12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159 |
- /*************************************************************************
- * *
- * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
- * All rights reserved. Email: russ@q12.org Web: www.q12.org *
- * *
- * This library is free software; you can redistribute it and/or *
- * modify it under the terms of EITHER: *
- * (1) The GNU Lesser General Public License as published by the Free *
- * Software Foundation; either version 2.1 of the License, or (at *
- * your option) any later version. The text of the GNU Lesser *
- * General Public License is included with this library in the *
- * file LICENSE.TXT. *
- * (2) The BSD-style license that is included with this library in *
- * the file LICENSE-BSD.TXT. *
- * *
- * This library is distributed in the hope that it will be useful, *
- * but WITHOUT ANY WARRANTY; without even the implied warranty of *
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
- * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
- * *
- *************************************************************************/
- /*
- THE ALGORITHM
- -------------
- solve A*x = b+w, with x and w subject to certain LCP conditions.
- each x(i),w(i) must lie on one of the three line segments in the following
- diagram. each line segment corresponds to one index set :
- w(i)
- /|\ | :
- | | :
- | |i in N :
- w>0 | |state[i]=0 :
- | | :
- | | : i in C
- w=0 + +-----------------------+
- | : |
- | : |
- w<0 | : |i in N
- | : |state[i]=1
- | : |
- | : |
- +-------|-----------|-----------|----------> x(i)
- lo 0 hi
- the Dantzig algorithm proceeds as follows:
- for i=1:n
- * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
- negative towards the line. as this is done, the other (x(j),w(j))
- for j<i are constrained to be on the line. if any (x,w) reaches the
- end of a line segment then it is switched between index sets.
- * i is added to the appropriate index set depending on what line segment
- it hits.
- we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
- simpler, because the starting point for x(i),w(i) is always on the dotted
- line x=0 and x will only ever increase in one direction, so it can only hit
- two out of the three line segments.
- NOTES
- -----
- this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
- the implementation is split into an LCP problem object (btLCP) and an LCP
- driver function. most optimization occurs in the btLCP object.
- a naive implementation of the algorithm requires either a lot of data motion
- or a lot of permutation-array lookup, because we are constantly re-ordering
- rows and columns. to avoid this and make a more optimized algorithm, a
- non-trivial data structure is used to represent the matrix A (this is
- implemented in the fast version of the btLCP object).
- during execution of this algorithm, some indexes in A are clamped (set C),
- some are non-clamped (set N), and some are "don't care" (where x=0).
- A,x,b,w (and other problem vectors) are permuted such that the clamped
- indexes are first, the unclamped indexes are next, and the don't-care
- indexes are last. this permutation is recorded in the array `p'.
- initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
- the corresponding elements of p are swapped.
- because the C and N elements are grouped together in the rows of A, we can do
- lots of work with a fast dot product function. if A,x,etc were not permuted
- and we only had a permutation array, then those dot products would be much
- slower as we would have a permutation array lookup in some inner loops.
- A is accessed through an array of row pointers, so that element (i,j) of the
- permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
- we still have to actually move the data.
- during execution of this algorithm we maintain an L*D*L' factorization of
- the clamped submatrix of A (call it `AC') which is the top left nC*nC
- submatrix of A. there are two ways we could arrange the rows/columns in AC.
- (1) AC is always permuted such that L*D*L' = AC. this causes a problem
- when a row/column is removed from C, because then all the rows/columns of A
- between the deleted index and the end of C need to be rotated downward.
- this results in a lot of data motion and slows things down.
- (2) L*D*L' is actually a factorization of a *permutation* of AC (which is
- itself a permutation of the underlying A). this is what we do - the
- permutation is recorded in the vector C. call this permutation A[C,C].
- when a row/column is removed from C, all we have to do is swap two
- rows/columns and manipulate C.
- */
- #include "btDantzigLCP.h"
- #include <string.h> //memcpy
- bool s_error = false;
- //***************************************************************************
- // code generation parameters
- #define btLCP_FAST // use fast btLCP object
- // option 1 : matrix row pointers (less data copying)
- #define BTROWPTRS
- #define BTATYPE btScalar **
- #define BTAROW(i) (m_A[i])
- // option 2 : no matrix row pointers (slightly faster inner loops)
- //#define NOROWPTRS
- //#define BTATYPE btScalar *
- //#define BTAROW(i) (m_A+(i)*m_nskip)
- #define BTNUB_OPTIMIZATIONS
- /* solve L*X=B, with B containing 1 right hand sides.
- * L is an n*n lower triangular matrix with ones on the diagonal.
- * L is stored by rows and its leading dimension is lskip.
- * B is an n*1 matrix that contains the right hand sides.
- * B is stored by columns and its leading dimension is also lskip.
- * B is overwritten with X.
- * this processes blocks of 2*2.
- * if this is in the factorizer source file, n must be a multiple of 2.
- */
- static void btSolveL1_1(const btScalar *L, btScalar *B, int n, int lskip1)
- {
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11, m11, Z21, m21, p1, q1, p2, *ex;
- const btScalar *ell;
- int i, j;
- /* compute all 2 x 1 blocks of X */
- for (i = 0; i < n; i += 2)
- {
- /* compute all 2 x 1 block of X, from rows i..i+2-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- Z21 = 0;
- ell = L + i * lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 2; j >= 0; j -= 2)
- {
- /* compute outer product and add it to the Z matrix */
- p1 = ell[0];
- q1 = ex[0];
- m11 = p1 * q1;
- p2 = ell[lskip1];
- m21 = p2 * q1;
- Z11 += m11;
- Z21 += m21;
- /* compute outer product and add it to the Z matrix */
- p1 = ell[1];
- q1 = ex[1];
- m11 = p1 * q1;
- p2 = ell[1 + lskip1];
- m21 = p2 * q1;
- /* advance pointers */
- ell += 2;
- ex += 2;
- Z11 += m11;
- Z21 += m21;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 2;
- for (; j > 0; j--)
- {
- /* compute outer product and add it to the Z matrix */
- p1 = ell[0];
- q1 = ex[0];
- m11 = p1 * q1;
- p2 = ell[lskip1];
- m21 = p2 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- Z11 += m11;
- Z21 += m21;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1 * Z11;
- ex[1] = Z21;
- /* end of outer loop */
- }
- }
- /* solve L*X=B, with B containing 2 right hand sides.
- * L is an n*n lower triangular matrix with ones on the diagonal.
- * L is stored by rows and its leading dimension is lskip.
- * B is an n*2 matrix that contains the right hand sides.
- * B is stored by columns and its leading dimension is also lskip.
- * B is overwritten with X.
