12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184 |
- /*
- Bullet Continuous Collision Detection and Physics Library
- Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- #include "btGjkPairDetector.h"
- #include "BulletCollision/CollisionShapes/btConvexShape.h"
- #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
- #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
- #if defined(DEBUG) || defined(_DEBUG)
- //#define TEST_NON_VIRTUAL 1
- #include <stdio.h> //for debug printf
- #ifdef __SPU__
- #include <spu_printf.h>
- #define printf spu_printf
- #endif //__SPU__
- #endif
- //must be above the machine epsilon
- #ifdef BT_USE_DOUBLE_PRECISION
- #define REL_ERROR2 btScalar(1.0e-12)
- btScalar gGjkEpaPenetrationTolerance = 1.0e-12;
- #else
- #define REL_ERROR2 btScalar(1.0e-6)
- btScalar gGjkEpaPenetrationTolerance = 0.001;
- #endif
- btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)
- : m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
- m_penetrationDepthSolver(penetrationDepthSolver),
- m_simplexSolver(simplexSolver),
- m_minkowskiA(objectA),
- m_minkowskiB(objectB),
- m_shapeTypeA(objectA->getShapeType()),
- m_shapeTypeB(objectB->getShapeType()),
- m_marginA(objectA->getMargin()),
- m_marginB(objectB->getMargin()),
- m_ignoreMargin(false),
- m_lastUsedMethod(-1),
- m_catchDegeneracies(1),
- m_fixContactNormalDirection(1)
- {
- }
- btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, int shapeTypeA, int shapeTypeB, btScalar marginA, btScalar marginB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)
- : m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
- m_penetrationDepthSolver(penetrationDepthSolver),
- m_simplexSolver(simplexSolver),
- m_minkowskiA(objectA),
- m_minkowskiB(objectB),
- m_shapeTypeA(shapeTypeA),
- m_shapeTypeB(shapeTypeB),
- m_marginA(marginA),
- m_marginB(marginB),
- m_ignoreMargin(false),
- m_lastUsedMethod(-1),
- m_catchDegeneracies(1),
- m_fixContactNormalDirection(1)
- {
- }
- void btGjkPairDetector::getClosestPoints(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw, bool swapResults)
- {
- (void)swapResults;
- getClosestPointsNonVirtual(input, output, debugDraw);
- }
- static void btComputeSupport(const btConvexShape *convexA, const btTransform &localTransA, const btConvexShape *convexB, const btTransform &localTransB, const btVector3 &dir, bool check2d, btVector3 &supAworld, btVector3 &supBworld, btVector3 &aMinb)
- {
- btVector3 separatingAxisInA = (dir)*localTransA.getBasis();
- btVector3 separatingAxisInB = (-dir) * localTransB.getBasis();
- btVector3 pInANoMargin = convexA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
- btVector3 qInBNoMargin = convexB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
- btVector3 pInA = pInANoMargin;
- btVector3 qInB = qInBNoMargin;
- supAworld = localTransA(pInA);
- supBworld = localTransB(qInB);
- if (check2d)
- {
- supAworld[2] = 0.f;
- supBworld[2] = 0.f;
- }
- aMinb = supAworld - supBworld;
- }
- struct btSupportVector
- {
- btVector3 v; //!< Support point in minkowski sum
- btVector3 v1; //!< Support point in obj1
- btVector3 v2; //!< Support point in obj2
- };
- struct btSimplex
- {
- btSupportVector ps[4];
- int last; //!< index of last added point
- };
- static btVector3 ccd_vec3_origin(0, 0, 0);
- inline void btSimplexInit(btSimplex *s)
- {
- s->last = -1;
- }
- inline int btSimplexSize(const btSimplex *s)
- {
- return s->last + 1;
- }
- inline const btSupportVector *btSimplexPoint(const btSimplex *s, int idx)
- {
- // here is no check on boundaries
