vehicle_body.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959
  1. /*************************************************************************/
  2. /* vehicle_body.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "vehicle_body.h"
  31. #define ROLLING_INFLUENCE_FIX
  32. class btVehicleJacobianEntry {
  33. public:
  34. Vector3 m_linearJointAxis;
  35. Vector3 m_aJ;
  36. Vector3 m_bJ;
  37. Vector3 m_0MinvJt;
  38. Vector3 m_1MinvJt;
  39. //Optimization: can be stored in the w/last component of one of the vectors
  40. real_t m_Adiag;
  41. real_t getDiagonal() const { return m_Adiag; }
  42. btVehicleJacobianEntry(){};
  43. //constraint between two different rigidbodies
  44. btVehicleJacobianEntry(
  45. const Basis &world2A,
  46. const Basis &world2B,
  47. const Vector3 &rel_pos1,
  48. const Vector3 &rel_pos2,
  49. const Vector3 &jointAxis,
  50. const Vector3 &inertiaInvA,
  51. const real_t massInvA,
  52. const Vector3 &inertiaInvB,
  53. const real_t massInvB) :
  54. m_linearJointAxis(jointAxis) {
  55. m_aJ = world2A.xform(rel_pos1.cross(m_linearJointAxis));
  56. m_bJ = world2B.xform(rel_pos2.cross(-m_linearJointAxis));
  57. m_0MinvJt = inertiaInvA * m_aJ;
  58. m_1MinvJt = inertiaInvB * m_bJ;
  59. m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
  60. //btAssert(m_Adiag > real_t(0.0));
  61. }
  62. real_t getRelativeVelocity(const Vector3 &linvelA, const Vector3 &angvelA, const Vector3 &linvelB, const Vector3 &angvelB) {
  63. Vector3 linrel = linvelA - linvelB;
  64. Vector3 angvela = angvelA * m_aJ;
  65. Vector3 angvelb = angvelB * m_bJ;
  66. linrel *= m_linearJointAxis;
  67. angvela += angvelb;
  68. angvela += linrel;
  69. real_t rel_vel2 = angvela[0] + angvela[1] + angvela[2];
  70. return rel_vel2 + CMP_EPSILON;
  71. }
  72. };
  73. void VehicleWheel::_notification(int p_what) {
  74. if (p_what == NOTIFICATION_ENTER_TREE) {
  75. VehicleBody *cb = Object::cast_to<VehicleBody>(get_parent());
  76. if (!cb) {
  77. return;
  78. }
  79. body = cb;
  80. local_xform = get_transform();
  81. cb->wheels.push_back(this);
  82. m_chassisConnectionPointCS = get_transform().origin;
  83. m_wheelDirectionCS = -get_transform().basis.get_axis(Vector3::AXIS_Y).normalized();
  84. m_wheelAxleCS = get_transform().basis.get_axis(Vector3::AXIS_X).normalized();
  85. }
  86. if (p_what == NOTIFICATION_EXIT_TREE) {
  87. VehicleBody *cb = Object::cast_to<VehicleBody>(get_parent());
  88. if (!cb) {
  89. return;
  90. }
  91. cb->wheels.erase(this);
  92. body = nullptr;
  93. }
  94. }
  95. String VehicleWheel::get_configuration_warning() const {
  96. String warning = Spatial::get_configuration_warning();
  97. if (!Object::cast_to<VehicleBody>(get_parent())) {
  98. if (warning != String()) {
  99. warning += "\n\n";
  100. }
  101. warning += TTR("VehicleWheel serves to provide a wheel system to a VehicleBody. Please use it as a child of a VehicleBody.");
  102. }
  103. return warning;
  104. }
  105. void VehicleWheel::_update(PhysicsDirectBodyState *s) {
  106. if (m_raycastInfo.m_isInContact)
  107. {
  108. real_t project = m_raycastInfo.m_contactNormalWS.dot(m_raycastInfo.m_wheelDirectionWS);
  109. Vector3 chassis_velocity_at_contactPoint;
  110. Vector3 relpos = m_raycastInfo.m_contactPointWS - s->get_transform().origin;
  111. chassis_velocity_at_contactPoint = s->get_linear_velocity() +
  112. (s->get_angular_velocity()).cross(relpos); // * mPos);
  113. real_t projVel = m_raycastInfo.m_contactNormalWS.dot(chassis_velocity_at_contactPoint);
  114. if (project >= real_t(-0.1)) {
  115. m_suspensionRelativeVelocity = real_t(0.0);
  116. m_clippedInvContactDotSuspension = real_t(1.0) / real_t(0.1);
  117. } else {
  118. real_t inv = real_t(-1.) / project;
  119. m_suspensionRelativeVelocity = projVel * inv;
  120. m_clippedInvContactDotSuspension = inv;
  121. }
  122. }
  123. else // Not in contact : position wheel in a nice (rest length) position
  124. {
  125. m_raycastInfo.m_suspensionLength = m_suspensionRestLength;
  126. m_suspensionRelativeVelocity = real_t(0.0);
  127. m_raycastInfo.m_contactNormalWS = -m_raycastInfo.m_wheelDirectionWS;
  128. m_clippedInvContactDotSuspension = real_t(1.0);
  129. }
  130. }
  131. void VehicleWheel::set_radius(float p_radius) {
  132. m_wheelRadius = p_radius;
  133. update_gizmo();
