 = dz_ext1 = dz_ext2 = dz0;
- if ((c & 0x03) != 0) {
- if ((c & 0x03) == 0x03) {
- zsv_ext0 -= 1;
- dz_ext0 += 1;
- } else {
- zsv_ext1 -= 1;
- dz_ext1 += 1;
- }
- } else {
- zsv_ext2 -= 1;
- dz_ext2 += 1;
- }
- } else {
- zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
- dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1;
- }
-
- if ((c & 0x08) == 0) {
- wsv_ext0 = wsv_ext1 = wsb;
- wsv_ext2 = wsb - 1;
- dw_ext0 = dw_ext1 = dw0;
- dw_ext2 = dw0 + 1;
- } else {
- wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1;
- dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 1;
- }
- } else { /* (0,0,0,0) is not one of the closest two pentachoron vertices. */
- c = (int8_t)(aPoint | bPoint); /* Our three extra vertices are determined by the closest two. */
-
- if ((c & 0x01) == 0) {
- xsv_ext0 = xsv_ext2 = xsb;
- xsv_ext1 = xsb - 1;
- dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_4D;
- dx_ext2 = dx0 - SQUISH_CONSTANT_4D;
- } else {
- xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1;
- dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx_ext2 = dx0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x02) == 0) {
- ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
- dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D;
- dy_ext1 = dy_ext2 = dy0 - SQUISH_CONSTANT_4D;
- if ((c & 0x01) == 0x01) {
- ysv_ext1 -= 1;
- dy_ext1 += 1;
- } else {
- ysv_ext2 -= 1;
- dy_ext2 += 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
- dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy_ext1 = dy_ext2 = dy0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x04) == 0) {
- zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
- dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D;
- dz_ext1 = dz_ext2 = dz0 - SQUISH_CONSTANT_4D;
- if ((c & 0x03) == 0x03) {
- zsv_ext1 -= 1;
- dz_ext1 += 1;
- } else {
- zsv_ext2 -= 1;
- dz_ext2 += 1;
- }
- } else {
- zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
- dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz_ext1 = dz_ext2 = dz0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x08) == 0) {
- wsv_ext0 = wsv_ext1 = wsb;
- wsv_ext2 = wsb - 1;
- dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 - SQUISH_CONSTANT_4D;
- dw_ext2 = dw0 + 1 - SQUISH_CONSTANT_4D;
- } else {
- wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1;
- dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw_ext2 = dw0 - 1 - SQUISH_CONSTANT_4D;
- }
- }
- /* Contribution (0,0,0,0) */
- attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0;
- if (attn0 > 0) {
- attn0 *= attn0;
- value += attn0 * attn0 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 0, dx0, dy0, dz0, dw0);
- }
- /* Contribution (1,0,0,0) */
- dx1 = dx0 - 1 - SQUISH_CONSTANT_4D;
- dy1 = dy0 - 0 - SQUISH_CONSTANT_4D;
- dz1 = dz0 - 0 - SQUISH_CONSTANT_4D;
- dw1 = dw0 - 0 - SQUISH_CONSTANT_4D;
- attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
- if (attn1 > 0) {
- attn1 *= attn1;
- value += attn1 * attn1 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1);
- }
- /* Contribution (0,1,0,0) */
- dx2 = dx0 - 0 - SQUISH_CONSTANT_4D;
- dy2 = dy0 - 1 - SQUISH_CONSTANT_4D;
- dz2 = dz1;
- dw2 = dw1;
- attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
- if (attn2 > 0) {
- attn2 *= attn2;
- value += attn2 * attn2 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2);
- }
- /* Contribution (0,0,1,0) */
- dx3 = dx2;
- dy3 = dy1;
- dz3 = dz0 - 1 - SQUISH_CONSTANT_4D;
- dw3 = dw1;
- attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
- if (attn3 > 0) {
- attn3 *= attn3;
- value += attn3 * attn3 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3);
- }
- /* Contribution (0,0,0,1) */
- dx4 = dx2;
- dy4 = dy1;
- dz4 = dz1;
- dw4 = dw0 - 1 - SQUISH_CONSTANT_4D;
- attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
- if (attn4 > 0) {
- attn4 *= attn4;
- value += attn4 * attn4 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4);
- }
- } else if (inSum >= 3) { /* We're inside the pentachoron (4-Simplex) at (1,1,1,1)
- Determine which two of (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) are closest. */
- aPoint = 0x0E;
- aScore = xins;
- bPoint = 0x0D;
- bScore = yins;
- if (aScore <= bScore && zins < bScore) {
- bScore = zins;
- bPoint = 0x0B;
- } else if (aScore > bScore && zins < aScore) {
- aScore = zins;
- aPoint = 0x0B;
- }
- if (aScore <= bScore && wins < bScore) {
- bScore = wins;
- bPoint = 0x07;
- } else if (aScore > bScore && wins < aScore) {
- aScore = wins;
- aPoint = 0x07;
- }
-
- /* Now we determine the three lattice points not part of the pentachoron that may contribute.