- * this processes blocks of 2*2.
- * if this is in the factorizer source file, n must be a multiple of 2.
- */
- static void btSolveL1_2(const btScalar *L, btScalar *B, int n, int lskip1)
- {
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11, m11, Z12, m12, Z21, m21, Z22, m22, p1, q1, p2, q2, *ex;
- const btScalar *ell;
- int i, j;
- /* compute all 2 x 2 blocks of X */
- for (i = 0; i < n; i += 2)
- {
- /* compute all 2 x 2 block of X, from rows i..i+2-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- Z12 = 0;
- Z21 = 0;
- Z22 = 0;
- ell = L + i * lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 2; j >= 0; j -= 2)
- {
- /* compute outer product and add it to the Z matrix */
- p1 = ell[0];
- q1 = ex[0];
- m11 = p1 * q1;
- q2 = ex[lskip1];
- m12 = p1 * q2;
- p2 = ell[lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- /* compute outer product and add it to the Z matrix */
- p1 = ell[1];
- q1 = ex[1];
- m11 = p1 * q1;
- q2 = ex[1 + lskip1];
- m12 = p1 * q2;
- p2 = ell[1 + lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- /* advance pointers */
- ell += 2;
- ex += 2;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 2;
- for (; j > 0; j--)
- {
- /* compute outer product and add it to the Z matrix */
- p1 = ell[0];
- q1 = ex[0];
- m11 = p1 * q1;
- q2 = ex[lskip1];
- m12 = p1 * q2;
- p2 = ell[lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- /* advance pointers */
- ell += 1;
- ex += 1;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- Z12 = ex[lskip1] - Z12;
- ex[lskip1] = Z12;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1 * Z11;
- ex[1] = Z21;
- Z22 = ex[1 + lskip1] - Z22 - p1 * Z12;
- ex[1 + lskip1] = Z22;
- /* end of outer loop */
- }
- }
- void btFactorLDLT(btScalar *A, btScalar *d, int n, int nskip1)
- {
- int i, j;
- btScalar sum, *ell, *dee, dd, p1, p2, q1, q2, Z11, m11, Z21, m21, Z22, m22;
- if (n < 1) return;
- for (i = 0; i <= n - 2; i += 2)
- {
- /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
- btSolveL1_2(A, A + i * nskip1, i, nskip1);
- /* scale the elements in a 2 x i block at A(i,0), and also */
- /* compute Z = the outer product matrix that we'll need. */
- Z11 = 0;
- Z21 = 0;
- Z22 = 0;
- ell = A + i * nskip1;
- dee = d;
- for (j = i - 6; j >= 0; j -= 6)
- {
- p1 = ell[0];
- p2 = ell[nskip1];
- dd = dee[0];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[0] = q1;
- ell[nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[1];
- p2 = ell[1 + nskip1];
- dd = dee[1];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[1] = q1;
- ell[1 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[2];
- p2 = ell[2 + nskip1];
- dd = dee[2];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[2] = q1;
- ell[2 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[3];
- p2 = ell[3 + nskip1];
- dd = dee[3];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[3] = q1;
- ell[3 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[4];
- p2 = ell[4 + nskip1];
- dd = dee[4];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[4] = q1;
- ell[4 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[5];
- p2 = ell[5 + nskip1];
- dd = dee[5];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[5] = q1;
- ell[5 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- ell += 6;
- dee += 6;
- }
- /* compute left-over iterations */
- j += 6;
- for (; j > 0; j--)
- {
- p1 = ell[0];
- p2 = ell[nskip1];
- dd = dee[0];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[0] = q1;
- ell[nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- ell++;
- dee++;
- }
- /* solve for diagonal 2 x 2 block at A(i,i) */
- Z11 = ell[0] - Z11;
- Z21 = ell[nskip1] - Z21;
- Z22 = ell[1 + nskip1] - Z22;
- dee = d + i;
- /* factorize 2 x 2 block Z,dee */
- /* factorize row 1 */
- dee[0] = btRecip(Z11);
- /* factorize row 2 */
- sum = 0;
- q1 = Z21;
- q2 = q1 * dee[0];
- Z21 = q2;
- sum += q1 * q2;
- dee[1] = btRecip(Z22 - sum);
- /* done factorizing 2 x 2 block */
- ell[nskip1] = Z21;
- }
- /* compute the (less than 2) rows at the bottom */
- switch (n - i)
- {
- case 0:
- break;
- case 1:
- btSolveL1_1(A, A + i * nskip1, i, nskip1);
- /* scale the elements in a 1 x i block at A(i,0), and also */
- /* compute Z = the outer product matrix that we'll need. */
- Z11 = 0;
- ell = A + i * nskip1;
- dee = d;
- for (j = i - 6; j >= 0; j -= 6)
- {
- p1 = ell[0];
- dd = dee[0];
- q1 = p1 * dd;
- ell[0] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[1];
- dd = dee[1];
- q1 = p1 * dd;
- ell[1] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[2];
- dd = dee[2];
- q1 = p1 * dd;
- ell[2] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[3];
- dd = dee[3];
- q1 = p1 * dd;
- ell[3] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[4];
- dd = dee[4];
- q1 = p1 * dd;
- ell[4] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[5];
- dd = dee[5];
- q1 = p1 * dd;
- ell[5] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- ell += 6;
- dee += 6;
- }
- /* compute left-over iterations */
- j += 6;
- for (; j > 0; j--)
- {
- p1 = ell[0];
- dd = dee[0];
- q1 = p1 * dd;
- ell[0] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- ell++;
- dee++;
- }
- /* solve for diagonal 1 x 1 block at A(i,i) */
- Z11 = ell[0] - Z11;
- dee = d + i;
- /* factorize 1 x 1 block Z,dee */
- /* factorize row 1 */
- dee[0] = btRecip(Z11);
- /* done factorizing 1 x 1 block */
- break;
- //default: *((char*)0)=0; /* this should never happen! */
- }
- }
- /* solve L*X=B, with B containing 1 right hand sides.
- * L is an n*n lower triangular matrix with ones on the diagonal.
- * L is stored by rows and its leading dimension is lskip.
- * B is an n*1 matrix that contains the right hand sides.
- * B is stored by columns and its leading dimension is also lskip.
- * B is overwritten with X.
- * this processes blocks of 4*4.
- * if this is in the factorizer source file, n must be a multiple of 4.