  134. }
  135. float VehicleWheel::get_radius() const {
  136. return m_wheelRadius;
  137. }
  138. void VehicleWheel::set_suspension_rest_length(float p_length) {
  139. m_suspensionRestLength = p_length;
  140. update_gizmo();
  141. }
  142. float VehicleWheel::get_suspension_rest_length() const {
  143. return m_suspensionRestLength;
  144. }
  145. void VehicleWheel::set_suspension_travel(float p_length) {
  146. m_maxSuspensionTravelCm = p_length / 0.01;
  147. }
  148. float VehicleWheel::get_suspension_travel() const {
  149. return m_maxSuspensionTravelCm * 0.01;
  150. }
  151. void VehicleWheel::set_suspension_stiffness(float p_value) {
  152. m_suspensionStiffness = p_value;
  153. }
  154. float VehicleWheel::get_suspension_stiffness() const {
  155. return m_suspensionStiffness;
  156. }
  157. void VehicleWheel::set_suspension_max_force(float p_value) {
  158. m_maxSuspensionForce = p_value;
  159. }
  160. float VehicleWheel::get_suspension_max_force() const {
  161. return m_maxSuspensionForce;
  162. }
  163. void VehicleWheel::set_damping_compression(float p_value) {
  164. m_wheelsDampingCompression = p_value;
  165. }
  166. float VehicleWheel::get_damping_compression() const {
  167. return m_wheelsDampingCompression;
  168. }
  169. void VehicleWheel::set_damping_relaxation(float p_value) {
  170. m_wheelsDampingRelaxation = p_value;
  171. }
  172. float VehicleWheel::get_damping_relaxation() const {
  173. return m_wheelsDampingRelaxation;
  174. }
  175. void VehicleWheel::set_friction_slip(float p_value) {
  176. m_frictionSlip = p_value;
  177. }
  178. float VehicleWheel::get_friction_slip() const {
  179. return m_frictionSlip;
  180. }
  181. void VehicleWheel::set_roll_influence(float p_value) {
  182. m_rollInfluence = p_value;
  183. }
  184. float VehicleWheel::get_roll_influence() const {
  185. return m_rollInfluence;
  186. }
  187. bool VehicleWheel::is_in_contact() const {
  188. return m_raycastInfo.m_isInContact;
  189. }
  190. void VehicleWheel::_bind_methods() {
  191. ClassDB::bind_method(D_METHOD("set_radius", "length"), &VehicleWheel::set_radius);
  192. ClassDB::bind_method(D_METHOD("get_radius"), &VehicleWheel::get_radius);
  193. ClassDB::bind_method(D_METHOD("set_suspension_rest_length", "length"), &VehicleWheel::set_suspension_rest_length);
  194. ClassDB::bind_method(D_METHOD("get_suspension_rest_length"), &VehicleWheel::get_suspension_rest_length);
  195. ClassDB::bind_method(D_METHOD("set_suspension_travel", "length"), &VehicleWheel::set_suspension_travel);
  196. ClassDB::bind_method(D_METHOD("get_suspension_travel"), &VehicleWheel::get_suspension_travel);
  197. ClassDB::bind_method(D_METHOD("set_suspension_stiffness", "length"), &VehicleWheel::set_suspension_stiffness);
  198. ClassDB::bind_method(D_METHOD("get_suspension_stiffness"), &VehicleWheel::get_suspension_stiffness);
  199. ClassDB::bind_method(D_METHOD("set_suspension_max_force", "length"), &VehicleWheel::set_suspension_max_force);
  200. ClassDB::bind_method(D_METHOD("get_suspension_max_force"), &VehicleWheel::get_suspension_max_force);
  201. ClassDB::bind_method(D_METHOD("set_damping_compression", "length"), &VehicleWheel::set_damping_compression);
  202. ClassDB::bind_method(D_METHOD("get_damping_compression"), &VehicleWheel::get_damping_compression);
  203. ClassDB::bind_method(D_METHOD("set_damping_relaxation", "length"), &VehicleWheel::set_damping_relaxation);
  204. ClassDB::bind_method(D_METHOD("get_damping_relaxation"), &VehicleWheel::get_damping_relaxation);
  205. ClassDB::bind_method(D_METHOD("set_use_as_traction", "enable"), &VehicleWheel::set_use_as_traction);
  206. ClassDB::bind_method(D_METHOD("is_used_as_traction"), &VehicleWheel::is_used_as_traction);
  207. ClassDB::bind_method(D_METHOD("set_use_as_steering", "enable"), &VehicleWheel::set_use_as_steering);
  208. ClassDB::bind_method(D_METHOD("is_used_as_steering"), &VehicleWheel::is_used_as_steering);
  209. ClassDB::bind_method(D_METHOD("set_friction_slip", "length"), &VehicleWheel::set_friction_slip);
  210. ClassDB::bind_method(D_METHOD("get_friction_slip"), &VehicleWheel::get_friction_slip);
  211. ClassDB::bind_method(D_METHOD("is_in_contact"), &VehicleWheel::is_in_contact);
  212. ClassDB::bind_method(D_METHOD("set_roll_influence", "roll_influence"), &VehicleWheel::set_roll_influence);