- This depends on the closest two pentachoron vertices, including (0,0,0,0) */
- uins = 4 - inSum;
- if (uins < aScore || uins < bScore) { /* (1,1,1,1) is one of the closest two pentachoron vertices. */
- c = (bScore < aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
-
- if ((c & 0x01) != 0) {
- xsv_ext0 = xsb + 2;
- xsv_ext1 = xsv_ext2 = xsb + 1;
- dx_ext0 = dx0 - 2 - 4 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
- } else {
- xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb;
- dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 4 * SQUISH_CONSTANT_4D;
- }
- if ((c & 0x02) != 0) {
- ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
- dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
- if ((c & 0x01) != 0) {
- ysv_ext1 += 1;
- dy_ext1 -= 1;
- } else {
- ysv_ext0 += 1;
- dy_ext0 -= 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
- dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 4 * SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x04) != 0) {
- zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
- dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
- if ((c & 0x03) != 0x03) {
- if ((c & 0x03) == 0) {
- zsv_ext0 += 1;
- dz_ext0 -= 1;
- } else {
- zsv_ext1 += 1;
- dz_ext1 -= 1;
- }
- } else {
- zsv_ext2 += 1;
- dz_ext2 -= 1;
- }
- } else {
- zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
- dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 4 * SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x08) != 0) {
- wsv_ext0 = wsv_ext1 = wsb + 1;
- wsv_ext2 = wsb + 2;
- dw_ext0 = dw_ext1 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
- dw_ext2 = dw0 - 2 - 4 * SQUISH_CONSTANT_4D;
- } else {
- wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb;
- dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 4 * SQUISH_CONSTANT_4D;
- }
- } else { /* (1,1,1,1) is not one of the closest two pentachoron vertices. */
- c = (int8_t)(aPoint & bPoint); /* Our three extra vertices are determined by the closest two. */
-
- if ((c & 0x01) != 0) {
- xsv_ext0 = xsv_ext2 = xsb + 1;
- xsv_ext1 = xsb + 2;
- dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
- dx_ext2 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
- } else {
- xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb;
- dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx_ext2 = dx0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x02) != 0) {
- ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
- dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy_ext1 = dy_ext2 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
- if ((c & 0x01) != 0) {
- ysv_ext2 += 1;
- dy_ext2 -= 1;
- } else {
- ysv_ext1 += 1;
- dy_ext1 -= 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
- dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D;
- dy_ext1 = dy_ext2 = dy0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x04) != 0) {
- zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
- dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz_ext1 = dz_ext2 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
- if ((c & 0x03) != 0) {
- zsv_ext2 += 1;
- dz_ext2 -= 1;
- } else {
- zsv_ext1 += 1;
- dz_ext1 -= 1;
- }
- } else {
- zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
- dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D;
- dz_ext1 = dz_ext2 = dz0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x08) != 0) {
- wsv_ext0 = wsv_ext1 = wsb + 1;
- wsv_ext2 = wsb + 2;
- dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dw_ext2 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
- } else {
- wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb;
- dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw_ext2 = dw0 - 3 * SQUISH_CONSTANT_4D;
- }
- }
- /* Contribution (1,1,1,0) */
- dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dw4 = dw0 - 3 * SQUISH_CONSTANT_4D;
- attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
- if (attn4 > 0) {
- attn4 *= attn4;
- value += attn4 * attn4 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4);
- }
- /* Contribution (1,1,0,1) */
- dx3 = dx4;
- dy3 = dy4;
- dz3 = dz0 - 3 * SQUISH_CONSTANT_4D;
- dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
- attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
- if (attn3 > 0) {
- attn3 *= attn3;
- value += attn3 * attn3 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3);
- }
- /* Contribution (1,0,1,1) */
- dx2 = dx4;
- dy2 = dy0 - 3 * SQUISH_CONSTANT_4D;
- dz2 = dz4;
- dw2 = dw3;
- attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
- if (attn2 > 0) {
- attn2 *= attn2;
- value += attn2 * attn2 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2);
- }
- /* Contribution (0,1,1,1) */
- dx1 = dx0 - 3 * SQUISH_CONSTANT_4D;
- dz1 = dz4;
- dy1 = dy4;
- dw1 = dw3;
- attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
- if (attn1 > 0) {
- attn1 *= attn1;
- value += attn1 * attn1 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1);
- }
- /* Contribution (1,1,1,1) */
- dx0 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
- dy0 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
- dz0 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
- dw0 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
- attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0;
- if (attn0 > 0) {
- attn0 *= attn0;
- value += attn0 * attn0 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 1, dx0, dy0, dz0, dw0);
- }
- } else if (inSum <= 2) { /* We're inside the first dispentachoron (Rectified 4-Simplex) */
- aIsBiggerSide = 1;
- bIsBiggerSide = 1;
-
- /* Decide between (1,1,0,0) and (0,0,1,1) */
- if (xins + yins > zins + wins) {
- aScore = xins + yins;
- aPoint = 0x03;
- } else {
- aScore = zins + wins;
- aPoint = 0x0C;
- }
-
- /* Decide between (1,0,1,0) and (0,1,0,1) */
- if (xins + zins > yins + wins) {
- bScore = xins + zins;
- bPoint = 0x05;
- } else {
- bScore = yins + wins;
- bPoint = 0x0A;
- }
-
- /* Closer between (1,0,0,1) and (0,1,1,0) will replace the further of a and b, if closer. */
- if (xins + wins > yins + zins) {
- score = xins + wins;
- if (aScore >= bScore && score > bScore) {
- bScore = score;
- bPoint = 0x09;
- } else if (aScore < bScore && score > aScore) {
- aScore = score;
- aPoint = 0x09;
- }
- } else {
- score = yins + zins;
- if (aScore >= bScore && score > bScore) {
- bScore = score;
- bPoint = 0x06;
- } else if (aScore < bScore && score > aScore) {
- aScore = score;
- aPoint = 0x06;
- }
- }
-
- /* Decide if (1,0,0,0) is closer. */
- p1 = 2 - inSum + xins;
- if (aScore >= bScore && p1 > bScore) {
- bScore = p1;
- bPoint = 0x01;
- bIsBiggerSide = 0;
- } else if (aScore < bScore && p1 > aScore) {
- aScore = p1;
- aPoint = 0x01;
- aIsBiggerSide = 0;
- }
-
- /* Decide if (0,1,0,0) is closer. */
- p2 = 2 - inSum + yins;
- if (aScore >= bScore && p2 > bScore) {
- bScore = p2;
- bPoint = 0x02;
- bIsBiggerSide = 0;
- } else if (aScore < bScore && p2 > aScore) {
- aScore = p2;
- aPoint = 0x02;
- aIsBiggerSide = 0;
- }
-
- /* Decide if (0,0,1,0) is closer. */
- p3 = 2 - inSum + zins;
- if (aScore >= bScore && p3 > bScore) {
- bScore = p3;
- bPoint = 0x04;
- bIsBiggerSide = 0;
- } else if (aScore < bScore && p3 > aScore) {
- aScore = p3;
- aPoint = 0x04;
- aIsBiggerSide = 0;
- }
-
- /* Decide if (0,0,0,1) is closer. */
- p4 = 2 - inSum + wins;
- if (aScore >= bScore && p4 > bScore) {
- bScore = p4;
- bPoint = 0x08;
- bIsBiggerSide = 0;
- } else if (aScore < bScore && p4 > aScore) {
- aScore = p4;
- aPoint = 0x08;
- aIsBiggerSide = 0;
- }
-
- /* Where each of the two closest points are determines how the extra three vertices are calculated. */
