123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421 |
- /*
- Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
- Bullet Continuous Collision Detection and Physics Library
- Copyright (c) 2019 Google Inc. http://bulletphysics.org
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- #ifndef BT_NEOHOOKEAN_H
- #define BT_NEOHOOKEAN_H
- #include "btDeformableLagrangianForce.h"
- #include "LinearMath/btQuickprof.h"
- #include "LinearMath/btImplicitQRSVD.h"
- // This energy is as described in https://graphics.pixar.com/library/StableElasticity/paper.pdf
- class btDeformableNeoHookeanForce : public btDeformableLagrangianForce
- {
- public:
- typedef btAlignedObjectArray<btVector3> TVStack;
- btScalar m_mu, m_lambda; // Lame Parameters
- btScalar m_E, m_nu; // Young's modulus and Poisson ratio
- btScalar m_mu_damp, m_lambda_damp;
- btDeformableNeoHookeanForce() : m_mu(1), m_lambda(1)
- {
- btScalar damping = 0.05;
- m_mu_damp = damping * m_mu;
- m_lambda_damp = damping * m_lambda;
- updateYoungsModulusAndPoissonRatio();
- }
- btDeformableNeoHookeanForce(btScalar mu, btScalar lambda, btScalar damping = 0.05) : m_mu(mu), m_lambda(lambda)
- {
- m_mu_damp = damping * m_mu;
- m_lambda_damp = damping * m_lambda;
- updateYoungsModulusAndPoissonRatio();
- }
- void updateYoungsModulusAndPoissonRatio()
- {
- // conversion from Lame Parameters to Young's modulus and Poisson ratio
- // https://en.wikipedia.org/wiki/Lam%C3%A9_parameters
- m_E = m_mu * (3 * m_lambda + 2 * m_mu) / (m_lambda + m_mu);
- m_nu = m_lambda * 0.5 / (m_mu + m_lambda);
- }
- void updateLameParameters()
- {
- // conversion from Young's modulus and Poisson ratio to Lame Parameters
- // https://en.wikipedia.org/wiki/Lam%C3%A9_parameters
- m_mu = m_E * 0.5 / (1 + m_nu);
- m_lambda = m_E * m_nu / ((1 + m_nu) * (1 - 2 * m_nu));
- }
- void setYoungsModulus(btScalar E)
- {
- m_E = E;
- updateLameParameters();
- }
- void setPoissonRatio(btScalar nu)
- {
- m_nu = nu;
- updateLameParameters();
- }
- void setDamping(btScalar damping)
- {
- m_mu_damp = damping * m_mu;
- m_lambda_damp = damping * m_lambda;
- }
- void setLameParameters(btScalar mu, btScalar lambda)
- {
- m_mu = mu;
- m_lambda = lambda;
- updateYoungsModulusAndPoissonRatio();
- }
- virtual void addScaledForces(btScalar scale, TVStack& force)
- {
- addScaledDampingForce(scale, force);
- addScaledElasticForce(scale, force);
- }
- virtual void addScaledExplicitForce(btScalar scale, TVStack& force)
- {
- addScaledElasticForce(scale, force);
- }
- // The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
- virtual void addScaledDampingForce(btScalar scale, TVStack& force)
- {
- if (m_mu_damp == 0 && m_lambda_damp == 0)
- return;
- int numNodes = getNumNodes();
- btAssert(numNodes <= force.size());
- btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_tetras.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btSoftBody::Node* node0 = tetra.m_n[0];
- btSoftBody::Node* node1 = tetra.m_n[1];
- btSoftBody::Node* node2 = tetra.m_n[2];
- btSoftBody::Node* node3 = tetra.m_n[3];
- size_t id0 = node0->index;
- size_t id1 = node1->index;
- size_t id2 = node2->index;
- size_t id3 = node3->index;
- btMatrix3x3 dF = DsFromVelocity(node0, node1, node2, node3) * tetra.m_Dm_inverse;
- btMatrix3x3 I;
- I.setIdentity();
- btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0] + dF[1][1] + dF[2][2]) * m_lambda_damp;
- // firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
- btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose() * grad_N_hat_1st_col);
- btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
- // damping force differential
- btScalar scale1 = scale * tetra.m_element_measure;
- force[id0] -= scale1 * df_on_node0;
- force[id1] -= scale1 * df_on_node123.getColumn(0);
- force[id2] -= scale1 * df_on_node123.getColumn(1);
- force[id3] -= scale1 * df_on_node123.getColumn(2);
- }
- }
- }
- virtual double totalElasticEnergy(btScalar dt)
- {
- double energy = 0;
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_tetraScratches.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btSoftBody::TetraScratch& s = psb->m_tetraScratches[j];
- energy += tetra.m_element_measure * elasticEnergyDensity(s);
- }
- }
- return energy;
- }
- // The damping energy is formulated as in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
- virtual double totalDampingEnergy(btScalar dt)
- {
- double energy = 0;
- int sz = 0;
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_nodes.size(); ++j)
- {
- sz = btMax(sz, psb->m_nodes[j].index);
- }
- }
- TVStack dampingForce;
- dampingForce.resize(sz + 1);
- for (int i = 0; i < dampingForce.size(); ++i)
- dampingForce[i].setZero();
- addScaledDampingForce(0.5, dampingForce);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- for (int j = 0; j < psb->m_nodes.size(); ++j)
- {
- const btSoftBody::Node& node = psb->m_nodes[j];
- energy -= dampingForce[node.index].dot(node.m_v) / dt;
- }
- }
- return energy;
- }
- double elasticEnergyDensity(const btSoftBody::TetraScratch& s)
- {