- return &s->ps[idx];
- }
- inline void btSupportCopy(btSupportVector *d, const btSupportVector *s)
- {
- *d = *s;
- }
- inline void btVec3Copy(btVector3 *v, const btVector3 *w)
- {
- *v = *w;
- }
- inline void ccdVec3Add(btVector3 *v, const btVector3 *w)
- {
- v->m_floats[0] += w->m_floats[0];
- v->m_floats[1] += w->m_floats[1];
- v->m_floats[2] += w->m_floats[2];
- }
- inline void ccdVec3Sub(btVector3 *v, const btVector3 *w)
- {
- *v -= *w;
- }
- inline void btVec3Sub2(btVector3 *d, const btVector3 *v, const btVector3 *w)
- {
- *d = (*v) - (*w);
- }
- inline btScalar btVec3Dot(const btVector3 *a, const btVector3 *b)
- {
- btScalar dot;
- dot = a->dot(*b);
- return dot;
- }
- inline btScalar ccdVec3Dist2(const btVector3 *a, const btVector3 *b)
- {
- btVector3 ab;
- btVec3Sub2(&ab, a, b);
- return btVec3Dot(&ab, &ab);
- }
- inline void btVec3Scale(btVector3 *d, btScalar k)
- {
- d->m_floats[0] *= k;
- d->m_floats[1] *= k;
- d->m_floats[2] *= k;
- }
- inline void btVec3Cross(btVector3 *d, const btVector3 *a, const btVector3 *b)
- {
- d->m_floats[0] = (a->m_floats[1] * b->m_floats[2]) - (a->m_floats[2] * b->m_floats[1]);
- d->m_floats[1] = (a->m_floats[2] * b->m_floats[0]) - (a->m_floats[0] * b->m_floats[2]);
- d->m_floats[2] = (a->m_floats[0] * b->m_floats[1]) - (a->m_floats[1] * b->m_floats[0]);
- }
- inline void btTripleCross(const btVector3 *a, const btVector3 *b,
- const btVector3 *c, btVector3 *d)
- {
- btVector3 e;
- btVec3Cross(&e, a, b);
- btVec3Cross(d, &e, c);
- }
- inline int ccdEq(btScalar _a, btScalar _b)
- {
- btScalar ab;
- btScalar a, b;
- ab = btFabs(_a - _b);
- if (btFabs(ab) < SIMD_EPSILON)
- return 1;
- a = btFabs(_a);
- b = btFabs(_b);
- if (b > a)
- {
- return ab < SIMD_EPSILON * b;
- }
- else
- {
- return ab < SIMD_EPSILON * a;
- }
- }
- btScalar ccdVec3X(const btVector3 *v)
- {
- return v->x();
- }
- btScalar ccdVec3Y(const btVector3 *v)
- {
- return v->y();
- }
- btScalar ccdVec3Z(const btVector3 *v)
- {
- return v->z();
- }
- inline int btVec3Eq(const btVector3 *a, const btVector3 *b)
- {
- return ccdEq(ccdVec3X(a), ccdVec3X(b)) && ccdEq(ccdVec3Y(a), ccdVec3Y(b)) && ccdEq(ccdVec3Z(a), ccdVec3Z(b));
- }
- inline void btSimplexAdd(btSimplex *s, const btSupportVector *v)
- {
- // here is no check on boundaries in sake of speed
- ++s->last;
- btSupportCopy(s->ps + s->last, v);
- }
- inline void btSimplexSet(btSimplex *s, size_t pos, const btSupportVector *a)
- {
- btSupportCopy(s->ps + pos, a);
- }
- inline void btSimplexSetSize(btSimplex *s, int size)
- {
- s->last = size - 1;
- }
- inline const btSupportVector *ccdSimplexLast(const btSimplex *s)
- {
- return btSimplexPoint(s, s->last);
- }
- inline int ccdSign(btScalar val)
- {
- if (btFuzzyZero(val))
- {
- return 0;
- }
- else if (val < btScalar(0))
- {
- return -1;
- }
- return 1;
- }
- inline btScalar btVec3PointSegmentDist2(const btVector3 *P,
- const btVector3 *x0,
- const btVector3 *b,
- btVector3 *witness)
- {
- // The computation comes from solving equation of segment:
- // S(t) = x0 + t.d
- // where - x0 is initial point of segment
- // - d is direction of segment from x0 (|d| > 0)
- // - t belongs to <0, 1> interval
- //
- // Than, distance from a segment to some point P can be expressed:
- // D(t) = |x0 + t.d - P|^2
- // which is distance from any point on segment. Minimization
- // of this function brings distance from P to segment.
- // Minimization of D(t) leads to simple quadratic equation that's
- // solving is straightforward.
- //
- // Bonus of this method is witness point for free.