- if (aIsBiggerSide == bIsBiggerSide) {
- if (aIsBiggerSide) { /* Both closest points on the bigger side */
- c1 = (int8_t)(aPoint | bPoint);
- c2 = (int8_t)(aPoint & bPoint);
- if ((c1 & 0x01) == 0) {
- xsv_ext0 = xsb;
- xsv_ext1 = xsb - 1;
- dx_ext0 = dx0 - 3 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 + 1 - 2 * SQUISH_CONSTANT_4D;
- } else {
- xsv_ext0 = xsv_ext1 = xsb + 1;
- dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x02) == 0) {
- ysv_ext0 = ysb;
- ysv_ext1 = ysb - 1;
- dy_ext0 = dy0 - 3 * SQUISH_CONSTANT_4D;
- dy_ext1 = dy0 + 1 - 2 * SQUISH_CONSTANT_4D;
- } else {
- ysv_ext0 = ysv_ext1 = ysb + 1;
- dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dy_ext1 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x04) == 0) {
- zsv_ext0 = zsb;
- zsv_ext1 = zsb - 1;
- dz_ext0 = dz0 - 3 * SQUISH_CONSTANT_4D;
- dz_ext1 = dz0 + 1 - 2 * SQUISH_CONSTANT_4D;
- } else {
- zsv_ext0 = zsv_ext1 = zsb + 1;
- dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dz_ext1 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x08) == 0) {
- wsv_ext0 = wsb;
- wsv_ext1 = wsb - 1;
- dw_ext0 = dw0 - 3 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 + 1 - 2 * SQUISH_CONSTANT_4D;
- } else {
- wsv_ext0 = wsv_ext1 = wsb + 1;
- dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- }
-
- /* One combination is a permutation of (0,0,0,2) based on c2 */
- xsv_ext2 = xsb;
- ysv_ext2 = ysb;
- zsv_ext2 = zsb;
- wsv_ext2 = wsb;
- dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D;
- dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D;
- dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D;
- dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D;
- if ((c2 & 0x01) != 0) {
- xsv_ext2 += 2;
- dx_ext2 -= 2;
- } else if ((c2 & 0x02) != 0) {
- ysv_ext2 += 2;
- dy_ext2 -= 2;
- } else if ((c2 & 0x04) != 0) {
- zsv_ext2 += 2;
- dz_ext2 -= 2;
- } else {
- wsv_ext2 += 2;
- dw_ext2 -= 2;
- }
-
- } else { /* Both closest points on the smaller side */
- /* One of the two extra points is (0,0,0,0) */
- xsv_ext2 = xsb;
- ysv_ext2 = ysb;
- zsv_ext2 = zsb;
- wsv_ext2 = wsb;
- dx_ext2 = dx0;
- dy_ext2 = dy0;
- dz_ext2 = dz0;
- dw_ext2 = dw0;
-
- /* Other two points are based on the omitted axes. */
- c = (int8_t)(aPoint | bPoint);
-
- if ((c & 0x01) == 0) {
- xsv_ext0 = xsb - 1;
- xsv_ext1 = xsb;
- dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 - SQUISH_CONSTANT_4D;
- } else {
- xsv_ext0 = xsv_ext1 = xsb + 1;
- dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x02) == 0) {
- ysv_ext0 = ysv_ext1 = ysb;
- dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D;
- if ((c & 0x01) == 0x01)
- {
- ysv_ext0 -= 1;
- dy_ext0 += 1;
- } else {
- ysv_ext1 -= 1;
- dy_ext1 += 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysb + 1;
- dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x04) == 0) {
- zsv_ext0 = zsv_ext1 = zsb;
- dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D;
- if ((c & 0x03) == 0x03)
- {
- zsv_ext0 -= 1;
- dz_ext0 += 1;
- } else {
- zsv_ext1 -= 1;
- dz_ext1 += 1;
- }
- } else {
- zsv_ext0 = zsv_ext1 = zsb + 1;
- dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x08) == 0)
- {
- wsv_ext0 = wsb;
- wsv_ext1 = wsb - 1;
- dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D;
- } else {
- wsv_ext0 = wsv_ext1 = wsb + 1;
- dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- }
- } else { /* One point on each "side" */
- if (aIsBiggerSide) {
- c1 = aPoint;
- c2 = bPoint;
- } else {
- c1 = bPoint;
- c2 = aPoint;
- }
-
- /* Two contributions are the bigger-sided point with each 0 replaced with -1. */
- if ((c1 & 0x01) == 0) {
- xsv_ext0 = xsb - 1;
- xsv_ext1 = xsb;
- dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 - SQUISH_CONSTANT_4D;
- } else {
- xsv_ext0 = xsv_ext1 = xsb + 1;
- dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x02) == 0) {
- ysv_ext0 = ysv_ext1 = ysb;
- dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D;
- if ((c1 & 0x01) == 0x01) {
- ysv_ext0 -= 1;
- dy_ext0 += 1;
- } else {
- ysv_ext1 -= 1;
- dy_ext1 += 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysb + 1;
- dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x04) == 0) {
- zsv_ext0 = zsv_ext1 = zsb;
- dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D;
- if ((c1 & 0x03) == 0x03) {
- zsv_ext0 -= 1;
- dz_ext0 += 1;
- } else {
- zsv_ext1 -= 1;
- dz_ext1 += 1;
- }
- } else {
- zsv_ext0 = zsv_ext1 = zsb + 1;
- dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x08) == 0) {
- wsv_ext0 = wsb;
- wsv_ext1 = wsb - 1;
- dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D;
- } else {
- wsv_ext0 = wsv_ext1 = wsb + 1;
- dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D;
- }
- /* One contribution is a permutation of (0,0,0,2) based on the smaller-sided point */
- xsv_ext2 = xsb;
- ysv_ext2 = ysb;
- zsv_ext2 = zsb;
- wsv_ext2 = wsb;
- dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D;
- dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D;
- dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D;
- dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D;
- if ((c2 & 0x01) != 0) {
- xsv_ext2 += 2;
- dx_ext2 -= 2;
- } else if ((c2 & 0x02) != 0) {
- ysv_ext2 += 2;
- dy_ext2 -= 2;
- } else if ((c2 & 0x04) != 0) {
- zsv_ext2 += 2;
- dz_ext2 -= 2;
- } else {
- wsv_ext2 += 2;
- dw_ext2 -= 2;
- }
- }
-
- /* Contribution (1,0,0,0) */
- dx1 = dx0 - 1 - SQUISH_CONSTANT_4D;
- dy1 = dy0 - 0 - SQUISH_CONSTANT_4D;
- dz1 = dz0 - 0 - SQUISH_CONSTANT_4D;
- dw1 = dw0 - 0 - SQUISH_CONSTANT_4D;
- attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
- if (attn1 > 0) {
- attn1 *= attn1;
- value += attn1 * attn1 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1);
- }
- /* Contribution (0,1,0,0) */
- dx2 = dx0 - 0 - SQUISH_CONSTANT_4D;
- dy2 = dy0 - 1 - SQUISH_CONSTANT_4D;
- dz2 = dz1;
- dw2 = dw1;
- attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
- if (attn2 > 0) {
- attn2 *= attn2;
- value += attn2 * attn2 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2);
- }
- /* Contribution (0,0,1,0) */
- dx3 = dx2;
- dy3 = dy1;
- dz3 = dz0 - 1 - SQUISH_CONSTANT_4D;
- dw3 = dw1;
- attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
- if (attn3 > 0) {
- attn3 *= attn3;
- value += attn3 * attn3 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3);
- }
- /* Contribution (0,0,0,1) */
- dx4 = dx2;
- dy4 = dy1;
- dz4 = dz1;
- dw4 = dw0 - 1 - SQUISH_CONSTANT_4D;
- attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
- if (attn4 > 0) {
- attn4 *= attn4;
- value += attn4 * attn4 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4);
- }
-
- /* Contribution (1,1,0,0) */
- dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
- attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5;
- if (attn5 > 0) {
- attn5 *= attn5;
- value += attn5 * attn5 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5);
- }
-
- /* Contribution (1,0,1,0) */
- dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
- attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6;
- if (attn6 > 0) {
- attn6 *= attn6;
- value += attn6 * attn6 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6);
- }
- /* Contribution (1,0,0,1) */
- dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7;
- if (attn7 > 0) {
- attn7 *= attn7;
- value += attn7 * attn7 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7);
- }
-
- /* Contribution (0,1,1,0) */
- dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
- attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8;
- if (attn8 > 0) {
- attn8 *= attn8;
- value += attn8 * attn8 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8);