- */
- void btSolveL1(const btScalar *L, btScalar *B, int n, int lskip1)
- {
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11, Z21, Z31, Z41, p1, q1, p2, p3, p4, *ex;
- const btScalar *ell;
- int lskip2, lskip3, i, j;
- /* compute lskip values */
- lskip2 = 2 * lskip1;
- lskip3 = 3 * lskip1;
- /* compute all 4 x 1 blocks of X */
- for (i = 0; i <= n - 4; i += 4)
- {
- /* compute all 4 x 1 block of X, from rows i..i+4-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- Z21 = 0;
- Z31 = 0;
- Z41 = 0;
- ell = L + i * lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 12; j >= 0; j -= 12)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- p2 = ell[lskip1];
- p3 = ell[lskip2];
- p4 = ell[lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[1];
- q1 = ex[1];
- p2 = ell[1 + lskip1];
- p3 = ell[1 + lskip2];
- p4 = ell[1 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[2];
- q1 = ex[2];
- p2 = ell[2 + lskip1];
- p3 = ell[2 + lskip2];
- p4 = ell[2 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[3];
- q1 = ex[3];
- p2 = ell[3 + lskip1];
- p3 = ell[3 + lskip2];
- p4 = ell[3 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[4];
- q1 = ex[4];
- p2 = ell[4 + lskip1];
- p3 = ell[4 + lskip2];
- p4 = ell[4 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[5];
- q1 = ex[5];
- p2 = ell[5 + lskip1];
- p3 = ell[5 + lskip2];
- p4 = ell[5 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[6];
- q1 = ex[6];
- p2 = ell[6 + lskip1];
- p3 = ell[6 + lskip2];
- p4 = ell[6 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[7];
- q1 = ex[7];
- p2 = ell[7 + lskip1];
- p3 = ell[7 + lskip2];
- p4 = ell[7 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[8];
- q1 = ex[8];
- p2 = ell[8 + lskip1];
- p3 = ell[8 + lskip2];
- p4 = ell[8 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[9];
- q1 = ex[9];
- p2 = ell[9 + lskip1];
- p3 = ell[9 + lskip2];
- p4 = ell[9 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[10];
- q1 = ex[10];
- p2 = ell[10 + lskip1];
- p3 = ell[10 + lskip2];
- p4 = ell[10 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[11];
- q1 = ex[11];
- p2 = ell[11 + lskip1];
- p3 = ell[11 + lskip2];
- p4 = ell[11 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* advance pointers */
- ell += 12;
- ex += 12;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 12;
- for (; j > 0; j--)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- p2 = ell[lskip1];
- p3 = ell[lskip2];
- p4 = ell[lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1 * Z11;
- ex[1] = Z21;
- p1 = ell[lskip2];
- p2 = ell[1 + lskip2];
- Z31 = ex[2] - Z31 - p1 * Z11 - p2 * Z21;
- ex[2] = Z31;
- p1 = ell[lskip3];
- p2 = ell[1 + lskip3];
- p3 = ell[2 + lskip3];
- Z41 = ex[3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31;
- ex[3] = Z41;
- /* end of outer loop */
- }
- /* compute rows at end that are not a multiple of block size */
- for (; i < n; i++)
- {
- /* compute all 1 x 1 block of X, from rows i..i+1-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- ell = L + i * lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 12; j >= 0; j -= 12)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[1];
- q1 = ex[1];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[2];
- q1 = ex[2];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[3];
- q1 = ex[3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[4];
- q1 = ex[4];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[5];
- q1 = ex[5];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[6];
- q1 = ex[6];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[7];
- q1 = ex[7];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[8];
- q1 = ex[8];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[9];
- q1 = ex[9];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[10];
- q1 = ex[10];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[11];
- q1 = ex[11];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* advance pointers */
- ell += 12;
- ex += 12;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 12;
- for (; j > 0; j--)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- }
- }
- /* solve L^T * x=b, with b containing 1 right hand side.
- * L is an n*n lower triangular matrix with ones on the diagonal.
- * L is stored by rows and its leading dimension is lskip.
- * b is an n*1 matrix that contains the right hand side.
- * b is overwritten with x.
- * this processes blocks of 4.
- */
- void btSolveL1T(const btScalar *L, btScalar *B, int n, int lskip1)
- {
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11, m11, Z21, m21, Z31, m31, Z41, m41, p1, q1, p2, p3, p4, *ex;
- const btScalar *ell;
- int lskip2, i, j;
- // int lskip3;
- /* special handling for L and B because we're solving L1 *transpose* */
- L = L + (n - 1) * (lskip1 + 1);
- B = B + n - 1;
- lskip1 = -lskip1;
- /* compute lskip values */
- lskip2 = 2 * lskip1;
- //lskip3 = 3*lskip1;
- /* compute all 4 x 1 blocks of X */
- for (i = 0; i <= n - 4; i += 4)
- {
- /* compute all 4 x 1 block of X, from rows i..i+4-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- Z21 = 0;
- Z31 = 0;
- Z41 = 0;
- ell = L - i;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 4; j >= 0; j -= 4)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-1];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-2];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-3];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- ex -= 4;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 4;
- for (; j > 0; j--)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- ex -= 1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[-1];
- Z21 = ex[-1] - Z21 - p1 * Z11;
- ex[-1] = Z21;
- p1 = ell[-2];
- p2 = ell[-2 + lskip1];
- Z31 = ex[-2] - Z31 - p1 * Z11 - p2 * Z21;
- ex[-2] = Z31;
- p1 = ell[-3];
- p2 = ell[-3 + lskip1];
- p3 = ell[-3 + lskip2];
- Z41 = ex[-3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31;
- ex[-3] = Z41;
- /* end of outer loop */
- }
- /* compute rows at end that are not a multiple of block size */
- for (; i < n; i++)
- {
- /* compute all 1 x 1 block of X, from rows i..i+1-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- ell = L - i;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 4; j >= 0; j -= 4)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-1];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-2];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- ex -= 4;
- Z11 += m11;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 4;
- for (; j > 0; j--)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- ex -= 1;
- Z11 += m11;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- }
- }
- void btVectorScale(btScalar *a, const btScalar *d, int n)
- {
- btAssert(a && d && n >= 0);
- for (int i = 0; i < n; i++)
- {
- a[i] *= d[i];
- }
- }
- void btSolveLDLT(const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
- {
- btAssert(L && d && b && n > 0 && nskip >= n);
- btSolveL1(L, b, n, nskip);
- btVectorScale(b, d, n);
- btSolveL1T(L, b, n, nskip);
- }
- //***************************************************************************
- // swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
- // A is nskip. this only references and swaps the lower triangle.
- // if `do_fast_row_swaps' is nonzero and row pointers are being used, then
- // rows will be swapped by exchanging row pointers. otherwise the data will
- // be copied.
