123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- /* Copyright (C) 2004-2013 MBSim Development Team
- Code was converted for the Bullet Continuous Collision Detection and Physics Library
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- //The original version is here
- //https://code.google.com/p/mbsim-env/source/browse/trunk/kernel/mbsim/numerics/linear_complementarity_problem/lemke_algorithm.cc
- //This file is re-distributed under the ZLib license, with permission of the original author
- //Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
- //STL/std::vector replaced by btAlignedObjectArray
- #include "btLemkeAlgorithm.h"
- #undef BT_DEBUG_OSTREAM
- #ifdef BT_DEBUG_OSTREAM
- using namespace std;
- #endif //BT_DEBUG_OSTREAM
- btScalar btMachEps()
- {
- static bool calculated = false;
- static btScalar machEps = btScalar(1.);
- if (!calculated)
- {
- do
- {
- machEps /= btScalar(2.0);
- // If next epsilon yields 1, then break, because current
- // epsilon is the machine epsilon.
- } while ((btScalar)(1.0 + (machEps / btScalar(2.0))) != btScalar(1.0));
- // printf( "\nCalculated Machine epsilon: %G\n", machEps );
- calculated = true;
- }
- return machEps;
- }
- btScalar btEpsRoot()
- {
- static btScalar epsroot = 0.;
- static bool alreadyCalculated = false;
- if (!alreadyCalculated)
- {
- epsroot = btSqrt(btMachEps());
- alreadyCalculated = true;
- }
- return epsroot;
- }
- btVectorXu btLemkeAlgorithm::solve(unsigned int maxloops /* = 0*/)
- {
- steps = 0;
- int dim = m_q.size();
- #ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 1)
- {
- cout << "Dimension = " << dim << endl;
- }
- #endif //BT_DEBUG_OSTREAM
- btVectorXu solutionVector(2 * dim);
- solutionVector.setZero();
- //, INIT, 0.);
- btMatrixXu ident(dim, dim);
- ident.setIdentity();
- #ifdef BT_DEBUG_OSTREAM
- cout << m_M << std::endl;
- #endif
- btMatrixXu mNeg = m_M.negative();
- btMatrixXu A(dim, 2 * dim + 2);
- //
- A.setSubMatrix(0, 0, dim - 1, dim - 1, ident);
- A.setSubMatrix(0, dim, dim - 1, 2 * dim - 1, mNeg);
- A.setSubMatrix(0, 2 * dim, dim - 1, 2 * dim, -1.f);
- A.setSubMatrix(0, 2 * dim + 1, dim - 1, 2 * dim + 1, m_q);
- #ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
- #endif //BT_DEBUG_OSTREAM
- // btVectorXu q_;
- // q_ >> A(0, 2 * dim + 1, dim - 1, 2 * dim + 1);
- btAlignedObjectArray<int> basis;
- //At first, all w-values are in the basis
- for (int i = 0; i < dim; i++)
- basis.push_back(i);
- int pivotRowIndex = -1;
- btScalar minValue = 1e30f;
- bool greaterZero = true;
- for (int i = 0; i < dim; i++)
- {
- btScalar v = A(i, 2 * dim + 1);
- if (v < minValue)
- {
- minValue = v;
- pivotRowIndex = i;
- }
- if (v < 0)
- greaterZero = false;
- }
- // int pivotRowIndex = q_.minIndex();//minIndex(q_); // first row is that with lowest q-value
- int z0Row = pivotRowIndex; // remember the col of z0 for ending algorithm afterwards
- int pivotColIndex = 2 * dim; // first col is that of z0
- #ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 3)
- {
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- cout << "Basis: ";
- for (int i = 0; i < basis.size(); i++)
- cout << basis[i] << " ";
- cout << endl;
- }
- #endif //BT_DEBUG_OSTREAM
- if (!greaterZero)
- {
- if (maxloops == 0)
- {
- maxloops = 100;
- // maxloops = UINT_MAX; //TODO: not a really nice way, problem is: maxloops should be 2^dim (=1<<dim), but this could exceed UINT_MAX and thus the result would be 0 and therefore the lemke algorithm wouldn't start but probably would find a solution within less then UINT_MAX steps. Therefore this constant is used as a upper border right now...