  213. ClassDB::bind_method(D_METHOD("get_roll_influence"), &VehicleWheel::get_roll_influence);
  214. ClassDB::bind_method(D_METHOD("get_skidinfo"), &VehicleWheel::get_skidinfo);
  215. ClassDB::bind_method(D_METHOD("get_rpm"), &VehicleWheel::get_rpm);
  216. ClassDB::bind_method(D_METHOD("set_engine_force", "engine_force"), &VehicleWheel::set_engine_force);
  217. ClassDB::bind_method(D_METHOD("get_engine_force"), &VehicleWheel::get_engine_force);
  218. ClassDB::bind_method(D_METHOD("set_brake", "brake"), &VehicleWheel::set_brake);
  219. ClassDB::bind_method(D_METHOD("get_brake"), &VehicleWheel::get_brake);
  220. ClassDB::bind_method(D_METHOD("set_steering", "steering"), &VehicleWheel::set_steering);
  221. ClassDB::bind_method(D_METHOD("get_steering"), &VehicleWheel::get_steering);
  222. ADD_GROUP("Per-Wheel Motion", "");
  223. ADD_PROPERTY(PropertyInfo(Variant::REAL, "engine_force", PROPERTY_HINT_RANGE, "-1024,1024.0,0.01,or_greater"), "set_engine_force", "get_engine_force");
  224. ADD_PROPERTY(PropertyInfo(Variant::REAL, "brake", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_brake", "get_brake");
  225. ADD_PROPERTY(PropertyInfo(Variant::REAL, "steering", PROPERTY_HINT_RANGE, "-180,180.0,0.01"), "set_steering", "get_steering");
  226. ADD_GROUP("VehicleBody Motion", "");
  227. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_as_traction"), "set_use_as_traction", "is_used_as_traction");
  228. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_as_steering"), "set_use_as_steering", "is_used_as_steering");
  229. ADD_GROUP("Wheel", "wheel_");
  230. ADD_PROPERTY(PropertyInfo(Variant::REAL, "wheel_roll_influence"), "set_roll_influence", "get_roll_influence");
  231. ADD_PROPERTY(PropertyInfo(Variant::REAL, "wheel_radius"), "set_radius", "get_radius");
  232. ADD_PROPERTY(PropertyInfo(Variant::REAL, "wheel_rest_length"), "set_suspension_rest_length", "get_suspension_rest_length");
  233. ADD_PROPERTY(PropertyInfo(Variant::REAL, "wheel_friction_slip"), "set_friction_slip", "get_friction_slip");
  234. ADD_GROUP("Suspension", "suspension_");
  235. ADD_PROPERTY(PropertyInfo(Variant::REAL, "suspension_travel"), "set_suspension_travel", "get_suspension_travel");
  236. ADD_PROPERTY(PropertyInfo(Variant::REAL, "suspension_stiffness"), "set_suspension_stiffness", "get_suspension_stiffness");
  237. ADD_PROPERTY(PropertyInfo(Variant::REAL, "suspension_max_force"), "set_suspension_max_force", "get_suspension_max_force");
  238. ADD_GROUP("Damping", "damping_");
  239. ADD_PROPERTY(PropertyInfo(Variant::REAL, "damping_compression"), "set_damping_compression", "get_damping_compression");
  240. ADD_PROPERTY(PropertyInfo(Variant::REAL, "damping_relaxation"), "set_damping_relaxation", "get_damping_relaxation");
  241. }
  242. void VehicleWheel::set_engine_force(float p_engine_force) {
  243. m_engineForce = p_engine_force;
  244. }
  245. float VehicleWheel::get_engine_force() const {
  246. return m_engineForce;
  247. }
  248. void VehicleWheel::set_brake(float p_brake) {
  249. m_brake = p_brake;
  250. }
  251. float VehicleWheel::get_brake() const {
  252. return m_brake;
  253. }
  254. void VehicleWheel::set_steering(float p_steering) {
  255. m_steering = p_steering;
  256. }
  257. float VehicleWheel::get_steering() const {
  258. return m_steering;
  259. }
  260. void VehicleWheel::set_use_as_traction(bool p_enable) {
  261. engine_traction = p_enable;
  262. }
  263. bool VehicleWheel::is_used_as_traction() const {
  264. return engine_traction;
  265. }
  266. void VehicleWheel::set_use_as_steering(bool p_enabled) {
  267. steers = p_enabled;
  268. }
  269. bool VehicleWheel::is_used_as_steering() const {
  270. return steers;
  271. }
  272. float VehicleWheel::get_skidinfo() const {
  273. return m_skidInfo;
  274. }
  275. float VehicleWheel::get_rpm() const {
  276. return m_rpm;
  277. }
  278. VehicleWheel::VehicleWheel() {
  279. steers = false;
  280. engine_traction = false;
  281. m_steering = real_t(0.);
  282. m_engineForce = real_t(0.);
  283. m_rotation = real_t(0.);
  284. m_deltaRotation = real_t(0.);
  285. m_brake = real_t(0.);
  286. m_rollInfluence = real_t(0.1);
  287. m_suspensionRestLength = 0.15;
  288. m_wheelRadius = 0.5; //0.28;
  289. m_suspensionStiffness = 5.88;
  290. m_wheelsDampingCompression = 0.83;
