1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- /*************************************************************************
- * *
- * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
- * All rights reserved. Email: russ@q12.org Web: www.q12.org *
- * *
- * This library is free software; you can redistribute it and/or *
- * modify it under the terms of *
- * The BSD-style license that is included with this library in *
- * the file LICENSE-BSD.TXT. *
- * *
- * This library is distributed in the hope that it will be useful, *
- * but WITHOUT ANY WARRANTY; without even the implied warranty of *
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
- * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
- * *
- *************************************************************************/
- /*
- given (A,b,lo,hi), solve the LCP problem: A*x = b+w, where each x(i),w(i)
- satisfies one of
- (1) x = lo, w >= 0
- (2) x = hi, w <= 0
- (3) lo < x < hi, w = 0
- A is a matrix of dimension n*n, everything else is a vector of size n*1.
- lo and hi can be +/- dInfinity as needed. the first `nub' variables are
- unbounded, i.e. hi and lo are assumed to be +/- dInfinity.
- we restrict lo(i) <= 0 and hi(i) >= 0.
- the original data (A,b) may be modified by this function.
- if the `findex' (friction index) parameter is nonzero, it points to an array
- of index values. in this case constraints that have findex[i] >= 0 are
- special. all non-special constraints are solved for, then the lo and hi values
- for the special constraints are set:
- hi[i] = abs( hi[i] * x[findex[i]] )
- lo[i] = -hi[i]
- and the solution continues. this mechanism allows a friction approximation
- to be implemented. the first `nub' variables are assumed to have findex < 0.
- */
- #ifndef _BT_LCP_H_
- #define _BT_LCP_H_
- #include <stdlib.h>
- #include <stdio.h>
- #include <assert.h>
- #include "LinearMath/btScalar.h"
- #include "LinearMath/btAlignedObjectArray.h"
- struct btDantzigScratchMemory
- {
- btAlignedObjectArray<btScalar> m_scratch;
- btAlignedObjectArray<btScalar> L;
- btAlignedObjectArray<btScalar> d;
- btAlignedObjectArray<btScalar> delta_w;
- btAlignedObjectArray<btScalar> delta_x;
- btAlignedObjectArray<btScalar> Dell;
- btAlignedObjectArray<btScalar> ell;
- btAlignedObjectArray<btScalar *> Arows;
- btAlignedObjectArray<int> p;
- btAlignedObjectArray<int> C;
- btAlignedObjectArray<bool> state;
- };
- //return false if solving failed
- bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b, btScalar *w,
- int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratch);
- #endif //_BT_LCP_H_
|