- static void btSwapRowsAndCols(BTATYPE A, int n, int i1, int i2, int nskip,
- int do_fast_row_swaps)
- {
- btAssert(A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
- nskip >= n && i1 < i2);
- #ifdef BTROWPTRS
- btScalar *A_i1 = A[i1];
- btScalar *A_i2 = A[i2];
- for (int i = i1 + 1; i < i2; ++i)
- {
- btScalar *A_i_i1 = A[i] + i1;
- A_i1[i] = *A_i_i1;
- *A_i_i1 = A_i2[i];
- }
- A_i1[i2] = A_i1[i1];
- A_i1[i1] = A_i2[i1];
- A_i2[i1] = A_i2[i2];
- // swap rows, by swapping row pointers
- if (do_fast_row_swaps)
- {
- A[i1] = A_i2;
- A[i2] = A_i1;
- }
- else
- {
- // Only swap till i2 column to match A plain storage variant.
- for (int k = 0; k <= i2; ++k)
- {
- btScalar tmp = A_i1[k];
- A_i1[k] = A_i2[k];
- A_i2[k] = tmp;
- }
- }
- // swap columns the hard way
- for (int j = i2 + 1; j < n; ++j)
- {
- btScalar *A_j = A[j];
- btScalar tmp = A_j[i1];
- A_j[i1] = A_j[i2];
- A_j[i2] = tmp;
- }
- #else
- btScalar *A_i1 = A + i1 * nskip;
- btScalar *A_i2 = A + i2 * nskip;
- for (int k = 0; k < i1; ++k)
- {
- btScalar tmp = A_i1[k];
- A_i1[k] = A_i2[k];
- A_i2[k] = tmp;
- }
- btScalar *A_i = A_i1 + nskip;
- for (int i = i1 + 1; i < i2; A_i += nskip, ++i)
- {
- btScalar tmp = A_i2[i];
- A_i2[i] = A_i[i1];
- A_i[i1] = tmp;
- }
- {
- btScalar tmp = A_i1[i1];
- A_i1[i1] = A_i2[i2];
- A_i2[i2] = tmp;
- }
- btScalar *A_j = A_i2 + nskip;
- for (int j = i2 + 1; j < n; A_j += nskip, ++j)
- {
- btScalar tmp = A_j[i1];
- A_j[i1] = A_j[i2];
- A_j[i2] = tmp;
- }
- #endif
- }
- // swap two indexes in the n*n LCP problem. i1 must be <= i2.
- static void btSwapProblem(BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
- btScalar *hi, int *p, bool *state, int *findex,
- int n, int i1, int i2, int nskip,
- int do_fast_row_swaps)
- {
- btScalar tmpr;
- int tmpi;
- bool tmpb;
- btAssert(n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
- if (i1 == i2) return;
- btSwapRowsAndCols(A, n, i1, i2, nskip, do_fast_row_swaps);
- tmpr = x[i1];
- x[i1] = x[i2];
- x[i2] = tmpr;
- tmpr = b[i1];
- b[i1] = b[i2];
- b[i2] = tmpr;
- tmpr = w[i1];
- w[i1] = w[i2];
- w[i2] = tmpr;
- tmpr = lo[i1];
- lo[i1] = lo[i2];
- lo[i2] = tmpr;
- tmpr = hi[i1];
- hi[i1] = hi[i2];
- hi[i2] = tmpr;
- tmpi = p[i1];
- p[i1] = p[i2];
- p[i2] = tmpi;
- tmpb = state[i1];
- state[i1] = state[i2];
- state[i2] = tmpb;
- if (findex)
- {
- tmpi = findex[i1];
- findex[i1] = findex[i2];
- findex[i2] = tmpi;
- }
- }
- //***************************************************************************
- // btLCP manipulator object. this represents an n*n LCP problem.
- //
- // two index sets C and N are kept. each set holds a subset of
- // the variable indexes 0..n-1. an index can only be in one set.
- // initially both sets are empty.
- //
- // the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
- //***************************************************************************
- // fast implementation of btLCP. see the above definition of btLCP for
- // interface comments.
- //
- // `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
- // permuted as the other vectors/matrices are permuted.
- //
- // A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
- // contiguous indexes. the don't-care indexes follow N.
- //
- // an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
- // added or removed from the set C the factorization is updated.
- // thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
- // the leading dimension of the matrix L is always `nskip'.
- //
- // at the start there may be other indexes that are unbounded but are not
- // included in `nub'. btLCP will permute the matrix so that absolutely all
- // unbounded vectors are at the start. thus there may be some initial
- // permutation.
- //
- // the algorithms here assume certain patterns, particularly with respect to
- // index transfer.
- #ifdef btLCP_FAST
- struct btLCP
- {
- const int m_n;
- const int m_nskip;
- int m_nub;
- int m_nC, m_nN; // size of each index set
- BTATYPE const m_A; // A rows
- btScalar *const m_x, *const m_b, *const m_w, *const m_lo, *const m_hi; // permuted LCP problem data
- btScalar *const m_L, *const m_d; // L*D*L' factorization of set C
- btScalar *const m_Dell, *const m_ell, *const m_tmp;
- bool *const m_state;
- int *const m_findex, *const m_p, *const m_C;
- btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
- btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
- btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
- bool *_state, int *_findex, int *p, int *c, btScalar **Arows);
- int getNub() const { return m_nub; }
- void transfer_i_to_C(int i);
- void transfer_i_to_N(int i) { m_nN++; } // because we can assume C and N span 1:i-1
- void transfer_i_from_N_to_C(int i);
- void transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch);
- int numC() const { return m_nC; }
- int numN() const { return m_nN; }
- int indexC(int i) const { return i; }
- int indexN(int i) const { return i + m_nC; }
- btScalar Aii(int i) const { return BTAROW(i)[i]; }
- btScalar AiC_times_qC(int i, btScalar *q) const { return btLargeDot(BTAROW(i), q, m_nC); }
- btScalar AiN_times_qN(int i, btScalar *q) const { return btLargeDot(BTAROW(i) + m_nC, q + m_nC, m_nN); }
- void pN_equals_ANC_times_qC(btScalar *p, btScalar *q);
- void pN_plusequals_ANi(btScalar *p, int i, int sign = 1);
- void pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q);
- void pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q);
- void solve1(btScalar *a, int i, int dir = 1, int only_transfer = 0);
- void unpermute();
- };
- btLCP::btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
- btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
- btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
- bool *_state, int *_findex, int *p, int *c, btScalar **Arows) : m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
- #ifdef BTROWPTRS
- m_A(Arows),
- #else
- m_A(_Adata),
- #endif
- m_x(_x),
- m_b(_b),
- m_w(_w),
- m_lo(_lo),
- m_hi(_hi),
- m_L(l),
- m_d(_d),
- m_Dell(_Dell),
- m_ell(_ell),
- m_tmp(_tmp),
- m_state(_state),
- m_findex(_findex),
- m_p(p),
- m_C(c)
- {
- {
- btSetZero(m_x, m_n);
- }
- {
- #ifdef BTROWPTRS
- // make matrix row pointers
- btScalar *aptr = _Adata;
- BTATYPE A = m_A;
- const int n = m_n, nskip = m_nskip;
- for (int k = 0; k < n; aptr += nskip, ++k) A[k] = aptr;
- #endif
- }
- {
- int *p = m_p;
- const int n = m_n;
- for (int k = 0; k < n; ++k) p[k] = k; // initially unpermuted
- }
- /*
- // for testing, we can do some random swaps in the area i > nub
- {
- const int n = m_n;
- const int nub = m_nub;
- if (nub < n) {
- for (int k=0; k<100; k++) {
- int i1,i2;
- do {
- i1 = dRandInt(n-nub)+nub;
- i2 = dRandInt(n-nub)+nub;
- }
- while (i1 > i2);
- //printf ("--> %d %d\n",i1,i2);
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0);
- }
- }
- */
- // permute the problem so that *all* the unbounded variables are at the
- // start, i.e. look for unbounded variables not included in `nub'. we can
- // potentially push up `nub' this way and get a bigger initial factorization.