  291. m_wheelsDampingRelaxation = 0.88;
  292. m_frictionSlip = 10.5;
  293. m_bIsFrontWheel = false;
  294. m_maxSuspensionTravelCm = 500;
  295. m_maxSuspensionForce = 6000;
  296. m_suspensionRelativeVelocity = 0;
  297. m_clippedInvContactDotSuspension = 1.0;
  298. m_raycastInfo.m_isInContact = false;
  299. m_raycastInfo.m_suspensionLength = 0.0;
  300. body = nullptr;
  301. }
  302. void VehicleBody::_update_wheel_transform(VehicleWheel &wheel, PhysicsDirectBodyState *s) {
  303. wheel.m_raycastInfo.m_isInContact = false;
  304. Transform chassisTrans = s->get_transform();
  305. /*
  306. if (interpolatedTransform && (getRigidBody()->getMotionState())) {
  307. getRigidBody()->getMotionState()->getWorldTransform(chassisTrans);
  308. }
  309. */
  310. wheel.m_raycastInfo.m_hardPointWS = chassisTrans.xform(wheel.m_chassisConnectionPointCS);
  311. //wheel.m_raycastInfo.m_hardPointWS+=s->get_linear_velocity()*s->get_step();
  312. wheel.m_raycastInfo.m_wheelDirectionWS = chassisTrans.get_basis().xform(wheel.m_wheelDirectionCS).normalized();
  313. wheel.m_raycastInfo.m_wheelAxleWS = chassisTrans.get_basis().xform(wheel.m_wheelAxleCS).normalized();
  314. }
  315. void VehicleBody::_update_wheel(int p_idx, PhysicsDirectBodyState *s) {
  316. VehicleWheel &wheel = *wheels[p_idx];
  317. _update_wheel_transform(wheel, s);
  318. Vector3 up = -wheel.m_raycastInfo.m_wheelDirectionWS;
  319. const Vector3 &right = wheel.m_raycastInfo.m_wheelAxleWS;
  320. Vector3 fwd = up.cross(right);
  321. fwd = fwd.normalized();
  322. Basis steeringMat(up, wheel.m_steering);
  323. Basis rotatingMat(right, wheel.m_rotation);
  324. Basis basis2(
  325. right[0], up[0], fwd[0],
  326. right[1], up[1], fwd[1],
  327. right[2], up[2], fwd[2]);
  328. wheel.m_worldTransform.set_basis(steeringMat * rotatingMat * basis2);
  329. //wheel.m_worldTransform.set_basis(basis2 * (steeringMat * rotatingMat));
  330. wheel.m_worldTransform.set_origin(
  331. wheel.m_raycastInfo.m_hardPointWS + wheel.m_raycastInfo.m_wheelDirectionWS * wheel.m_raycastInfo.m_suspensionLength);
  332. }
  333. real_t VehicleBody::_ray_cast(int p_idx, PhysicsDirectBodyState *s) {
  334. VehicleWheel &wheel = *wheels[p_idx];
  335. _update_wheel_transform(wheel, s);
  336. real_t depth = -1;
  337. real_t raylen = wheel.m_suspensionRestLength + wheel.m_wheelRadius;
  338. Vector3 rayvector = wheel.m_raycastInfo.m_wheelDirectionWS * (raylen);
  339. Vector3 source = wheel.m_raycastInfo.m_hardPointWS;
  340. wheel.m_raycastInfo.m_contactPointWS = source + rayvector;
  341. const Vector3 &target = wheel.m_raycastInfo.m_contactPointWS;
  342. source -= wheel.m_wheelRadius * wheel.m_raycastInfo.m_wheelDirectionWS;
  343. real_t param = real_t(0.);
  344. PhysicsDirectSpaceState::RayResult rr;
  345. PhysicsDirectSpaceState *ss = s->get_space_state();
  346. bool col = ss->intersect_ray(source, target, rr, exclude, get_collision_mask());
  347. wheel.m_raycastInfo.m_groundObject = nullptr;
  348. if (col) {
  349. param = source.distance_to(rr.position) / source.distance_to(target);
  350. depth = raylen * param;
  351. wheel.m_raycastInfo.m_contactNormalWS = rr.normal;
  352. wheel.m_raycastInfo.m_isInContact = true;
  353. if (rr.collider) {
  354. wheel.m_raycastInfo.m_groundObject = Object::cast_to<PhysicsBody>(rr.collider);
  355. }
  356. real_t hitDistance = param * raylen;
  357. wheel.m_raycastInfo.m_suspensionLength = hitDistance - wheel.m_wheelRadius;
  358. //clamp on max suspension travel
  359. real_t minSuspensionLength = wheel.m_suspensionRestLength - wheel.m_maxSuspensionTravelCm * real_t(0.01);
  360. real_t maxSuspensionLength = wheel.m_suspensionRestLength + wheel.m_maxSuspensionTravelCm * real_t(0.01);
  361. if (wheel.m_raycastInfo.m_suspensionLength < minSuspensionLength) {
  362. wheel.m_raycastInfo.m_suspensionLength = minSuspensionLength;
  363. }
  364. if (wheel.m_raycastInfo.m_suspensionLength > maxSuspensionLength) {
  365. wheel.m_raycastInfo.m_suspensionLength = maxSuspensionLength;
  366. }
  367. wheel.m_raycastInfo.m_contactPointWS = rr.position;
  368. real_t denominator = wheel.m_raycastInfo.m_contactNormalWS.dot(wheel.m_raycastInfo.m_wheelDirectionWS);
  369. Vector3 chassis_velocity_at_contactPoint;
  370. //Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS-getRigidBody()->getCenterOfMassPosition();
