123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- /*
- Bullet Continuous Collision Detection and Physics Library
- Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- ///original version written by Erwin Coumans, October 2013
- #ifndef BT_LEMKE_SOLVER_H
- #define BT_LEMKE_SOLVER_H
- #include "btMLCPSolverInterface.h"
- #include "btLemkeAlgorithm.h"
- ///The btLemkeSolver is based on "Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
- ///It is a slower but more accurate solver. Increase the m_maxLoops for better convergence, at the cost of more CPU time.
- ///The original implementation of the btLemkeAlgorithm was done by Kilian Grundl from the MBSim team
- class btLemkeSolver : public btMLCPSolverInterface
- {
- protected:
- public:
- btScalar m_maxValue;
- int m_debugLevel;
- int m_maxLoops;
- bool m_useLoHighBounds;
- btLemkeSolver()
- : m_maxValue(100000),
- m_debugLevel(0),
- m_maxLoops(1000),
- m_useLoHighBounds(true)
- {
- }
- virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
- {
- if (m_useLoHighBounds)
- {
- BT_PROFILE("btLemkeSolver::solveMLCP");
- int n = A.rows();
- if (0 == n)
- return true;
- bool fail = false;
- btVectorXu solution(n);
- btVectorXu q1;
- q1.resize(n);
- for (int row = 0; row < n; row++)
- {
- q1[row] = -b[row];
- }
- // cout << "A" << endl;
- // cout << A << endl;
- /////////////////////////////////////
- //slow matrix inversion, replace with LU decomposition
- btMatrixXu A1;
- btMatrixXu B(n, n);
- {
- //BT_PROFILE("inverse(slow)");
- A1.resize(A.rows(), A.cols());
- for (int row = 0; row < A.rows(); row++)
- {
- for (int col = 0; col < A.cols(); col++)
- {
- A1.setElem(row, col, A(row, col));
- }
- }
- btMatrixXu matrix;
- matrix.resize(n, 2 * n);
- for (int row = 0; row < n; row++)
- {
- for (int col = 0; col < n; col++)
- {
- matrix.setElem(row, col, A1(row, col));
- }
- }
- btScalar ratio, a;
- int i, j, k;
- for (i = 0; i < n; i++)
- {
- for (j = n; j < 2 * n; j++)
- {
- if (i == (j - n))
- matrix.setElem(i, j, 1.0);
- else
- matrix.setElem(i, j, 0.0);
- }
- }
- for (i = 0; i < n; i++)
- {
- for (j = 0; j < n; j++)
- {
- if (i != j)
- {
- btScalar v = matrix(i, i);
- if (btFuzzyZero(v))
- {
- a = 0.000001f;
- }
- ratio = matrix(j, i) / matrix(i, i);
- for (k = 0; k < 2 * n; k++)
- {
- matrix.addElem(j, k, -ratio * matrix(i, k));
- }
- }
- }
- }
- for (i = 0; i < n; i++)
- {
- a = matrix(i, i);
- if (btFuzzyZero(a))
- {
- a = 0.000001f;
- }
- btScalar invA = 1.f / a;
- for (j = 0; j < 2 * n; j++)
- {
- matrix.mulElem(i, j, invA);
- }
- }
- for (int row = 0; row < n; row++)
- {
- for (int col = 0; col < n; col++)
- {
- B.setElem(row, col, matrix(row, n + col));
- }
- }
- }
- btMatrixXu b1(n, 1);
- btMatrixXu M(n * 2, n * 2);
- for (int row = 0; row < n; row++)
- {
- b1.setElem(row, 0, -b[row]);
- for (int col = 0; col < n; col++)
- {
- btScalar v = B(row, col);
- M.setElem(row, col, v);
- M.setElem(n + row, n + col, v);
- M.setElem(n + row, col, -v);
- M.setElem(row, n + col, -v);
- }
- }
- btMatrixXu Bb1 = B * b1;
- // q = [ (-B*b1 - lo)' (hi + B*b1)' ]'
- btVectorXu qq;
- qq.resize(n * 2);
- for (int row = 0; row < n; row++)
- {
- qq[row] = -Bb1(row, 0) - lo[row];