- // note that when we swap rows/cols here we must not just swap row pointers,
- // as the initial factorization relies on the data being all in one chunk.
- // variables that have findex >= 0 are *not* considered to be unbounded even
- // if lo=-inf and hi=inf - this is because these limits may change during the
- // solution process.
- {
- int *findex = m_findex;
- btScalar *lo = m_lo, *hi = m_hi;
- const int n = m_n;
- for (int k = m_nub; k < n; ++k)
- {
- if (findex && findex[k] >= 0) continue;
- if (lo[k] == -BT_INFINITY && hi[k] == BT_INFINITY)
- {
- btSwapProblem(m_A, m_x, m_b, m_w, lo, hi, m_p, m_state, findex, n, m_nub, k, m_nskip, 0);
- m_nub++;
- }
- }
- }
- // if there are unbounded variables at the start, factorize A up to that
- // point and solve for x. this puts all indexes 0..nub-1 into C.
- if (m_nub > 0)
- {
- const int nub = m_nub;
- {
- btScalar *Lrow = m_L;
- const int nskip = m_nskip;
- for (int j = 0; j < nub; Lrow += nskip, ++j) memcpy(Lrow, BTAROW(j), (j + 1) * sizeof(btScalar));
- }
- btFactorLDLT(m_L, m_d, nub, m_nskip);
- memcpy(m_x, m_b, nub * sizeof(btScalar));
- btSolveLDLT(m_L, m_d, m_x, nub, m_nskip);
- btSetZero(m_w, nub);
- {
- int *C = m_C;
- for (int k = 0; k < nub; ++k) C[k] = k;
- }
- m_nC = nub;
- }
- // permute the indexes > nub such that all findex variables are at the end
- if (m_findex)
- {
- const int nub = m_nub;
- int *findex = m_findex;
- int num_at_end = 0;
- for (int k = m_n - 1; k >= nub; k--)
- {
- if (findex[k] >= 0)
- {
- btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, findex, m_n, k, m_n - 1 - num_at_end, m_nskip, 1);
- num_at_end++;
- }
- }
- }
- // print info about indexes
- /*
- {
- const int n = m_n;
- const int nub = m_nub;
- for (int k=0; k<n; k++) {
- if (k<nub) printf ("C");
- else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c");
- else printf (".");
- }
- printf ("\n");
- }
- */
- }
- void btLCP::transfer_i_to_C(int i)
- {
- {
- if (m_nC > 0)
- {
- // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
- {
- const int nC = m_nC;
- btScalar *const Ltgt = m_L + nC * m_nskip, *ell = m_ell;
- for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j];
- }
- const int nC = m_nC;
- m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC));
- }
- else
- {
- m_d[0] = btRecip(BTAROW(i)[i]);
- }
- btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1);
- const int nC = m_nC;
- m_C[nC] = nC;
- m_nC = nC + 1; // nC value is outdated after this line
- }
- }
- void btLCP::transfer_i_from_N_to_C(int i)
- {
- {
- if (m_nC > 0)
- {
- {
- btScalar *const aptr = BTAROW(i);
- btScalar *Dell = m_Dell;
- const int *C = m_C;
- #ifdef BTNUB_OPTIMIZATIONS
- // if nub>0, initial part of aptr unpermuted
- const int nub = m_nub;
- int j = 0;
- for (; j < nub; ++j) Dell[j] = aptr[j];
- const int nC = m_nC;
- for (; j < nC; ++j) Dell[j] = aptr[C[j]];
- #else
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
- #endif
- }
- btSolveL1(m_L, m_Dell, m_nC, m_nskip);
- {
- const int nC = m_nC;
- btScalar *const Ltgt = m_L + nC * m_nskip;
- btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
- for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
- }
- const int nC = m_nC;
- m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC));
- }
- else
- {
- m_d[0] = btRecip(BTAROW(i)[i]);
- }
- btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1);
- const int nC = m_nC;
- m_C[nC] = nC;
- m_nN--;
- m_nC = nC + 1; // nC value is outdated after this line
- }
- // @@@ TO DO LATER
- // if we just finish here then we'll go back and re-solve for
- // delta_x. but actually we can be more efficient and incrementally
- // update delta_x here. but if we do this, we wont have ell and Dell
- // to use in updating the factorization later.