  371. //chassis_velocity_at_contactPoint = getRigidBody()->getVelocityInLocalPoint(relpos);
  372. chassis_velocity_at_contactPoint = s->get_linear_velocity() +
  373. (s->get_angular_velocity()).cross(wheel.m_raycastInfo.m_contactPointWS - s->get_transform().origin); // * mPos);
  374. real_t projVel = wheel.m_raycastInfo.m_contactNormalWS.dot(chassis_velocity_at_contactPoint);
  375. if (denominator >= real_t(-0.1)) {
  376. wheel.m_suspensionRelativeVelocity = real_t(0.0);
  377. wheel.m_clippedInvContactDotSuspension = real_t(1.0) / real_t(0.1);
  378. } else {
  379. real_t inv = real_t(-1.) / denominator;
  380. wheel.m_suspensionRelativeVelocity = projVel * inv;
  381. wheel.m_clippedInvContactDotSuspension = inv;
  382. }
  383. } else {
  384. wheel.m_raycastInfo.m_isInContact = false;
  385. //put wheel info as in rest position
  386. wheel.m_raycastInfo.m_suspensionLength = wheel.m_suspensionRestLength;
  387. wheel.m_suspensionRelativeVelocity = real_t(0.0);
  388. wheel.m_raycastInfo.m_contactNormalWS = -wheel.m_raycastInfo.m_wheelDirectionWS;
  389. wheel.m_clippedInvContactDotSuspension = real_t(1.0);
  390. }
  391. return depth;
  392. }
  393. void VehicleBody::_update_suspension(PhysicsDirectBodyState *s) {
  394. real_t chassisMass = mass;
  395. for (int w_it = 0; w_it < wheels.size(); w_it++) {
  396. VehicleWheel &wheel_info = *wheels[w_it];
  397. if (wheel_info.m_raycastInfo.m_isInContact) {
  398. real_t force;
  399. //Spring
  400. {
  401. real_t susp_length = wheel_info.m_suspensionRestLength;
  402. real_t current_length = wheel_info.m_raycastInfo.m_suspensionLength;
  403. real_t length_diff = (susp_length - current_length);
  404. force = wheel_info.m_suspensionStiffness * length_diff * wheel_info.m_clippedInvContactDotSuspension;
  405. }
  406. // Damper
  407. {
  408. real_t projected_rel_vel = wheel_info.m_suspensionRelativeVelocity;
  409. {
  410. real_t susp_damping;
  411. if (projected_rel_vel < real_t(0.0)) {
  412. susp_damping = wheel_info.m_wheelsDampingCompression;
  413. } else {
  414. susp_damping = wheel_info.m_wheelsDampingRelaxation;
  415. }
  416. force -= susp_damping * projected_rel_vel;
  417. }
  418. }
  419. // RESULT
  420. wheel_info.m_wheelsSuspensionForce = force * chassisMass;
  421. if (wheel_info.m_wheelsSuspensionForce < real_t(0.)) {
  422. wheel_info.m_wheelsSuspensionForce = real_t(0.);
  423. }
  424. } else {
  425. wheel_info.m_wheelsSuspensionForce = real_t(0.0);
  426. }
  427. }
  428. }
  429. //bilateral constraint between two dynamic objects
  430. void VehicleBody::_resolve_single_bilateral(PhysicsDirectBodyState *s, const Vector3 &pos1,
  431. PhysicsBody *body2, const Vector3 &pos2, const Vector3 &normal, real_t &impulse, const real_t p_rollInfluence) {
  432. real_t normalLenSqr = normal.length_squared();
  433. //ERR_FAIL_COND( normalLenSqr < real_t(1.1));
  434. if (normalLenSqr > real_t(1.1)) {
  435. impulse = real_t(0.);
  436. return;
  437. }
  438. Vector3 rel_pos1 = pos1 - s->get_transform().origin;
  439. Vector3 rel_pos2;
  440. if (body2) {
  441. rel_pos2 = pos2 - body2->get_global_transform().origin;
  442. }
  443. //this jacobian entry could be re-used for all iterations
  444. Vector3 vel1 = s->get_linear_velocity() + (s->get_angular_velocity()).cross(rel_pos1); // * mPos);
  445. Vector3 vel2;
  446. if (body2) {
  447. vel2 = body2->get_linear_velocity() + body2->get_angular_velocity().cross(rel_pos2);
  448. }
  449. Vector3 vel = vel1 - vel2;
  450. Basis b2trans;
  451. float b2invmass = 0;
  452. Vector3 b2lv;
  453. Vector3 b2av;
  454. Vector3 b2invinertia; //todo
  455. if (body2) {
  456. b2trans = body2->get_global_transform().basis.transposed();
  457. b2invmass = body2->get_inverse_mass();
  458. b2lv = body2->get_linear_velocity();
  459. b2av = body2->get_angular_velocity();
  460. }
  461. btVehicleJacobianEntry jac(s->get_transform().basis.transposed(),
  462. b2trans,
  463. rel_pos1,
  464. rel_pos2,
  465. normal,
  466. s->get_inverse_inertia_tensor().get_main_diagonal(),
  467. 1.0 / mass,
  468. b2invinertia,
  469. b2invmass);
  470. // FIXME: rel_vel assignment here is overwritten by the following assignment.
  471. // What seems to be intended in the next next assignment is: rel_vel = normal.dot(rel_vel);
  472. // Investigate why.