- btScalar dist, t;
- btVector3 d, a;
- // direction of segment
- btVec3Sub2(&d, b, x0);
- // precompute vector from P to x0
- btVec3Sub2(&a, x0, P);
- t = -btScalar(1.) * btVec3Dot(&a, &d);
- t /= btVec3Dot(&d, &d);
- if (t < btScalar(0) || btFuzzyZero(t))
- {
- dist = ccdVec3Dist2(x0, P);
- if (witness)
- btVec3Copy(witness, x0);
- }
- else if (t > btScalar(1) || ccdEq(t, btScalar(1)))
- {
- dist = ccdVec3Dist2(b, P);
- if (witness)
- btVec3Copy(witness, b);
- }
- else
- {
- if (witness)
- {
- btVec3Copy(witness, &d);
- btVec3Scale(witness, t);
- ccdVec3Add(witness, x0);
- dist = ccdVec3Dist2(witness, P);
- }
- else
- {
- // recycling variables
- btVec3Scale(&d, t);
- ccdVec3Add(&d, &a);
- dist = btVec3Dot(&d, &d);
- }
- }
- return dist;
- }
- btScalar btVec3PointTriDist2(const btVector3 *P,
- const btVector3 *x0, const btVector3 *B,
- const btVector3 *C,
- btVector3 *witness)
- {
- // Computation comes from analytic expression for triangle (x0, B, C)
- // T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and
- // Then equation for distance is:
- // D(s, t) = | T(s, t) - P |^2
- // This leads to minimization of quadratic function of two variables.
- // The solution from is taken only if s is between 0 and 1, t is
- // between 0 and 1 and t + s < 1, otherwise distance from segment is
- // computed.
- btVector3 d1, d2, a;
- double u, v, w, p, q, r;
- double s, t, dist, dist2;
- btVector3 witness2;
- btVec3Sub2(&d1, B, x0);
- btVec3Sub2(&d2, C, x0);
- btVec3Sub2(&a, x0, P);
- u = btVec3Dot(&a, &a);
- v = btVec3Dot(&d1, &d1);
- w = btVec3Dot(&d2, &d2);
- p = btVec3Dot(&a, &d1);
- q = btVec3Dot(&a, &d2);
- r = btVec3Dot(&d1, &d2);
- s = (q * r - w * p) / (w * v - r * r);
- t = (-s * r - q) / w;
- if ((btFuzzyZero(s) || s > btScalar(0)) && (ccdEq(s, btScalar(1)) || s < btScalar(1)) && (btFuzzyZero(t) || t > btScalar(0)) && (ccdEq(t, btScalar(1)) || t < btScalar(1)) && (ccdEq(t + s, btScalar(1)) || t + s < btScalar(1)))
- {
- if (witness)
- {
- btVec3Scale(&d1, s);
- btVec3Scale(&d2, t);
- btVec3Copy(witness, x0);
- ccdVec3Add(witness, &d1);
- ccdVec3Add(witness, &d2);
- dist = ccdVec3Dist2(witness, P);
- }
- else
- {
- dist = s * s * v;
- dist += t * t * w;
- dist += btScalar(2.) * s * t * r;
- dist += btScalar(2.) * s * p;
- dist += btScalar(2.) * t * q;
- dist += u;
- }
- }
- else
- {
- dist = btVec3PointSegmentDist2(P, x0, B, witness);
- dist2 = btVec3PointSegmentDist2(P, x0, C, &witness2);
- if (dist2 < dist)
- {
- dist = dist2;
- if (witness)
- btVec3Copy(witness, &witness2);
- }
- dist2 = btVec3PointSegmentDist2(P, B, C, &witness2);
- if (dist2 < dist)
- {
- dist = dist2;
- if (witness)
- btVec3Copy(witness, &witness2);
- }
- }
- return dist;
- }
- static int btDoSimplex2(btSimplex *simplex, btVector3 *dir)
- {
- const btSupportVector *A, *B;
- btVector3 AB, AO, tmp;
- btScalar dot;
- // get last added as A
- A = ccdSimplexLast(simplex);
- // get the other point
- B = btSimplexPoint(simplex, 0);
- // compute AB oriented segment
- btVec3Sub2(&AB, &B->v, &A->v);
- // compute AO vector
- btVec3Copy(&AO, &A->v);
- btVec3Scale(&AO, -btScalar(1));
- // dot product AB . AO
- dot = btVec3Dot(&AB, &AO);
- // check if origin doesn't lie on AB segment
- btVec3Cross(&tmp, &AB, &AO);
- if (btFuzzyZero(btVec3Dot(&tmp, &tmp)) && dot > btScalar(0))
- {
- return 1;
- }
- // check if origin is in area where AB segment is
- if (btFuzzyZero(dot) || dot < btScalar(0))