- qq[n + row] = Bb1(row, 0) + hi[row];
- }
- btVectorXu z1;
- btMatrixXu y1;
- y1.resize(n, 1);
- btLemkeAlgorithm lemke(M, qq, m_debugLevel);
- {
- //BT_PROFILE("lemke.solve");
- lemke.setSystem(M, qq);
- z1 = lemke.solve(m_maxLoops);
- }
- for (int row = 0; row < n; row++)
- {
- y1.setElem(row, 0, z1[2 * n + row] - z1[3 * n + row]);
- }
- btMatrixXu y1_b1(n, 1);
- for (int i = 0; i < n; i++)
- {
- y1_b1.setElem(i, 0, y1(i, 0) - b1(i, 0));
- }
- btMatrixXu x1;
- x1 = B * (y1_b1);
- for (int row = 0; row < n; row++)
- {
- solution[row] = x1(row, 0); //n];
- }
- int errorIndexMax = -1;
- int errorIndexMin = -1;
- float errorValueMax = -1e30;
- float errorValueMin = 1e30;
- for (int i = 0; i < n; i++)
- {
- x[i] = solution[i];
- volatile btScalar check = x[i];
- if (x[i] != check)
- {
- //printf("Lemke result is #NAN\n");
- x.setZero();
- return false;
- }
- //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
- //we need to figure out why it happens, and fix it, or detect it properly)
- if (x[i] > m_maxValue)
- {
- if (x[i] > errorValueMax)
- {
- fail = true;
- errorIndexMax = i;
- errorValueMax = x[i];
- }
- ////printf("x[i] = %f,",x[i]);
- }
- if (x[i] < -m_maxValue)
- {
- if (x[i] < errorValueMin)
- {
- errorIndexMin = i;
- errorValueMin = x[i];
- fail = true;
- //printf("x[i] = %f,",x[i]);
- }
- }
- }
- if (fail)
- {
- int m_errorCountTimes = 0;
- if (errorIndexMin < 0)
- errorValueMin = 0.f;
- if (errorIndexMax < 0)
- errorValueMax = 0.f;
- m_errorCountTimes++;
- // printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
- for (int i = 0; i < n; i++)
- {
- x[i] = 0.f;
- }
- }
- return !fail;
- }
- else
- {
- int dimension = A.rows();
- if (0 == dimension)
- return true;
- // printf("================ solving using Lemke/Newton/Fixpoint\n");
- btVectorXu q;
- q.resize(dimension);
- for (int row = 0; row < dimension; row++)
- {
- q[row] = -b[row];
- }
- btLemkeAlgorithm lemke(A, q, m_debugLevel);
- lemke.setSystem(A, q);
- btVectorXu solution = lemke.solve(m_maxLoops);
- //check solution
- bool fail = false;
- int errorIndexMax = -1;
- int errorIndexMin = -1;
- float errorValueMax = -1e30;
- float errorValueMin = 1e30;
- for (int i = 0; i < dimension; i++)
- {
- x[i] = solution[i + dimension];
- volatile btScalar check = x[i];
- if (x[i] != check)
- {
- x.setZero();
- return false;
- }
- //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
- //we need to figure out why it happens, and fix it, or detect it properly)
- if (x[i] > m_maxValue)
- {
- if (x[i] > errorValueMax)
- {
- fail = true;
- errorIndexMax = i;
- errorValueMax = x[i];
- }
- ////printf("x[i] = %f,",x[i]);
- }
- if (x[i] < -m_maxValue)
- {
- if (x[i] < errorValueMin)
- {
- errorIndexMin = i;
- errorValueMin = x[i];
- fail = true;
- //printf("x[i] = %f,",x[i]);
- }
- }
- }
- if (fail)
- {
- static int errorCountTimes = 0;
- if (errorIndexMin < 0)
- errorValueMin = 0.f;
- if (errorIndexMax < 0)
- errorValueMax = 0.f;
- printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin, errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
- for (int i = 0; i < dimension; i++)
- {
- x[i] = 0.f;
- }
- }
- return !fail;
- }
- return true;
- }
- };
- #endif //BT_LEMKE_SOLVER_H
|