  473. real_t rel_vel = jac.getRelativeVelocity(
  474. s->get_linear_velocity(),
  475. s->get_transform().basis.transposed().xform(s->get_angular_velocity()),
  476. b2lv,
  477. b2trans.xform(b2av));
  478. rel_vel = normal.dot(vel);
  479. // !BAS! We had this set to 0.4, in bullet its 0.2
  480. real_t contactDamping = real_t(0.2);
  481. if (p_rollInfluence > 0.0) {
  482. // !BAS! But seeing we apply this frame by frame, makes more sense to me to make this time based
  483. // keeping in mind our anti roll factor if it is set
  484. contactDamping = MIN(contactDamping, s->get_step() / p_rollInfluence);
  485. }
  486. #define ONLY_USE_LINEAR_MASS
  487. #ifdef ONLY_USE_LINEAR_MASS
  488. real_t massTerm = real_t(1.) / ((1.0 / mass) + b2invmass);
  489. impulse = -contactDamping * rel_vel * massTerm;
  490. #else
  491. real_t velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
  492. impulse = velocityImpulse;
  493. #endif
  494. }
  495. VehicleBody::btVehicleWheelContactPoint::btVehicleWheelContactPoint(PhysicsDirectBodyState *s, PhysicsBody *body1, const Vector3 &frictionPosWorld, const Vector3 &frictionDirectionWorld, real_t maxImpulse) :
  496. m_s(s),
  497. m_body1(body1),
  498. m_frictionPositionWorld(frictionPosWorld),
  499. m_frictionDirectionWorld(frictionDirectionWorld),
  500. m_maxImpulse(maxImpulse) {
  501. float denom0 = 0;
  502. float denom1 = 0;
  503. {
  504. Vector3 r0 = frictionPosWorld - s->get_transform().origin;
  505. Vector3 c0 = (r0).cross(frictionDirectionWorld);
  506. Vector3 vec = s->get_inverse_inertia_tensor().xform_inv(c0).cross(r0);
  507. denom0 = s->get_inverse_mass() + frictionDirectionWorld.dot(vec);
  508. }
  509. /* TODO: Why is this code unused?
  510. if (body1) {
  511. Vector3 r0 = frictionPosWorld - body1->get_global_transform().origin;
  512. Vector3 c0 = (r0).cross(frictionDirectionWorld);
  513. Vector3 vec = s->get_inverse_inertia_tensor().xform_inv(c0).cross(r0);
  514. //denom1= body1->get_inverse_mass() + frictionDirectionWorld.dot(vec);
  515. }
  516. */
  517. real_t relaxation = 1.f;
  518. m_jacDiagABInv = relaxation / (denom0 + denom1);
  519. }
  520. real_t VehicleBody::_calc_rolling_friction(btVehicleWheelContactPoint &contactPoint) {
  521. real_t j1 = 0.f;
  522. const Vector3 &contactPosWorld = contactPoint.m_frictionPositionWorld;
  523. Vector3 rel_pos1 = contactPosWorld - contactPoint.m_s->get_transform().origin;
  524. Vector3 rel_pos2;
  525. if (contactPoint.m_body1) {
  526. rel_pos2 = contactPosWorld - contactPoint.m_body1->get_global_transform().origin;
  527. }
  528. real_t maxImpulse = contactPoint.m_maxImpulse;
  529. Vector3 vel1 = contactPoint.m_s->get_linear_velocity() + (contactPoint.m_s->get_angular_velocity()).cross(rel_pos1); // * mPos);
  530. Vector3 vel2;
  531. if (contactPoint.m_body1) {
  532. vel2 = contactPoint.m_body1->get_linear_velocity() + contactPoint.m_body1->get_angular_velocity().cross(rel_pos2);
  533. }
  534. Vector3 vel = vel1 - vel2;
  535. real_t vrel = contactPoint.m_frictionDirectionWorld.dot(vel);
  536. // calculate j that moves us to zero relative velocity
  537. j1 = -vrel * contactPoint.m_jacDiagABInv;
  538. return CLAMP(j1, -maxImpulse, maxImpulse);
  539. }
  540. static const real_t sideFrictionStiffness2 = real_t(1.0);
  541. void VehicleBody::_update_friction(PhysicsDirectBodyState *s) {
  542. //calculate the impulse, so that the wheels don't move sidewards
  543. int numWheel = wheels.size();
  544. if (!numWheel) {
  545. return;
  546. }
  547. m_forwardWS.resize(numWheel);
  548. m_axle.resize(numWheel);
  549. m_forwardImpulse.resize(numWheel);
  550. m_sideImpulse.resize(numWheel);
  551. //collapse all those loops into one!