- {
- // origin is in outside are of A
- btSimplexSet(simplex, 0, A);
- btSimplexSetSize(simplex, 1);
- btVec3Copy(dir, &AO);
- }
- else
- {
- // origin is in area where AB segment is
- // keep simplex untouched and set direction to
- // AB x AO x AB
- btTripleCross(&AB, &AO, &AB, dir);
- }
- return 0;
- }
- static int btDoSimplex3(btSimplex *simplex, btVector3 *dir)
- {
- const btSupportVector *A, *B, *C;
- btVector3 AO, AB, AC, ABC, tmp;
- btScalar dot, dist;
- // get last added as A
- A = ccdSimplexLast(simplex);
- // get the other points
- B = btSimplexPoint(simplex, 1);
- C = btSimplexPoint(simplex, 0);
- // check touching contact
- dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &C->v, 0);
- if (btFuzzyZero(dist))
- {
- return 1;
- }
- // check if triangle is really triangle (has area > 0)
- // if not simplex can't be expanded and thus no itersection is found
- if (btVec3Eq(&A->v, &B->v) || btVec3Eq(&A->v, &C->v))
- {
- return -1;
- }
- // compute AO vector
- btVec3Copy(&AO, &A->v);
- btVec3Scale(&AO, -btScalar(1));
- // compute AB and AC segments and ABC vector (perpendircular to triangle)
- btVec3Sub2(&AB, &B->v, &A->v);
- btVec3Sub2(&AC, &C->v, &A->v);
- btVec3Cross(&ABC, &AB, &AC);
- btVec3Cross(&tmp, &ABC, &AC);
- dot = btVec3Dot(&tmp, &AO);
- if (btFuzzyZero(dot) || dot > btScalar(0))
- {
- dot = btVec3Dot(&AC, &AO);
- if (btFuzzyZero(dot) || dot > btScalar(0))
- {
- // C is already in place
- btSimplexSet(simplex, 1, A);
- btSimplexSetSize(simplex, 2);
- btTripleCross(&AC, &AO, &AC, dir);
- }
- else
- {
- dot = btVec3Dot(&AB, &AO);
- if (btFuzzyZero(dot) || dot > btScalar(0))
- {
- btSimplexSet(simplex, 0, B);
- btSimplexSet(simplex, 1, A);
- btSimplexSetSize(simplex, 2);
- btTripleCross(&AB, &AO, &AB, dir);
- }
- else
- {
- btSimplexSet(simplex, 0, A);
- btSimplexSetSize(simplex, 1);
- btVec3Copy(dir, &AO);
- }
- }
- }
- else
- {
- btVec3Cross(&tmp, &AB, &ABC);
- dot = btVec3Dot(&tmp, &AO);
- if (btFuzzyZero(dot) || dot > btScalar(0))
- {
- dot = btVec3Dot(&AB, &AO);
- if (btFuzzyZero(dot) || dot > btScalar(0))
- {
- btSimplexSet(simplex, 0, B);
- btSimplexSet(simplex, 1, A);
- btSimplexSetSize(simplex, 2);
- btTripleCross(&AB, &AO, &AB, dir);
- }
- else
- {
- btSimplexSet(simplex, 0, A);
- btSimplexSetSize(simplex, 1);
- btVec3Copy(dir, &AO);
- }
- }
- else
- {
- dot = btVec3Dot(&ABC, &AO);
- if (btFuzzyZero(dot) || dot > btScalar(0))
- {
- btVec3Copy(dir, &ABC);
- }
- else
- {
- btSupportVector tmp;
- btSupportCopy(&tmp, C);
- btSimplexSet(simplex, 0, B);
- btSimplexSet(simplex, 1, &tmp);
- btVec3Copy(dir, &ABC);
- btVec3Scale(dir, -btScalar(1));
- }
- }
- }
- return 0;
- }
- static int btDoSimplex4(btSimplex *simplex, btVector3 *dir)
- {
- const btSupportVector *A, *B, *C, *D;
- btVector3 AO, AB, AC, AD, ABC, ACD, ADB;
- int B_on_ACD, C_on_ADB, D_on_ABC;
- int AB_O, AC_O, AD_O;
- btScalar dist;
- // get last added as A
- A = ccdSimplexLast(simplex);
- // get the other points
- B = btSimplexPoint(simplex, 2);
- C = btSimplexPoint(simplex, 1);
- D = btSimplexPoint(simplex, 0);
- // check if tetrahedron is really tetrahedron (has volume > 0)
- // if it is not simplex can't be expanded and thus no intersection is
- // found
- dist = btVec3PointTriDist2(&A->v, &B->v, &C->v, &D->v, 0);
- if (btFuzzyZero(dist))
- {
- return -1;
- }
- // check if origin lies on some of tetrahedron's face - if so objects
- // intersect
- dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &C->v, 0);
- if (btFuzzyZero(dist))
- return 1;
- dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &C->v, &D->v, 0);
- if (btFuzzyZero(dist))
- return 1;
- dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &D->v, 0);
- if (btFuzzyZero(dist))
- return 1;
- dist = btVec3PointTriDist2(&ccd_vec3_origin, &B->v, &C->v, &D->v, 0);
- if (btFuzzyZero(dist))
- return 1;
- // compute AO, AB, AC, AD segments and ABC, ACD, ADB normal vectors
- btVec3Copy(&AO, &A->v);
- btVec3Scale(&AO, -btScalar(1));
- btVec3Sub2(&AB, &B->v, &A->v);
- btVec3Sub2(&AC, &C->v, &A->v);
- btVec3Sub2(&AD, &D->v, &A->v);
- btVec3Cross(&ABC, &AB, &AC);
- btVec3Cross(&ACD, &AC, &AD);
- btVec3Cross(&ADB, &AD, &AB);
- // side (positive or negative) of B, C, D relative to planes ACD, ADB
- // and ABC respectively
- B_on_ACD = ccdSign(btVec3Dot(&ACD, &AB));
- C_on_ADB = ccdSign(btVec3Dot(&ADB, &AC));
- D_on_ABC = ccdSign(btVec3Dot(&ABC, &AD));
- // whether origin is on same side of ACD, ADB, ABC as B, C, D
- // respectively
- AB_O = ccdSign(btVec3Dot(&ACD, &AO)) == B_on_ACD;
- AC_O = ccdSign(btVec3Dot(&ADB, &AO)) == C_on_ADB;
- AD_O = ccdSign(btVec3Dot(&ABC, &AO)) == D_on_ABC;
- if (AB_O && AC_O && AD_O)
- {
- // origin is in tetrahedron
- return 1;
- // rearrange simplex to triangle and call btDoSimplex3()
- }
- else if (!AB_O)
- {
- // B is farthest from the origin among all of the tetrahedron's
- // points, so remove it from the list and go on with the triangle
- // case
- // D and C are in place
- btSimplexSet(simplex, 2, A);
- btSimplexSetSize(simplex, 3);
- }
- else if (!AC_O)
- {
- // C is farthest
- btSimplexSet(simplex, 1, D);
- btSimplexSet(simplex, 0, B);
- btSimplexSet(simplex, 2, A);
- btSimplexSetSize(simplex, 3);
- }
- else
- { // (!AD_O)
- btSimplexSet(simplex, 0, C);
- btSimplexSet(simplex, 1, B);
- btSimplexSet(simplex, 2, A);
- btSimplexSetSize(simplex, 3);
- }
- return btDoSimplex3(simplex, dir);
- }
- static int btDoSimplex(btSimplex *simplex, btVector3 *dir)
- {
- if (btSimplexSize(simplex) == 2)
- {
- // simplex contains segment only one segment
- return btDoSimplex2(simplex, dir);
- }
- else if (btSimplexSize(simplex) == 3)
- {
- // simplex contains triangle
- return btDoSimplex3(simplex, dir);
- }
- else
- { // btSimplexSize(simplex) == 4
- // tetrahedron - this is the only shape which can encapsule origin
- // so btDoSimplex4() also contains test on it
- return btDoSimplex4(simplex, dir);
- }
- }
- #ifdef __SPU__
- void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw)
- #else
- void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw)
- #endif
- {
- m_cachedSeparatingDistance = 0.f;
- btScalar distance = btScalar(0.);
- btVector3 normalInB(btScalar(0.), btScalar(0.), btScalar(0.));
- btVector3 pointOnA, pointOnB;
- btTransform localTransA = input.m_transformA;
- btTransform localTransB = input.m_transformB;
- btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
- localTransA.getOrigin() -= positionOffset;
- localTransB.getOrigin() -= positionOffset;
- bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();
- btScalar marginA = m_marginA;
- btScalar marginB = m_marginB;
- //for CCD we don't use margins
- if (m_ignoreMargin)
- {
- marginA = btScalar(0.);
- marginB = btScalar(0.);
- }
- m_curIter = 0;
- int gGjkMaxIter = 1000; //this is to catch invalid input, perhaps check for #NaN?