- }
-
- /* Contribution (0,1,0,1) */
- dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9;
- if (attn9 > 0) {
- attn9 *= attn9;
- value += attn9 * attn9 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9);
- }
-
- /* Contribution (0,0,1,1) */
- dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10;
- if (attn10 > 0) {
- attn10 *= attn10;
- value += attn10 * attn10 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10);
- }
- } else { /* We're inside the second dispentachoron (Rectified 4-Simplex) */
- aIsBiggerSide = 1;
- bIsBiggerSide = 1;
-
- /* Decide between (0,0,1,1) and (1,1,0,0) */
- if (xins + yins < zins + wins) {
- aScore = xins + yins;
- aPoint = 0x0C;
- } else {
- aScore = zins + wins;
- aPoint = 0x03;
- }
-
- /* Decide between (0,1,0,1) and (1,0,1,0) */
- if (xins + zins < yins + wins) {
- bScore = xins + zins;
- bPoint = 0x0A;
- } else {
- bScore = yins + wins;
- bPoint = 0x05;
- }
-
- /* Closer between (0,1,1,0) and (1,0,0,1) will replace the further of a and b, if closer. */
- if (xins + wins < yins + zins) {
- score = xins + wins;
- if (aScore <= bScore && score < bScore) {
- bScore = score;
- bPoint = 0x06;
- } else if (aScore > bScore && score < aScore) {
- aScore = score;
- aPoint = 0x06;
- }
- } else {
- score = yins + zins;
- if (aScore <= bScore && score < bScore) {
- bScore = score;
- bPoint = 0x09;
- } else if (aScore > bScore && score < aScore) {
- aScore = score;
- aPoint = 0x09;
- }
- }
-
- /* Decide if (0,1,1,1) is closer. */
- p1 = 3 - inSum + xins;
- if (aScore <= bScore && p1 < bScore) {
- bScore = p1;
- bPoint = 0x0E;
- bIsBiggerSide = 0;
- } else if (aScore > bScore && p1 < aScore) {
- aScore = p1;
- aPoint = 0x0E;
- aIsBiggerSide = 0;
- }
-
- /* Decide if (1,0,1,1) is closer. */
- p2 = 3 - inSum + yins;
- if (aScore <= bScore && p2 < bScore) {
- bScore = p2;
- bPoint = 0x0D;
- bIsBiggerSide = 0;
- } else if (aScore > bScore && p2 < aScore) {
- aScore = p2;
- aPoint = 0x0D;
- aIsBiggerSide = 0;
- }
-
- /* Decide if (1,1,0,1) is closer. */
- p3 = 3 - inSum + zins;
- if (aScore <= bScore && p3 < bScore) {
- bScore = p3;
- bPoint = 0x0B;
- bIsBiggerSide = 0;
- } else if (aScore > bScore && p3 < aScore) {
- aScore = p3;
- aPoint = 0x0B;
- aIsBiggerSide = 0;
- }
-
- /* Decide if (1,1,1,0) is closer. */
- p4 = 3 - inSum + wins;
- if (aScore <= bScore && p4 < bScore) {
- bScore = p4;
- bPoint = 0x07;
- bIsBiggerSide = 0;
- } else if (aScore > bScore && p4 < aScore) {
- aScore = p4;
- aPoint = 0x07;
- aIsBiggerSide = 0;
- }
-
- /* Where each of the two closest points are determines how the extra three vertices are calculated. */
- if (aIsBiggerSide == bIsBiggerSide) {
- if (aIsBiggerSide) { /* Both closest points on the bigger side */
- c1 = (int8_t)(aPoint & bPoint);
- c2 = (int8_t)(aPoint | bPoint);
-
- /* Two contributions are permutations of (0,0,0,1) and (0,0,0,2) based on c1 */
- xsv_ext0 = xsv_ext1 = xsb;
- ysv_ext0 = ysv_ext1 = ysb;
- zsv_ext0 = zsv_ext1 = zsb;
- wsv_ext0 = wsv_ext1 = wsb;
- dx_ext0 = dx0 - SQUISH_CONSTANT_4D;
- dy_ext0 = dy0 - SQUISH_CONSTANT_4D;
- dz_ext0 = dz0 - SQUISH_CONSTANT_4D;
- dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_4D;
- dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_4D;
- dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 - 2 * SQUISH_CONSTANT_4D;
- if ((c1 & 0x01) != 0) {
- xsv_ext0 += 1;
- dx_ext0 -= 1;
- xsv_ext1 += 2;
- dx_ext1 -= 2;
- } else if ((c1 & 0x02) != 0) {
- ysv_ext0 += 1;
- dy_ext0 -= 1;
- ysv_ext1 += 2;
- dy_ext1 -= 2;
- } else if ((c1 & 0x04) != 0) {
- zsv_ext0 += 1;
- dz_ext0 -= 1;
- zsv_ext1 += 2;
- dz_ext1 -= 2;
- } else {
- wsv_ext0 += 1;
- dw_ext0 -= 1;
- wsv_ext1 += 2;
- dw_ext1 -= 2;
- }
-
- /* One contribution is a permutation of (1,1,1,-1) based on c2 */
- xsv_ext2 = xsb + 1;
- ysv_ext2 = ysb + 1;