  552. for (int i = 0; i < wheels.size(); i++) {
  553. m_sideImpulse.write[i] = real_t(0.);
  554. m_forwardImpulse.write[i] = real_t(0.);
  555. }
  556. {
  557. for (int i = 0; i < wheels.size(); i++) {
  558. VehicleWheel &wheelInfo = *wheels[i];
  559. if (wheelInfo.m_raycastInfo.m_isInContact) {
  560. //const btTransform& wheelTrans = getWheelTransformWS( i );
  561. Basis wheelBasis0 = wheelInfo.m_worldTransform.basis; //get_global_transform().basis;
  562. m_axle.write[i] = wheelBasis0.get_axis(Vector3::AXIS_X);
  563. //m_axle[i] = wheelInfo.m_raycastInfo.m_wheelAxleWS;
  564. const Vector3 &surfNormalWS = wheelInfo.m_raycastInfo.m_contactNormalWS;
  565. real_t proj = m_axle[i].dot(surfNormalWS);
  566. m_axle.write[i] -= surfNormalWS * proj;
  567. m_axle.write[i] = m_axle[i].normalized();
  568. m_forwardWS.write[i] = surfNormalWS.cross(m_axle[i]);
  569. m_forwardWS.write[i].normalize();
  570. _resolve_single_bilateral(s, wheelInfo.m_raycastInfo.m_contactPointWS,
  571. wheelInfo.m_raycastInfo.m_groundObject, wheelInfo.m_raycastInfo.m_contactPointWS,
  572. m_axle[i], m_sideImpulse.write[i], wheelInfo.m_rollInfluence);
  573. m_sideImpulse.write[i] *= sideFrictionStiffness2;
  574. }
  575. }
  576. }
  577. real_t sideFactor = real_t(1.);
  578. real_t fwdFactor = 0.5;
  579. bool sliding = false;
  580. {
  581. for (int wheel = 0; wheel < wheels.size(); wheel++) {
  582. VehicleWheel &wheelInfo = *wheels[wheel];
  583. //class btRigidBody* groundObject = (class btRigidBody*) wheelInfo.m_raycastInfo.m_groundObject;
  584. real_t rollingFriction = 0.f;
  585. if (wheelInfo.m_raycastInfo.m_isInContact) {
  586. if (wheelInfo.m_engineForce != 0.f) {
  587. rollingFriction = -wheelInfo.m_engineForce * s->get_step();
  588. } else {
  589. real_t defaultRollingFrictionImpulse = 0.f;
  590. real_t maxImpulse = wheelInfo.m_brake ? wheelInfo.m_brake : defaultRollingFrictionImpulse;
  591. btVehicleWheelContactPoint contactPt(s, wheelInfo.m_raycastInfo.m_groundObject, wheelInfo.m_raycastInfo.m_contactPointWS, m_forwardWS[wheel], maxImpulse);
  592. rollingFriction = _calc_rolling_friction(contactPt);
  593. }
  594. }
  595. //switch between active rolling (throttle), braking and non-active rolling friction (no throttle/break)
  596. m_forwardImpulse.write[wheel] = real_t(0.);
  597. wheelInfo.m_skidInfo = real_t(1.);
  598. if (wheelInfo.m_raycastInfo.m_isInContact) {
  599. wheelInfo.m_skidInfo = real_t(1.);
  600. real_t maximp = wheelInfo.m_wheelsSuspensionForce * s->get_step() * wheelInfo.m_frictionSlip;
  601. real_t maximpSide = maximp;
  602. real_t maximpSquared = maximp * maximpSide;
  603. m_forwardImpulse.write[wheel] = rollingFriction; //wheelInfo.m_engineForce* timeStep;
  604. real_t x = (m_forwardImpulse[wheel]) * fwdFactor;
  605. real_t y = (m_sideImpulse[wheel]) * sideFactor;
  606. real_t impulseSquared = (x * x + y * y);
  607. if (impulseSquared > maximpSquared) {
  608. sliding = true;
  609. real_t factor = maximp / Math::sqrt(impulseSquared);
  610. wheelInfo.m_skidInfo *= factor;
  611. }
  612. }
  613. }
  614. }
  615. if (sliding) {
  616. for (int wheel = 0; wheel < wheels.size(); wheel++) {
  617. if (m_sideImpulse[wheel] != real_t(0.)) {
  618. if (wheels[wheel]->m_skidInfo < real_t(1.)) {
  619. m_forwardImpulse.write[wheel] *= wheels[wheel]->m_skidInfo;
  620. m_sideImpulse.write[wheel] *= wheels[wheel]->m_skidInfo;
  621. }
  622. }
  623. }
  624. }
  625. // apply the impulses
  626. {
  627. for (int wheel = 0; wheel < wheels.size(); wheel++) {
  628. VehicleWheel &wheelInfo = *wheels[wheel];
  629. Vector3 rel_pos = wheelInfo.m_raycastInfo.m_contactPointWS -
  630. s->get_transform().origin;
  631. if (m_forwardImpulse[wheel] != real_t(0.)) {
  632. s->apply_impulse(rel_pos, m_forwardWS[wheel] * (m_forwardImpulse[wheel]));
  633. }
  634. if (m_sideImpulse[wheel] != real_t(0.)) {
  635. PhysicsBody *groundObject = wheelInfo.m_raycastInfo.m_groundObject;
  636. Vector3 rel_pos2;
  637. if (groundObject) {
  638. rel_pos2 = wheelInfo.m_raycastInfo.m_contactPointWS - groundObject->get_global_transform().origin;
  639. }
  640. Vector3 sideImp = m_axle[wheel] * m_sideImpulse[wheel];
  641. #if defined ROLLING_INFLUENCE_FIX // fix. It only worked if car's up was along Y - VT.
  642. Vector3 vChassisWorldUp = s->get_transform().basis.transposed()[1]; //getRigidBody()->getCenterOfMassTransform().getBasis().getColumn(m_indexUpAxis);
  643. rel_pos -= vChassisWorldUp * (vChassisWorldUp.dot(rel_pos) * (1.f - wheelInfo.m_rollInfluence));
  644. #else
  645. rel_pos[1] *= wheelInfo.m_rollInfluence; //?