- double density = 0;
- density += m_mu * 0.5 * (s.m_trace - 3.);
- density += m_lambda * 0.5 * (s.m_J - 1. - 0.75 * m_mu / m_lambda) * (s.m_J - 1. - 0.75 * m_mu / m_lambda);
- density -= m_mu * 0.5 * log(s.m_trace + 1);
- return density;
- }
- virtual void addScaledElasticForce(btScalar scale, TVStack& force)
- {
- int numNodes = getNumNodes();
- btAssert(numNodes <= force.size());
- btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- btScalar max_p = psb->m_cfg.m_maxStress;
- for (int j = 0; j < psb->m_tetras.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btMatrix3x3 P;
- firstPiola(psb->m_tetraScratches[j], P);
- #ifdef USE_SVD
- if (max_p > 0)
- {
- // since we want to clamp the principal stress to max_p, we only need to
- // calculate SVD when sigma_0^2 + sigma_1^2 + sigma_2^2 > max_p * max_p
- btScalar trPTP = (P[0].length2() + P[1].length2() + P[2].length2());
- if (trPTP > max_p * max_p)
- {
- btMatrix3x3 U, V;
- btVector3 sigma;
- singularValueDecomposition(P, U, sigma, V);
- sigma[0] = btMin(sigma[0], max_p);
- sigma[1] = btMin(sigma[1], max_p);
- sigma[2] = btMin(sigma[2], max_p);
- sigma[0] = btMax(sigma[0], -max_p);
- sigma[1] = btMax(sigma[1], -max_p);
- sigma[2] = btMax(sigma[2], -max_p);
- btMatrix3x3 Sigma;
- Sigma.setIdentity();
- Sigma[0][0] = sigma[0];
- Sigma[1][1] = sigma[1];
- Sigma[2][2] = sigma[2];
- P = U * Sigma * V.transpose();
- }
- }
- #endif
- // btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
- btMatrix3x3 force_on_node123 = P * tetra.m_Dm_inverse.transpose();
- btVector3 force_on_node0 = force_on_node123 * grad_N_hat_1st_col;
- btSoftBody::Node* node0 = tetra.m_n[0];
- btSoftBody::Node* node1 = tetra.m_n[1];
- btSoftBody::Node* node2 = tetra.m_n[2];
- btSoftBody::Node* node3 = tetra.m_n[3];
- size_t id0 = node0->index;
- size_t id1 = node1->index;
- size_t id2 = node2->index;
- size_t id3 = node3->index;
- // elastic force
- btScalar scale1 = scale * tetra.m_element_measure;
- force[id0] -= scale1 * force_on_node0;
- force[id1] -= scale1 * force_on_node123.getColumn(0);
- force[id2] -= scale1 * force_on_node123.getColumn(1);
- force[id3] -= scale1 * force_on_node123.getColumn(2);
- }
- }
- }
- // The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
- virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df)
- {
- if (m_mu_damp == 0 && m_lambda_damp == 0)
- return;
- int numNodes = getNumNodes();
- btAssert(numNodes <= df.size());
- btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_tetras.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btSoftBody::Node* node0 = tetra.m_n[0];
- btSoftBody::Node* node1 = tetra.m_n[1];
- btSoftBody::Node* node2 = tetra.m_n[2];
- btSoftBody::Node* node3 = tetra.m_n[3];
- size_t id0 = node0->index;
- size_t id1 = node1->index;
- size_t id2 = node2->index;
- size_t id3 = node3->index;
- btMatrix3x3 dF = Ds(id0, id1, id2, id3, dv) * tetra.m_Dm_inverse;
- btMatrix3x3 I;
- I.setIdentity();
- btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0] + dF[1][1] + dF[2][2]) * m_lambda_damp;
- // firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
- // btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
- btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
- btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
- // damping force differential
- btScalar scale1 = scale * tetra.m_element_measure;
- df[id0] -= scale1 * df_on_node0;
- df[id1] -= scale1 * df_on_node123.getColumn(0);
- df[id2] -= scale1 * df_on_node123.getColumn(1);
- df[id3] -= scale1 * df_on_node123.getColumn(2);
- }
- }
- }
- virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA) {}
- virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df)
- {
- int numNodes = getNumNodes();
- btAssert(numNodes <= df.size());
- btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_tetras.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btSoftBody::Node* node0 = tetra.m_n[0];
- btSoftBody::Node* node1 = tetra.m_n[1];
- btSoftBody::Node* node2 = tetra.m_n[2];
- btSoftBody::Node* node3 = tetra.m_n[3];
- size_t id0 = node0->index;
- size_t id1 = node1->index;
- size_t id2 = node2->index;
- size_t id3 = node3->index;
- btMatrix3x3 dF = Ds(id0, id1, id2, id3, dx) * tetra.m_Dm_inverse;
- btMatrix3x3 dP;
- firstPiolaDifferential(psb->m_tetraScratches[j], dF, dP);
- // btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
- btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
- btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
- // elastic force differential
- btScalar scale1 = scale * tetra.m_element_measure;
- df[id0] -= scale1 * df_on_node0;
- df[id1] -= scale1 * df_on_node123.getColumn(0);
- df[id2] -= scale1 * df_on_node123.getColumn(1);
- df[id3] -= scale1 * df_on_node123.getColumn(2);
- }
- }
- }
- void firstPiola(const btSoftBody::TetraScratch& s, btMatrix3x3& P)
- {
- btScalar c1 = (m_mu * (1. - 1. / (s.m_trace + 1.)));
- btScalar c2 = (m_lambda * (s.m_J - 1.) - 0.75 * m_mu);
- P = s.m_F * c1 + s.m_cofF * c2;
- }
- // Let P be the first piola stress.