- m_cachedSeparatingAxis.setValue(0, 1, 0);
- bool isValid = false;
- bool checkSimplex = false;
- bool checkPenetration = true;
- m_degenerateSimplex = 0;
- m_lastUsedMethod = -1;
- int status = -2;
- btVector3 orgNormalInB(0, 0, 0);
- btScalar margin = marginA + marginB;
- //we add a separate implementation to check if the convex shapes intersect
- //See also "Real-time Collision Detection with Implicit Objects" by Leif Olvang
- //Todo: integrate the simplex penetration check directly inside the Bullet btVoronoiSimplexSolver
- //and remove this temporary code from libCCD
- //this fixes issue https://github.com/bulletphysics/bullet3/issues/1703
- //note, for large differences in shapes, use double precision build!
- {
- btScalar squaredDistance = BT_LARGE_FLOAT;
- btScalar delta = btScalar(0.);
- btSimplex simplex1;
- btSimplex *simplex = &simplex1;
- btSimplexInit(simplex);
- btVector3 dir(1, 0, 0);
- {
- btVector3 lastSupV;
- btVector3 supAworld;
- btVector3 supBworld;
- btComputeSupport(m_minkowskiA, localTransA, m_minkowskiB, localTransB, dir, check2d, supAworld, supBworld, lastSupV);
- btSupportVector last;
- last.v = lastSupV;
- last.v1 = supAworld;
- last.v2 = supBworld;
- btSimplexAdd(simplex, &last);
- dir = -lastSupV;
- // start iterations
- for (int iterations = 0; iterations < gGjkMaxIter; iterations++)
- {
- // obtain support point
- btComputeSupport(m_minkowskiA, localTransA, m_minkowskiB, localTransB, dir, check2d, supAworld, supBworld, lastSupV);
- // check if farthest point in Minkowski difference in direction dir
- // isn't somewhere before origin (the test on negative dot product)
- // - because if it is, objects are not intersecting at all.
- btScalar delta = lastSupV.dot(dir);
- if (delta < 0)
- {
- //no intersection, besides margin
- status = -1;
- break;
- }
- // add last support vector to simplex
- last.v = lastSupV;
- last.v1 = supAworld;
- last.v2 = supBworld;
- btSimplexAdd(simplex, &last);
- // if btDoSimplex returns 1 if objects intersect, -1 if objects don't
- // intersect and 0 if algorithm should continue
- btVector3 newDir;
- int do_simplex_res = btDoSimplex(simplex, &dir);
- if (do_simplex_res == 1)
- {
- status = 0; // intersection found
- break;
- }
- else if (do_simplex_res == -1)
- {
- // intersection not found
- status = -1;
- break;
- }
- if (btFuzzyZero(btVec3Dot(&dir, &dir)))
- {
- // intersection not found
- status = -1;
- }
- if (dir.length2() < SIMD_EPSILON)
- {
- //no intersection, besides margin
- status = -1;
- break;
- }
- if (dir.fuzzyZero())
- {
- // intersection not found
- status = -1;
- break;
- }
- }
- }
- m_simplexSolver->reset();
- if (status == 0)
- {
- //status = 0;
- //printf("Intersect!\n");
- }
- if (status == -1)
- {
- //printf("not intersect\n");
- }
- //printf("dir=%f,%f,%f\n",dir[0],dir[1],dir[2]);
- if (1)
- {
- for (;;)
- //while (true)
- {
- btVector3 separatingAxisInA = (-m_cachedSeparatingAxis) * localTransA.getBasis();
- btVector3 separatingAxisInB = m_cachedSeparatingAxis * localTransB.getBasis();
- btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
- btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
- btVector3 pWorld = localTransA(pInA);
- btVector3 qWorld = localTransB(qInB);
- if (check2d)
- {
- pWorld[2] = 0.f;
- qWorld[2] = 0.f;
- }
- btVector3 w = pWorld - qWorld;
- delta = m_cachedSeparatingAxis.dot(w);
- // potential exit, they don't overlap
- if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
- {
- m_degenerateSimplex = 10;
- checkSimplex = true;
- //checkPenetration = false;
- break;
- }
- //exit 0: the new point is already in the simplex, or we didn't come any closer
- if (m_simplexSolver->inSimplex(w))
- {
- m_degenerateSimplex = 1;
- checkSimplex = true;
- break;
- }
- // are we getting any closer ?