- }
- void btRemoveRowCol(btScalar *A, int n, int nskip, int r)
- {
- btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
- if (r >= n - 1) return;
- if (r > 0)
- {
- {
- const size_t move_size = (n - r - 1) * sizeof(btScalar);
- btScalar *Adst = A + r;
- for (int i = 0; i < r; Adst += nskip, ++i)
- {
- btScalar *Asrc = Adst + 1;
- memmove(Adst, Asrc, move_size);
- }
- }
- {
- const size_t cpy_size = r * sizeof(btScalar);
- btScalar *Adst = A + r * nskip;
- for (int i = r; i < (n - 1); ++i)
- {
- btScalar *Asrc = Adst + nskip;
- memcpy(Adst, Asrc, cpy_size);
- Adst = Asrc;
- }
- }
- }
- {
- const size_t cpy_size = (n - r - 1) * sizeof(btScalar);
- btScalar *Adst = A + r * (nskip + 1);
- for (int i = r; i < (n - 1); ++i)
- {
- btScalar *Asrc = Adst + (nskip + 1);
- memcpy(Adst, Asrc, cpy_size);
- Adst = Asrc - 1;
- }
- }
- }
- void btLDLTAddTL(btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar> &scratch)
- {
- btAssert(L && d && a && n > 0 && nskip >= n);
- if (n < 2) return;
- scratch.resize(2 * nskip);
- btScalar *W1 = &scratch[0];
- btScalar *W2 = W1 + nskip;
- W1[0] = btScalar(0.0);
- W2[0] = btScalar(0.0);
- for (int j = 1; j < n; ++j)
- {
- W1[j] = W2[j] = (btScalar)(a[j] * SIMDSQRT12);
- }
- btScalar W11 = (btScalar)((btScalar(0.5) * a[0] + 1) * SIMDSQRT12);
- btScalar W21 = (btScalar)((btScalar(0.5) * a[0] - 1) * SIMDSQRT12);
- btScalar alpha1 = btScalar(1.0);
- btScalar alpha2 = btScalar(1.0);
- {
- btScalar dee = d[0];
- btScalar alphanew = alpha1 + (W11 * W11) * dee;
- btAssert(alphanew != btScalar(0.0));
- dee /= alphanew;
- btScalar gamma1 = W11 * dee;
- dee *= alpha1;
- alpha1 = alphanew;
- alphanew = alpha2 - (W21 * W21) * dee;
- dee /= alphanew;
- //btScalar gamma2 = W21 * dee;
- alpha2 = alphanew;
- btScalar k1 = btScalar(1.0) - W21 * gamma1;
- btScalar k2 = W21 * gamma1 * W11 - W21;
- btScalar *ll = L + nskip;
- for (int p = 1; p < n; ll += nskip, ++p)
- {
- btScalar Wp = W1[p];
- btScalar ell = *ll;
- W1[p] = Wp - W11 * ell;
- W2[p] = k1 * Wp + k2 * ell;
- }
- }
- btScalar *ll = L + (nskip + 1);
- for (int j = 1; j < n; ll += nskip + 1, ++j)
- {
- btScalar k1 = W1[j];
- btScalar k2 = W2[j];
- btScalar dee = d[j];
- btScalar alphanew = alpha1 + (k1 * k1) * dee;
- btAssert(alphanew != btScalar(0.0));
- dee /= alphanew;
- btScalar gamma1 = k1 * dee;
- dee *= alpha1;
- alpha1 = alphanew;
- alphanew = alpha2 - (k2 * k2) * dee;
- dee /= alphanew;
- btScalar gamma2 = k2 * dee;
- dee *= alpha2;
- d[j] = dee;
- alpha2 = alphanew;
- btScalar *l = ll + nskip;
- for (int p = j + 1; p < n; l += nskip, ++p)
- {
- btScalar ell = *l;
- btScalar Wp = W1[p] - k1 * ell;
- ell += gamma1 * Wp;
- W1[p] = Wp;
- Wp = W2[p] - k2 * ell;
- ell -= gamma2 * Wp;
- W2[p] = Wp;
- *l = ell;
- }
- }
- }
- #define _BTGETA(i, j) (A[i][j])
- //#define _GETA(i,j) (A[(i)*nskip+(j)])
- #define BTGETA(i, j) ((i > j) ? _BTGETA(i, j) : _BTGETA(j, i))
- inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
- {
- return nskip * 2 * sizeof(btScalar);
- }
- void btLDLTRemove(btScalar **A, const int *p, btScalar *L, btScalar *d,
- int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar> &scratch)
- {
- btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
- n1 >= n2 && nskip >= n1);
- #ifdef BT_DEBUG
- for (int i = 0; i < n2; ++i)
- btAssert(p[i] >= 0 && p[i] < n1);
- #endif
- if (r == n2 - 1)
- {
- return; // deleting last row/col is easy
- }
- else
- {
- size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
- btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
- scratch.resize(nskip * 2 + n2);
- btScalar *tmp = &scratch[0];
- if (r == 0)
- {
- btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
- const int p_0 = p[0];
- for (int i = 0; i < n2; ++i)
- {
- a[i] = -BTGETA(p[i], p_0);
- }
- a[0] += btScalar(1.0);
- btLDLTAddTL(L, d, a, n2, nskip, scratch);
- }
- else
- {
- btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
- {
- btScalar *Lcurr = L + r * nskip;
- for (int i = 0; i < r; ++Lcurr, ++i)
- {
- btAssert(d[i] != btScalar(0.0));
- t[i] = *Lcurr / d[i];
- }
- }
- btScalar *a = t + r;
- {
- btScalar *Lcurr = L + r * nskip;
- const int *pp_r = p + r, p_r = *pp_r;
- const int n2_minus_r = n2 - r;
- for (int i = 0; i < n2_minus_r; Lcurr += nskip, ++i)
- {
- a[i] = btLargeDot(Lcurr, t, r) - BTGETA(pp_r[i], p_r);
- }
- }
- a[0] += btScalar(1.0);
- btLDLTAddTL(L + r * nskip + r, d + r, a, n2 - r, nskip, scratch);
- }
- }
- // snip out row/column r from L and d
- btRemoveRowCol(L, n2, nskip, r);
- if (r < (n2 - 1)) memmove(d + r, d + r + 1, (n2 - r - 1) * sizeof(btScalar));
- }
- void btLCP::transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch)
- {
- {
- int *C = m_C;
- // remove a row/column from the factorization, and adjust the
- // indexes (black magic!)
- int last_idx = -1;
- const int nC = m_nC;
- int j = 0;
- for (; j < nC; ++j)
- {
- if (C[j] == nC - 1)
- {
- last_idx = j;
- }
- if (C[j] == i)
- {
- btLDLTRemove(m_A, C, m_L, m_d, m_n, nC, j, m_nskip, scratch);
- int k;
- if (last_idx == -1)
- {
- for (k = j + 1; k < nC; ++k)
- {
- if (C[k] == nC - 1)
- {
- break;
- }
- }
- btAssert(k < nC);
- }
- else
- {
- k = last_idx;
- }
- C[k] = C[j];
- if (j < (nC - 1)) memmove(C + j, C + j + 1, (nC - j - 1) * sizeof(int));
- break;
- }
- }
- btAssert(j < nC);
- btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, i, nC - 1, m_nskip, 1);
- m_nN++;
- m_nC = nC - 1; // nC value is outdated after this line
- }
- }
- void btLCP::pN_equals_ANC_times_qC(btScalar *p, btScalar *q)
- {
- // we could try to make this matrix-vector multiplication faster using
- // outer product matrix tricks, e.g. with the dMultidotX() functions.