- }
- /*start looping*/
- for (steps = 0; steps < maxloops; steps++)
- {
- GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
- #ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 3)
- {
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- cout << "Basis: ";
- for (int i = 0; i < basis.size(); i++)
- cout << basis[i] << " ";
- cout << endl;
- }
- #endif //BT_DEBUG_OSTREAM
- int pivotColIndexOld = pivotColIndex;
- /*find new column index */
- if (basis[pivotRowIndex] < dim) //if a w-value left the basis get in the correspondent z-value
- pivotColIndex = basis[pivotRowIndex] + dim;
- else
- //else do it the other way round and get in the corresponding w-value
- pivotColIndex = basis[pivotRowIndex] - dim;
- /*the column becomes part of the basis*/
- basis[pivotRowIndex] = pivotColIndexOld;
- pivotRowIndex = findLexicographicMinimum(A, pivotColIndex);
- if (z0Row == pivotRowIndex)
- { //if z0 leaves the basis the solution is found --> one last elimination step is necessary
- GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
- basis[pivotRowIndex] = pivotColIndex; //update basis
- break;
- }
- }
- #ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 1)
- {
- cout << "Number of loops: " << steps << endl;
- cout << "Number of maximal loops: " << maxloops << endl;
- }
- #endif //BT_DEBUG_OSTREAM
- if (!validBasis(basis))
- {
- info = -1;
- #ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 1)
- cerr << "Lemke-Algorithm ended with Ray-Termination (no valid solution)." << endl;
- #endif //BT_DEBUG_OSTREAM
- return solutionVector;
- }
- }
- #ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 2)
- {
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- }
- #endif //BT_DEBUG_OSTREAM
- for (int i = 0; i < basis.size(); i++)
- {
- solutionVector[basis[i]] = A(i, 2 * dim + 1); //q_[i];
- }
- info = 0;
- return solutionVector;
- }
- int btLemkeAlgorithm::findLexicographicMinimum(const btMatrixXu& A, const int& pivotColIndex)
- {
- int RowIndex = 0;
- int dim = A.rows();
- btAlignedObjectArray<btVectorXu> Rows;
- for (int row = 0; row < dim; row++)
- {
- btVectorXu vec(dim + 1);
- vec.setZero(); //, INIT, 0.)
- Rows.push_back(vec);
- btScalar a = A(row, pivotColIndex);
- if (a > 0)
- {
- Rows[row][0] = A(row, 2 * dim + 1) / a;
- Rows[row][1] = A(row, 2 * dim) / a;
- for (int j = 2; j < dim + 1; j++)
- Rows[row][j] = A(row, j - 1) / a;
- #ifdef BT_DEBUG_OSTREAM
- // if (DEBUGLEVEL) {
- // cout << "Rows(" << row << ") = " << Rows[row] << endl;
- // }
- #endif
- }
- }
- for (int i = 0; i < Rows.size(); i++)
- {
- if (Rows[i].nrm2() > 0.)
- {
- int j = 0;
- for (; j < Rows.size(); j++)
- {
- if (i != j)
- {
- if (Rows[j].nrm2() > 0.)
- {
- btVectorXu test(dim + 1);
- for (int ii = 0; ii < dim + 1; ii++)
- {
- test[ii] = Rows[j][ii] - Rows[i][ii];
- }
- //=Rows[j] - Rows[i]
- if (!LexicographicPositive(test))
- break;
- }
- }
- }
- if (j == Rows.size())
- {
- RowIndex += i;
- break;
- }
- }
- }
- return RowIndex;
- }
- bool btLemkeAlgorithm::LexicographicPositive(const btVectorXu& v)
- {
- int i = 0;
- // if (DEBUGLEVEL)
- // cout << "v " << v << endl;
- while (i < v.size() - 1 && fabs(v[i]) < btMachEps())
- i++;
- if (v[i] > 0)
- return true;
- return false;
- }
- void btLemkeAlgorithm::GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis)
- {
- btScalar a = -1 / A(pivotRowIndex, pivotColumnIndex);
- #ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
- #endif
- for (int i = 0; i < A.rows(); i++)
- {
- if (i != pivotRowIndex)
- {
- for (int j = 0; j < A.cols(); j++)
- {
- if (j != pivotColumnIndex)
- {
- btScalar v = A(i, j);
- v += A(pivotRowIndex, j) * A(i, pivotColumnIndex) * a;
- A.setElem(i, j, v);
- }
- }
- }
- }
- #ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
- #endif //BT_DEBUG_OSTREAM
- for (int i = 0; i < A.cols(); i++)
- {
- A.mulElem(pivotRowIndex, i, -a);
- }
- #ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
- #endif //#ifdef BT_DEBUG_OSTREAM
- for (int i = 0; i < A.rows(); i++)
- {
- if (i != pivotRowIndex)
- {
- A.setElem(i, pivotColumnIndex, 0);
- }
- }
- #ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
- #endif //#ifdef BT_DEBUG_OSTREAM
- }
- bool btLemkeAlgorithm::greaterZero(const btVectorXu& vector)
- {
- bool isGreater = true;
- for (int i = 0; i < vector.size(); i++)
- {
- if (vector[i] < 0)
- {
- isGreater = false;
- break;
- }
- }
- return isGreater;
- }
- bool btLemkeAlgorithm::validBasis(const btAlignedObjectArray<int>& basis)
- {
- bool isValid = true;
- for (int i = 0; i < basis.size(); i++)
- {
- if (basis[i] >= basis.size() * 2)
- { //then z0 is in the base
- isValid = false;
- break;
- }
- }
- return isValid;
- }
|