- zsv_ext2 = zsb + 1;
- wsv_ext2 = wsb + 1;
- dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- if ((c2 & 0x01) == 0) {
- xsv_ext2 -= 2;
- dx_ext2 += 2;
- } else if ((c2 & 0x02) == 0) {
- ysv_ext2 -= 2;
- dy_ext2 += 2;
- } else if ((c2 & 0x04) == 0) {
- zsv_ext2 -= 2;
- dz_ext2 += 2;
- } else {
- wsv_ext2 -= 2;
- dw_ext2 += 2;
- }
- } else { /* Both closest points on the smaller side */
- /* One of the two extra points is (1,1,1,1) */
- xsv_ext2 = xsb + 1;
- ysv_ext2 = ysb + 1;
- zsv_ext2 = zsb + 1;
- wsv_ext2 = wsb + 1;
- dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
- dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
- dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
- dw_ext2 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
-
- /* Other two points are based on the shared axes. */
- c = (int8_t)(aPoint & bPoint);
-
- if ((c & 0x01) != 0) {
- xsv_ext0 = xsb + 2;
- xsv_ext1 = xsb + 1;
- dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
- } else {
- xsv_ext0 = xsv_ext1 = xsb;
- dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x02) != 0) {
- ysv_ext0 = ysv_ext1 = ysb + 1;
- dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
- if ((c & 0x01) == 0)
- {
- ysv_ext0 += 1;
- dy_ext0 -= 1;
- } else {
- ysv_ext1 += 1;
- dy_ext1 -= 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysb;
- dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x04) != 0) {
- zsv_ext0 = zsv_ext1 = zsb + 1;
- dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
- if ((c & 0x03) == 0)
- {
- zsv_ext0 += 1;
- dz_ext0 -= 1;
- } else {
- zsv_ext1 += 1;
- dz_ext1 -= 1;
- }
- } else {
- zsv_ext0 = zsv_ext1 = zsb;
- dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c & 0x08) != 0)
- {
- wsv_ext0 = wsb + 1;
- wsv_ext1 = wsb + 2;
- dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
- } else {
- wsv_ext0 = wsv_ext1 = wsb;
- dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D;
- }
- }
- } else { /* One point on each "side" */
- if (aIsBiggerSide) {
- c1 = aPoint;
- c2 = bPoint;
- } else {
- c1 = bPoint;
- c2 = aPoint;
- }
-
- /* Two contributions are the bigger-sided point with each 1 replaced with 2. */
- if ((c1 & 0x01) != 0) {
- xsv_ext0 = xsb + 2;
- xsv_ext1 = xsb + 1;
- dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
- dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
- } else {
- xsv_ext0 = xsv_ext1 = xsb;
- dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x02) != 0) {
- ysv_ext0 = ysv_ext1 = ysb + 1;
- dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
- if ((c1 & 0x01) == 0) {
- ysv_ext0 += 1;
- dy_ext0 -= 1;
- } else {
- ysv_ext1 += 1;
- dy_ext1 -= 1;
- }
- } else {
- ysv_ext0 = ysv_ext1 = ysb;
- dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x04) != 0) {
- zsv_ext0 = zsv_ext1 = zsb + 1;
- dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
- if ((c1 & 0x03) == 0) {
- zsv_ext0 += 1;
- dz_ext0 -= 1;
- } else {
- zsv_ext1 += 1;
- dz_ext1 -= 1;
- }
- } else {
- zsv_ext0 = zsv_ext1 = zsb;
- dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D;
- }
-
- if ((c1 & 0x08) != 0) {
- wsv_ext0 = wsb + 1;
- wsv_ext1 = wsb + 2;
- dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
- } else {
- wsv_ext0 = wsv_ext1 = wsb;
- dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D;
- }
- /* One contribution is a permutation of (1,1,1,-1) based on the smaller-sided point */
- xsv_ext2 = xsb + 1;
- ysv_ext2 = ysb + 1;
- zsv_ext2 = zsb + 1;
- wsv_ext2 = wsb + 1;
- dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- if ((c2 & 0x01) == 0) {
- xsv_ext2 -= 2;
- dx_ext2 += 2;
- } else if ((c2 & 0x02) == 0) {
- ysv_ext2 -= 2;
- dy_ext2 += 2;
- } else if ((c2 & 0x04) == 0) {
- zsv_ext2 -= 2;
- dz_ext2 += 2;
- } else {
- wsv_ext2 -= 2;
- dw_ext2 += 2;
- }
- }
-
- /* Contribution (1,1,1,0) */
- dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
- dw4 = dw0 - 3 * SQUISH_CONSTANT_4D;
- attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
- if (attn4 > 0) {
- attn4 *= attn4;
- value += attn4 * attn4 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4);
- }
- /* Contribution (1,1,0,1) */
- dx3 = dx4;
- dy3 = dy4;
- dz3 = dz0 - 3 * SQUISH_CONSTANT_4D;
- dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
- attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
- if (attn3 > 0) {
- attn3 *= attn3;
- value += attn3 * attn3 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3);
- }
- /* Contribution (1,0,1,1) */
- dx2 = dx4;
- dy2 = dy0 - 3 * SQUISH_CONSTANT_4D;
- dz2 = dz4;
- dw2 = dw3;
- attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
- if (attn2 > 0) {
- attn2 *= attn2;
- value += attn2 * attn2 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2);
- }
- /* Contribution (0,1,1,1) */
- dx1 = dx0 - 3 * SQUISH_CONSTANT_4D;
- dz1 = dz4;
- dy1 = dy4;
- dw1 = dw3;
- attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
- if (attn1 > 0) {
- attn1 *= attn1;
- value += attn1 * attn1 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1);
- }
-
- /* Contribution (1,1,0,0) */
- dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
- attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5;
- if (attn5 > 0) {
- attn5 *= attn5;
- value += attn5 * attn5 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5);
- }
-
- /* Contribution (1,0,1,0) */
- dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
- attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6;
- if (attn6 > 0) {
- attn6 *= attn6;
- value += attn6 * attn6 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6);
- }
- /* Contribution (1,0,0,1) */
- dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7;
- if (attn7 > 0) {
- attn7 *= attn7;
- value += attn7 * attn7 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7);
- }
-
- /* Contribution (0,1,1,0) */
- dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
- attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8;
- if (attn8 > 0) {
- attn8 *= attn8;
- value += attn8 * attn8 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8);
- }
-
- /* Contribution (0,1,0,1) */
- dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9;
- if (attn9 > 0) {
- attn9 *= attn9;
- value += attn9 * attn9 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9);
- }
-
- /* Contribution (0,0,1,1) */
- dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
- dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
- dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
- attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10;
- if (attn10 > 0) {
- attn10 *= attn10;
- value += attn10 * attn10 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10);
- }
- }
- /* First extra vertex */
- attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0 - dw_ext0 * dw_ext0;
- if (attn_ext0 > 0)
- {
- attn_ext0 *= attn_ext0;
- value += attn_ext0 * attn_ext0 * extrapolate4(ctx, xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0, dx_ext0, dy_ext0, dz_ext0, dw_ext0);
- }
- /* Second extra vertex */
- attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1 - dw_ext1 * dw_ext1;
- if (attn_ext1 > 0)
- {
- attn_ext1 *= attn_ext1;
- value += attn_ext1 * attn_ext1 * extrapolate4(ctx, xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1, dx_ext1, dy_ext1, dz_ext1, dw_ext1);
- }
- /* Third extra vertex */
- attn_ext2 = 2 - dx_ext2 * dx_ext2 - dy_ext2 * dy_ext2 - dz_ext2 * dz_ext2 - dw_ext2 * dw_ext2;
- if (attn_ext2 > 0)
- {
- attn_ext2 *= attn_ext2;
- value += attn_ext2 * attn_ext2 * extrapolate4(ctx, xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2, dx_ext2, dy_ext2, dz_ext2, dw_ext2);
- }
- return value / NORM_CONSTANT_4D;
- }
-
|