- btScalar f0 = squaredDistance - delta;
- btScalar f1 = squaredDistance * REL_ERROR2;
- if (f0 <= f1)
- {
- if (f0 <= btScalar(0.))
- {
- m_degenerateSimplex = 2;
- }
- else
- {
- m_degenerateSimplex = 11;
- }
- checkSimplex = true;
- break;
- }
- //add current vertex to simplex
- m_simplexSolver->addVertex(w, pWorld, qWorld);
- btVector3 newCachedSeparatingAxis;
- //calculate the closest point to the origin (update vector v)
- if (!m_simplexSolver->closest(newCachedSeparatingAxis))
- {
- m_degenerateSimplex = 3;
- checkSimplex = true;
- break;
- }
- if (newCachedSeparatingAxis.length2() < REL_ERROR2)
- {
- m_cachedSeparatingAxis = newCachedSeparatingAxis;
- m_degenerateSimplex = 6;
- checkSimplex = true;
- break;
- }
- btScalar previousSquaredDistance = squaredDistance;
- squaredDistance = newCachedSeparatingAxis.length2();
- #if 0
- ///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
- if (squaredDistance > previousSquaredDistance)
- {
- m_degenerateSimplex = 7;
- squaredDistance = previousSquaredDistance;
- checkSimplex = false;
- break;
- }
- #endif //
- //redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
- //are we getting any closer ?
- if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
- {
- // m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
- checkSimplex = true;
- m_degenerateSimplex = 12;
- break;
- }
- m_cachedSeparatingAxis = newCachedSeparatingAxis;
- //degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
- if (m_curIter++ > gGjkMaxIter)
- {
- #if defined(DEBUG) || defined(_DEBUG)
- printf("btGjkPairDetector maxIter exceeded:%i\n", m_curIter);
- printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
- m_cachedSeparatingAxis.getX(),
- m_cachedSeparatingAxis.getY(),
- m_cachedSeparatingAxis.getZ(),
- squaredDistance,
- m_minkowskiA->getShapeType(),
- m_minkowskiB->getShapeType());
- #endif
- break;
- }
- bool check = (!m_simplexSolver->fullSimplex());
- //bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
- if (!check)
- {
- //do we need this backup_closest here ?
- // m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
- m_degenerateSimplex = 13;
- break;
- }
- }
- if (checkSimplex)
- {
- m_simplexSolver->compute_points(pointOnA, pointOnB);
- normalInB = m_cachedSeparatingAxis;
- btScalar lenSqr = m_cachedSeparatingAxis.length2();
- //valid normal
- if (lenSqr < REL_ERROR2)
- {
- m_degenerateSimplex = 5;
- }
- if (lenSqr > SIMD_EPSILON * SIMD_EPSILON)
- {
- btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
- normalInB *= rlen; //normalize
- btScalar s = btSqrt(squaredDistance);
- btAssert(s > btScalar(0.0));
- pointOnA -= m_cachedSeparatingAxis * (marginA / s);
- pointOnB += m_cachedSeparatingAxis * (marginB / s);
- distance = ((btScalar(1.) / rlen) - margin);
- isValid = true;
- orgNormalInB = normalInB;
- m_lastUsedMethod = 1;
- }
- else
- {
- m_lastUsedMethod = 2;
- }
- }
- }
- bool catchDegeneratePenetrationCase =
- (m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance + margin) < gGjkEpaPenetrationTolerance));
- //if (checkPenetration && !isValid)
- if ((checkPenetration && (!isValid || catchDegeneratePenetrationCase)) || (status == 0))
- {
- //penetration case
- //if there is no way to handle penetrations, bail out
- if (m_penetrationDepthSolver)
- {
- // Penetration depth case.