- // but i tried it and it actually made things slower on random 100x100
- // problems because of the overhead involved. so we'll stick with the
- // simple method for now.
- const int nC = m_nC;
- btScalar *ptgt = p + nC;
- const int nN = m_nN;
- for (int i = 0; i < nN; ++i)
- {
- ptgt[i] = btLargeDot(BTAROW(i + nC), q, nC);
- }
- }
- void btLCP::pN_plusequals_ANi(btScalar *p, int i, int sign)
- {
- const int nC = m_nC;
- btScalar *aptr = BTAROW(i) + nC;
- btScalar *ptgt = p + nC;
- if (sign > 0)
- {
- const int nN = m_nN;
- for (int j = 0; j < nN; ++j) ptgt[j] += aptr[j];
- }
- else
- {
- const int nN = m_nN;
- for (int j = 0; j < nN; ++j) ptgt[j] -= aptr[j];
- }
- }
- void btLCP::pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q)
- {
- const int nC = m_nC;
- for (int i = 0; i < nC; ++i)
- {
- p[i] += s * q[i];
- }
- }
- void btLCP::pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q)
- {
- const int nC = m_nC;
- btScalar *ptgt = p + nC, *qsrc = q + nC;
- const int nN = m_nN;
- for (int i = 0; i < nN; ++i)
- {
- ptgt[i] += s * qsrc[i];
- }
- }
- void btLCP::solve1(btScalar *a, int i, int dir, int only_transfer)
- {
- // the `Dell' and `ell' that are computed here are saved. if index i is
- // later added to the factorization then they can be reused.
- //
- // @@@ question: do we need to solve for entire delta_x??? yes, but
- // only if an x goes below 0 during the step.
- if (m_nC > 0)
- {
- {
- btScalar *Dell = m_Dell;
- int *C = m_C;
- btScalar *aptr = BTAROW(i);
- #ifdef BTNUB_OPTIMIZATIONS
- // if nub>0, initial part of aptr[] is guaranteed unpermuted
- const int nub = m_nub;
- int j = 0;
- for (; j < nub; ++j) Dell[j] = aptr[j];
- const int nC = m_nC;
- for (; j < nC; ++j) Dell[j] = aptr[C[j]];
- #else
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
- #endif
- }
- btSolveL1(m_L, m_Dell, m_nC, m_nskip);
- {
- btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) ell[j] = Dell[j] * d[j];
- }
- if (!only_transfer)
- {
- btScalar *tmp = m_tmp, *ell = m_ell;
- {
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) tmp[j] = ell[j];
- }
- btSolveL1T(m_L, tmp, m_nC, m_nskip);
- if (dir > 0)
- {
- int *C = m_C;
- btScalar *tmp = m_tmp;
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) a[C[j]] = -tmp[j];
- }
- else
- {
- int *C = m_C;
- btScalar *tmp = m_tmp;
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) a[C[j]] = tmp[j];
- }
- }
- }
- }
- void btLCP::unpermute()
- {
- // now we have to un-permute x and w
- {
- memcpy(m_tmp, m_x, m_n * sizeof(btScalar));
- btScalar *x = m_x, *tmp = m_tmp;
- const int *p = m_p;
- const int n = m_n;
- for (int j = 0; j < n; ++j) x[p[j]] = tmp[j];
- }
- {
- memcpy(m_tmp, m_w, m_n * sizeof(btScalar));
- btScalar *w = m_w, *tmp = m_tmp;
- const int *p = m_p;
- const int n = m_n;
- for (int j = 0; j < n; ++j) w[p[j]] = tmp[j];
- }
- }
- #endif // btLCP_FAST
- //***************************************************************************
- // an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
- bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b,
- btScalar *outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratchMem)
- {
- s_error = false;
- // printf("btSolveDantzigLCP n=%d\n",n);
- btAssert(n > 0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
- btAssert(outer_w);
- #ifdef BT_DEBUG
- {
- // check restrictions on lo and hi
- for (int k = 0; k < n; ++k)
- btAssert(lo[k] <= 0 && hi[k] >= 0);
- }
- #endif
- // if all the variables are unbounded then we can just factor, solve,
- // and return
- if (nub >= n)
- {
- int nskip = (n);
- btFactorLDLT(A, outer_w, n, nskip);
- btSolveLDLT(A, outer_w, b, n, nskip);
- memcpy(x, b, n * sizeof(btScalar));
- return !s_error;
- }
- const int nskip = (n);
- scratchMem.L.resize(n * nskip);
- scratchMem.d.resize(n);
- btScalar *w = outer_w;
- scratchMem.delta_w.resize(n);
- scratchMem.delta_x.resize(n);
- scratchMem.Dell.resize(n);
- scratchMem.ell.resize(n);
- scratchMem.Arows.resize(n);
- scratchMem.p.resize(n);
- scratchMem.C.resize(n);
- // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
- scratchMem.state.resize(n);
- // create LCP object. note that tmp is set to delta_w to save space, this
- // optimization relies on knowledge of how tmp is used, so be careful!
- btLCP lcp(n, nskip, nub, A, x, b, w, lo, hi, &scratchMem.L[0], &scratchMem.d[0], &scratchMem.Dell[0], &scratchMem.ell[0], &scratchMem.delta_w[0], &scratchMem.state[0], findex, &scratchMem.p[0], &scratchMem.C[0], &scratchMem.Arows[0]);
- int adj_nub = lcp.getNub();
- // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
- // LCP conditions then i is added to the appropriate index set. otherwise
- // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
- // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
- // while driving x(i) we maintain the LCP conditions on the other variables
- // 0..i-1. we do this by watching out for other x(i),w(i) values going
- // outside the valid region, and then switching them between index sets
- // when that happens.
- bool hit_first_friction_index = false;
- for (int i = adj_nub; i < n; ++i)
- {
- s_error = false;
- // the index i is the driving index and indexes i+1..n-1 are "dont care",
- // i.e. when we make changes to the system those x's will be zero and we
- // don't care what happens to those w's. in other words, we only consider
- // an (i+1)*(i+1) sub-problem of A*x=b+w.
- // if we've hit the first friction index, we have to compute the lo and
- // hi values based on the values of x already computed. we have been
- // permuting the indexes, so the values stored in the findex vector are
- // no longer valid. thus we have to temporarily unpermute the x vector.
- // for the purposes of this computation, 0*infinity = 0 ... so if the
- // contact constraint's normal force is 0, there should be no tangential
- // force applied.