- // This function calculates the dP = dP/dF * dF
- void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
- {
- btScalar c1 = m_mu * (1. - 1. / (s.m_trace + 1.));
- btScalar c2 = (2. * m_mu) * DotProduct(s.m_F, dF) * (1. / ((1. + s.m_trace) * (1. + s.m_trace)));
- btScalar c3 = (m_lambda * DotProduct(s.m_cofF, dF));
- dP = dF * c1 + s.m_F * c2;
- addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda * (s.m_J - 1.) - 0.75 * m_mu, dP);
- dP += s.m_cofF * c3;
- }
- // Let Q be the damping stress.
- // This function calculates the dP = dQ/dF * dF
- void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
- {
- btScalar c1 = (m_mu_damp * (1. - 1. / (s.m_trace + 1.)));
- btScalar c2 = ((2. * m_mu_damp) * DotProduct(s.m_F, dF) * (1. / ((1. + s.m_trace) * (1. + s.m_trace))));
- btScalar c3 = (m_lambda_damp * DotProduct(s.m_cofF, dF));
- dP = dF * c1 + s.m_F * c2;
- addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda_damp * (s.m_J - 1.) - 0.75 * m_mu_damp, dP);
- dP += s.m_cofF * c3;
- }
- btScalar DotProduct(const btMatrix3x3& A, const btMatrix3x3& B)
- {
- btScalar ans = 0;
- for (int i = 0; i < 3; ++i)
- {
- ans += A[i].dot(B[i]);
- }
- return ans;
- }
- // Let C(A) be the cofactor of the matrix A
- // Let H = the derivative of C(A) with respect to A evaluated at F = A
- // This function calculates H*dF
- void addScaledCofactorMatrixDifferential(const btMatrix3x3& F, const btMatrix3x3& dF, btScalar scale, btMatrix3x3& M)
- {
- M[0][0] += scale * (dF[1][1] * F[2][2] + F[1][1] * dF[2][2] - dF[2][1] * F[1][2] - F[2][1] * dF[1][2]);
- M[1][0] += scale * (dF[2][1] * F[0][2] + F[2][1] * dF[0][2] - dF[0][1] * F[2][2] - F[0][1] * dF[2][2]);
- M[2][0] += scale * (dF[0][1] * F[1][2] + F[0][1] * dF[1][2] - dF[1][1] * F[0][2] - F[1][1] * dF[0][2]);
- M[0][1] += scale * (dF[2][0] * F[1][2] + F[2][0] * dF[1][2] - dF[1][0] * F[2][2] - F[1][0] * dF[2][2]);
- M[1][1] += scale * (dF[0][0] * F[2][2] + F[0][0] * dF[2][2] - dF[2][0] * F[0][2] - F[2][0] * dF[0][2]);
- M[2][1] += scale * (dF[1][0] * F[0][2] + F[1][0] * dF[0][2] - dF[0][0] * F[1][2] - F[0][0] * dF[1][2]);
- M[0][2] += scale * (dF[1][0] * F[2][1] + F[1][0] * dF[2][1] - dF[2][0] * F[1][1] - F[2][0] * dF[1][1]);
- M[1][2] += scale * (dF[2][0] * F[0][1] + F[2][0] * dF[0][1] - dF[0][0] * F[2][1] - F[0][0] * dF[2][1]);
- M[2][2] += scale * (dF[0][0] * F[1][1] + F[0][0] * dF[1][1] - dF[1][0] * F[0][1] - F[1][0] * dF[0][1]);
- }
- virtual btDeformableLagrangianForceType getForceType()
- {
- return BT_NEOHOOKEAN_FORCE;
- }
- };
- #endif /* BT_NEOHOOKEAN_H */
|