- btVector3 tmpPointOnA, tmpPointOnB;
- m_cachedSeparatingAxis.setZero();
- bool isValid2 = m_penetrationDepthSolver->calcPenDepth(
- *m_simplexSolver,
- m_minkowskiA, m_minkowskiB,
- localTransA, localTransB,
- m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
- debugDraw);
- if (m_cachedSeparatingAxis.length2())
- {
- if (isValid2)
- {
- btVector3 tmpNormalInB = tmpPointOnB - tmpPointOnA;
- btScalar lenSqr = tmpNormalInB.length2();
- if (lenSqr <= (SIMD_EPSILON * SIMD_EPSILON))
- {
- tmpNormalInB = m_cachedSeparatingAxis;
- lenSqr = m_cachedSeparatingAxis.length2();
- }
- if (lenSqr > (SIMD_EPSILON * SIMD_EPSILON))
- {
- tmpNormalInB /= btSqrt(lenSqr);
- btScalar distance2 = -(tmpPointOnA - tmpPointOnB).length();
- m_lastUsedMethod = 3;
- //only replace valid penetrations when the result is deeper (check)
- if (!isValid || (distance2 < distance))
- {
- distance = distance2;
- pointOnA = tmpPointOnA;
- pointOnB = tmpPointOnB;
- normalInB = tmpNormalInB;
- isValid = true;
- }
- else
- {
- m_lastUsedMethod = 8;
- }
- }
- else
- {
- m_lastUsedMethod = 9;
- }
- }
- else
- {
- ///this is another degenerate case, where the initial GJK calculation reports a degenerate case
- ///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
- ///reports a valid positive distance. Use the results of the second GJK instead of failing.
- ///thanks to Jacob.Langford for the reproduction case
- ///http://code.google.com/p/bullet/issues/detail?id=250
- if (m_cachedSeparatingAxis.length2() > btScalar(0.))
- {
- btScalar distance2 = (tmpPointOnA - tmpPointOnB).length() - margin;
- //only replace valid distances when the distance is less
- if (!isValid || (distance2 < distance))
- {
- distance = distance2;
- pointOnA = tmpPointOnA;
- pointOnB = tmpPointOnB;
- pointOnA -= m_cachedSeparatingAxis * marginA;
- pointOnB += m_cachedSeparatingAxis * marginB;
- normalInB = m_cachedSeparatingAxis;
- normalInB.normalize();
- isValid = true;
- m_lastUsedMethod = 6;
- }
- else
- {
- m_lastUsedMethod = 5;
- }
- }
- }
- }
- else
- {
- //printf("EPA didn't return a valid value\n");
- }
- }
- }
- }
- if (isValid && ((distance < 0) || (distance * distance < input.m_maximumDistanceSquared)))
- {
- m_cachedSeparatingAxis = normalInB;
- m_cachedSeparatingDistance = distance;
- if (1)
- {
- ///todo: need to track down this EPA penetration solver degeneracy
- ///the penetration solver reports penetration but the contact normal
- ///connecting the contact points is pointing in the opposite direction
- ///until then, detect the issue and revert the normal
- btScalar d2 = 0.f;
- {
- btVector3 separatingAxisInA = (-orgNormalInB) * localTransA.getBasis();
- btVector3 separatingAxisInB = orgNormalInB * localTransB.getBasis();
- btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
- btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
- btVector3 pWorld = localTransA(pInA);
- btVector3 qWorld = localTransB(qInB);
- btVector3 w = pWorld - qWorld;
- d2 = orgNormalInB.dot(w) - margin;
- }
- btScalar d1 = 0;
- {
- btVector3 separatingAxisInA = (normalInB)*localTransA.getBasis();
- btVector3 separatingAxisInB = -normalInB * localTransB.getBasis();
- btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
- btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
- btVector3 pWorld = localTransA(pInA);
- btVector3 qWorld = localTransB(qInB);
- btVector3 w = pWorld - qWorld;
- d1 = (-normalInB).dot(w) - margin;
- }
- btScalar d0 = 0.f;
- {
- btVector3 separatingAxisInA = (-normalInB) * input.m_transformA.getBasis();
- btVector3 separatingAxisInB = normalInB * input.m_transformB.getBasis();
- btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
- btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
- btVector3 pWorld = localTransA(pInA);
- btVector3 qWorld = localTransB(qInB);
- btVector3 w = pWorld - qWorld;
- d0 = normalInB.dot(w) - margin;
- }
- if (d1 > d0)
- {
- m_lastUsedMethod = 10;
- normalInB *= -1;
- }
- if (orgNormalInB.length2())
- {
- if (d2 > d0 && d2 > d1 && d2 > distance)
- {
- normalInB = orgNormalInB;
- distance = d2;
- }
- }
- }
- output.addContactPoint(
- normalInB,
- pointOnB + positionOffset,
- distance);
- }
- else
- {
- //printf("invalid gjk query\n");
- }
- }
|