- if (!hit_first_friction_index && findex && findex[i] >= 0)
- {
- // un-permute x into delta_w, which is not being used at the moment
- for (int j = 0; j < n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
- // set lo and hi values
- for (int k = i; k < n; ++k)
- {
- btScalar wfk = scratchMem.delta_w[findex[k]];
- if (wfk == 0)
- {
- hi[k] = 0;
- lo[k] = 0;
- }
- else
- {
- hi[k] = btFabs(hi[k] * wfk);
- lo[k] = -hi[k];
- }
- }
- hit_first_friction_index = true;
- }
- // thus far we have not even been computing the w values for indexes
- // greater than i, so compute w[i] now.
- w[i] = lcp.AiC_times_qC(i, x) + lcp.AiN_times_qN(i, x) - b[i];
- // if lo=hi=0 (which can happen for tangential friction when normals are
- // 0) then the index will be assigned to set N with some state. however,
- // set C's line has zero size, so the index will always remain in set N.
- // with the "normal" switching logic, if w changed sign then the index
- // would have to switch to set C and then back to set N with an inverted
- // state. this is pointless, and also computationally expensive. to
- // prevent this from happening, we use the rule that indexes with lo=hi=0
- // will never be checked for set changes. this means that the state for
- // these indexes may be incorrect, but that doesn't matter.
- // see if x(i),w(i) is in a valid region
- if (lo[i] == 0 && w[i] >= 0)
- {
- lcp.transfer_i_to_N(i);
- scratchMem.state[i] = false;
- }
- else if (hi[i] == 0 && w[i] <= 0)
- {
- lcp.transfer_i_to_N(i);
- scratchMem.state[i] = true;
- }
- else if (w[i] == 0)
- {
- // this is a degenerate case. by the time we get to this test we know
- // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
- // and similarly that hi > 0. this means that the line segment
- // corresponding to set C is at least finite in extent, and we are on it.
- // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
- lcp.solve1(&scratchMem.delta_x[0], i, 0, 1);
- lcp.transfer_i_to_C(i);
- }
- else
- {
- // we must push x(i) and w(i)
- for (;;)
- {
- int dir;
- btScalar dirf;
- // find direction to push on x(i)
- if (w[i] <= 0)
- {
- dir = 1;
- dirf = btScalar(1.0);
- }
- else
- {
- dir = -1;
- dirf = btScalar(-1.0);
- }
- // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
- lcp.solve1(&scratchMem.delta_x[0], i, dir);
- // note that delta_x[i] = dirf, but we wont bother to set it
- // compute: delta_w = A*delta_x ... note we only care about
- // delta_w(N) and delta_w(i), the rest is ignored
- lcp.pN_equals_ANC_times_qC(&scratchMem.delta_w[0], &scratchMem.delta_x[0]);
- lcp.pN_plusequals_ANi(&scratchMem.delta_w[0], i, dir);
- scratchMem.delta_w[i] = lcp.AiC_times_qC(i, &scratchMem.delta_x[0]) + lcp.Aii(i) * dirf;
- // find largest step we can take (size=s), either to drive x(i),w(i)
- // to the valid LCP region or to drive an already-valid variable
- // outside the valid region.
- int cmd = 1; // index switching command
- int si = 0; // si = index to switch if cmd>3
- btScalar s = -w[i] / scratchMem.delta_w[i];
- if (dir > 0)
- {
- if (hi[i] < BT_INFINITY)
- {
- btScalar s2 = (hi[i] - x[i]) * dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
- if (s2 < s)
- {
- s = s2;
- cmd = 3;
- }
- }
- }
- else
- {
- if (lo[i] > -BT_INFINITY)
- {
- btScalar s2 = (lo[i] - x[i]) * dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
- if (s2 < s)
- {
- s = s2;
- cmd = 2;
- }
- }
- }
- {
- const int numN = lcp.numN();
- for (int k = 0; k < numN; ++k)
- {
- const int indexN_k = lcp.indexN(k);
- if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0)
- {
- // don't bother checking if lo=hi=0
- if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
- btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
- if (s2 < s)
- {
- s = s2;
- cmd = 4;
- si = indexN_k;
- }
- }
- }
- }
- {
- const int numC = lcp.numC();
- for (int k = adj_nub; k < numC; ++k)
- {
- const int indexC_k = lcp.indexC(k);
- if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY)
- {
- btScalar s2 = (lo[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k];
- if (s2 < s)
- {
- s = s2;
- cmd = 5;
- si = indexC_k;
- }
- }
- if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY)
- {
- btScalar s2 = (hi[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k];
- if (s2 < s)
- {
- s = s2;
- cmd = 6;
- si = indexC_k;
- }
- }
- }
- }
- //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
- // "C->NL","C->NH"};
- //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
- // if s <= 0 then we've got a problem. if we just keep going then
- // we're going to get stuck in an infinite loop. instead, just cross
- // our fingers and exit with the current solution.
- if (s <= btScalar(0.0))
- {
- // printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
- if (i < n)
- {
- btSetZero(x + i, n - i);
- btSetZero(w + i, n - i);
- }
- s_error = true;
- break;
- }
- // apply x = x + s * delta_x
- lcp.pC_plusequals_s_times_qC(x, s, &scratchMem.delta_x[0]);
- x[i] += s * dirf;
- // apply w = w + s * delta_w
- lcp.pN_plusequals_s_times_qN(w, s, &scratchMem.delta_w[0]);
- w[i] += s * scratchMem.delta_w[i];
- // void *tmpbuf;
- // switch indexes between sets if necessary
- switch (cmd)
- {
- case 1: // done
- w[i] = 0;
- lcp.transfer_i_to_C(i);
- break;
- case 2: // done
- x[i] = lo[i];
- scratchMem.state[i] = false;
- lcp.transfer_i_to_N(i);
- break;
- case 3: // done
- x[i] = hi[i];
- scratchMem.state[i] = true;
- lcp.transfer_i_to_N(i);
- break;
- case 4: // keep going
- w[si] = 0;
- lcp.transfer_i_from_N_to_C(si);
- break;
- case 5: // keep going
- x[si] = lo[si];
- scratchMem.state[si] = false;
- lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch);
- break;
- case 6: // keep going
- x[si] = hi[si];
- scratchMem.state[si] = true;
- lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch);
- break;
- }
- if (cmd <= 3) break;
- } // for (;;)
- } // else
- if (s_error)
- {
- break;
- }
- } // for (int i=adj_nub; i<n; ++i)
- lcp.unpermute();
- return !s_error;
- }
|