  646. #endif
  647. s->apply_impulse(rel_pos, sideImp);
  648. //apply friction impulse on the ground
  649. //todo
  650. //groundObject->applyImpulse(-sideImp,rel_pos2);
  651. }
  652. }
  653. }
  654. }
  655. void VehicleBody::_direct_state_changed(Object *p_state) {
  656. RigidBody::_direct_state_changed(p_state);
  657. state = Object::cast_to<PhysicsDirectBodyState>(p_state);
  658. ERR_FAIL_COND_MSG(!state, "Method '_direct_state_changed' must receive a valid PhysicsDirectBodyState object as argument");
  659. float step = state->get_step();
  660. for (int i = 0; i < wheels.size(); i++) {
  661. _update_wheel(i, state);
  662. }
  663. for (int i = 0; i < wheels.size(); i++) {
  664. _ray_cast(i, state);
  665. wheels[i]->set_transform(state->get_transform().inverse() * wheels[i]->m_worldTransform);
  666. }
  667. _update_suspension(state);
  668. for (int i = 0; i < wheels.size(); i++) {
  669. //apply suspension force
  670. VehicleWheel &wheel = *wheels[i];
  671. real_t suspensionForce = wheel.m_wheelsSuspensionForce;
  672. if (suspensionForce > wheel.m_maxSuspensionForce) {
  673. suspensionForce = wheel.m_maxSuspensionForce;
  674. }
  675. Vector3 impulse = wheel.m_raycastInfo.m_contactNormalWS * suspensionForce * step;
  676. Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS - state->get_transform().origin;
  677. state->apply_impulse(relpos, impulse);
  678. //getRigidBody()->applyImpulse(impulse, relpos);
  679. }
  680. _update_friction(state);
  681. for (int i = 0; i < wheels.size(); i++) {
  682. VehicleWheel &wheel = *wheels[i];
  683. Vector3 relpos = wheel.m_raycastInfo.m_hardPointWS - state->get_transform().origin;
  684. Vector3 vel = state->get_linear_velocity() + (state->get_angular_velocity()).cross(relpos); // * mPos);
  685. if (wheel.m_raycastInfo.m_isInContact) {
  686. const Transform &chassisWorldTransform = state->get_transform();
  687. Vector3 fwd(
  688. chassisWorldTransform.basis[0][Vector3::AXIS_Z],
  689. chassisWorldTransform.basis[1][Vector3::AXIS_Z],
  690. chassisWorldTransform.basis[2][Vector3::AXIS_Z]);
  691. real_t proj = fwd.dot(wheel.m_raycastInfo.m_contactNormalWS);
  692. fwd -= wheel.m_raycastInfo.m_contactNormalWS * proj;
  693. real_t proj2 = fwd.dot(vel);
  694. wheel.m_deltaRotation = (proj2 * step) / (wheel.m_wheelRadius);
  695. }
  696. wheel.m_rotation += wheel.m_deltaRotation;
  697. wheel.m_rpm = ((wheel.m_deltaRotation / step) * 60) / Math_TAU;
  698. wheel.m_deltaRotation *= real_t(0.99); //damping of rotation when not in contact
  699. }
  700. state = nullptr;
  701. }
  702. void VehicleBody::set_engine_force(float p_engine_force) {
  703. engine_force = p_engine_force;
  704. for (int i = 0; i < wheels.size(); i++) {
  705. VehicleWheel &wheelInfo = *wheels[i];
  706. if (wheelInfo.engine_traction) {
  707. wheelInfo.m_engineForce = p_engine_force;
  708. }
  709. }
  710. }
  711. float VehicleBody::get_engine_force() const {
  712. return engine_force;
  713. }
  714. void VehicleBody::set_brake(float p_brake) {
  715. brake = p_brake;
  716. for (int i = 0; i < wheels.size(); i++) {
  717. VehicleWheel &wheelInfo = *wheels[i];
  718. wheelInfo.m_brake = p_brake;
  719. }
  720. }
  721. float VehicleBody::get_brake() const {
  722. return brake;
  723. }
  724. void VehicleBody::set_steering(float p_steering) {
  725. m_steeringValue = p_steering;
  726. for (int i = 0; i < wheels.size(); i++) {
  727. VehicleWheel &wheelInfo = *wheels[i];
  728. if (wheelInfo.steers) {
  729. wheelInfo.m_steering = p_steering;
  730. }
  731. }
  732. }
  733. float VehicleBody::get_steering() const {
  734. return m_steeringValue;
  735. }
  736. void VehicleBody::_bind_methods() {
  737. ClassDB::bind_method(D_METHOD("set_engine_force", "engine_force"), &VehicleBody::set_engine_force);
  738. ClassDB::bind_method(D_METHOD("get_engine_force"), &VehicleBody::get_engine_force);
  739. ClassDB::bind_method(D_METHOD("set_brake", "brake"), &VehicleBody::set_brake);
  740. ClassDB::bind_method(D_METHOD("get_brake"), &VehicleBody::get_brake);
  741. ClassDB::bind_method(D_METHOD("set_steering", "steering"), &VehicleBody::set_steering);
  742. ClassDB::bind_method(D_METHOD("get_steering"), &VehicleBody::get_steering);
  743. ADD_GROUP("Motion", "");
  744. ADD_PROPERTY(PropertyInfo(Variant::REAL, "engine_force", PROPERTY_HINT_RANGE, "-1024,1024.0,0.01,or_greater"), "set_engine_force", "get_engine_force");
  745. ADD_PROPERTY(PropertyInfo(Variant::REAL, "brake", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_brake", "get_brake");
  746. ADD_PROPERTY(PropertyInfo(Variant::REAL, "steering", PROPERTY_HINT_RANGE, "-180,180.0,0.01"), "set_steering", "get_steering");
  747. }
  748. VehicleBody::VehicleBody() {
  749. m_pitchControl = 0;
  750. m_currentVehicleSpeedKmHour = real_t(0.);
  751. m_steeringValue = real_t(0.);
  752. engine_force = 0;
  753. brake = 0;
  754. state = nullptr;
  755. ccd = false;
  756. exclude.insert(get_rid());
  757. //PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed");
  758. set_mass(40);
  759. }