123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523 |
- /*************************************************************************/
- /* main_timer_sync.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "main_timer_sync.h"
- #include "core/math/math_funcs.h"
- #include "core/os/os.h"
- void MainFrameTime::clamp_idle(float min_idle_step, float max_idle_step) {
- if (idle_step < min_idle_step) {
- idle_step = min_idle_step;
- } else if (idle_step > max_idle_step) {
- idle_step = max_idle_step;
- }
- }
- /////////////////////////////////
- void MainTimerSync::DeltaSmoother::update_refresh_rate_estimator(int64_t p_delta) {
- // the calling code should prevent 0 or negative values of delta
- // (preventing divide by zero)
- // note that if the estimate gets locked, and something external changes this
- // (e.g. user changes to non-vsync in the OS), then the results may be less than ideal,
- // but usually it will detect this via the FPS measurement and not attempt smoothing.
- // This should be a rare occurrence anyway, and will be cured next time user restarts game.
- if (_estimate_locked) {
- return;
- }
- // First average the delta over NUM_READINGS
- _estimator_total_delta += p_delta;
- _estimator_delta_readings++;
- const int NUM_READINGS = 60;
- if (_estimator_delta_readings < NUM_READINGS) {
- return;
- }
- // use average
- p_delta = _estimator_total_delta / NUM_READINGS;
- // reset the averager for next time
- _estimator_delta_readings = 0;
- _estimator_total_delta = 0;
- ///////////////////////////////
- int fps = Math::round(1000000.0 / p_delta);
- // initial estimation, to speed up converging, special case we will estimate the refresh rate
- // from the first average FPS reading
- if (_estimated_fps == 0) {
- // below 50 might be chugging loading stuff, or else
- // dropping loads of frames, so the estimate will be inaccurate
- if (fps >= 50) {
- _estimated_fps = fps;
- #ifdef GODOT_DEBUG_DELTA_SMOOTHER
- print_line("initial guess (average measured) refresh rate: " + itos(fps));
- #endif
- } else {
- // can't get started until above 50
- return;
- }
- }
- // we hit our exact estimated refresh rate.
- // increase our confidence in the estimate.
- if (fps == _estimated_fps) {
- // note that each hit is an average of NUM_READINGS frames
- _hits_at_estimated++;
- if (_estimate_complete && _hits_at_estimated == 20) {
- _estimate_locked = true;
- #ifdef GODOT_DEBUG_DELTA_SMOOTHER
- print_line("estimate LOCKED at " + itos(_estimated_fps) + " fps");
- #endif
- return;
- }
- // if we are getting pretty confident in this estimate, decide it is complete
- // (it can still be increased later, and possibly lowered but only for a short time)
- if ((!_estimate_complete) && (_hits_at_estimated > 2)) {
- // when the estimate is complete we turn on smoothing
- if (_estimated_fps) {
- _estimate_complete = true;
- _vsync_delta = 1000000 / _estimated_fps;
- #ifdef GODOT_DEBUG_DELTA_SMOOTHER
- print_line("estimate complete. vsync_delta " + itos(_vsync_delta) + ", fps " + itos(_estimated_fps));
- #endif
- }
- }
- #ifdef GODOT_DEBUG_DELTA_SMOOTHER
- if ((_hits_at_estimated % (400 / NUM_READINGS)) == 0) {
- String sz = "hits at estimated : " + itos(_hits_at_estimated) + ", above : " + itos(_hits_above_estimated) + "( " + itos(_hits_one_above_estimated) + " ), below : " + itos(_hits_below_estimated) + " (" + itos(_hits_one_below_estimated) + " )";
- print_line(sz);
- }
- #endif
- return;
- }
- const int SIGNIFICANCE_UP = 1;
- const int SIGNIFICANCE_DOWN = 2;
- // we are not usually interested in slowing the estimate
- // but we may have overshot, so make it possible to reduce
- if (fps < _estimated_fps) {
- // micro changes
- if (fps == (_estimated_fps - 1)) {
- _hits_one_below_estimated++;
- if ((_hits_one_below_estimated > _hits_at_estimated) && (_hits_one_below_estimated > SIGNIFICANCE_DOWN)) {
- _estimated_fps--;
- made_new_estimate();
- }
- return;
- } else {
- _hits_below_estimated++;
- // don't allow large lowering if we are established at a refresh rate, as it will probably be dropped frames
- bool established = _estimate_complete && (_hits_at_estimated > 10);
- // macro changes
- // note there is a large barrier to macro lowering. That is because it is more likely to be dropped frames
- // than mis-estimation of the refresh rate.
- if (!established) {
- if (((_hits_below_estimated / 8) > _hits_at_estimated) && (_hits_below_estimated > SIGNIFICANCE_DOWN)) {
- // decrease the estimate
- _estimated_fps--;
- made_new_estimate();
- }
- }
- return;
- }
- }
- // Changes increasing the estimate.
- // micro changes
- if (fps == (_estimated_fps + 1)) {
- _hits_one_above_estimated++;
- if ((_hits_one_above_estimated > _hits_at_estimated) && (_hits_one_above_estimated > SIGNIFICANCE_UP)) {
- _estimated_fps++;
- made_new_estimate();
- }
- return;
- } else {
- _hits_above_estimated++;
- // macro changes
- if ((_hits_above_estimated > _hits_at_estimated) && (_hits_above_estimated > SIGNIFICANCE_UP)) {
- // increase the estimate
- int change = fps - _estimated_fps;
- change /= 2;
- change = MAX(1, change);
- _estimated_fps += change;
- made_new_estimate();
- }
- return;
- }
- }
- bool MainTimerSync::DeltaSmoother::fps_allows_smoothing(int64_t p_delta) {
- _measurement_time += p_delta;
- _measurement_frame_count++;
- if (_measurement_frame_count == _measurement_end_frame) {
- // only switch on or off if the estimate is complete
- if (_estimate_complete) {
- int64_t time_passed = _measurement_time - _measurement_start_time;
- // average delta
- time_passed /= MEASURE_FPS_OVER_NUM_FRAMES;
- // estimate fps
- if (time_passed) {
- double fps = 1000000.0 / time_passed;
- double ratio = fps / (double)_estimated_fps;
- //print_line("ratio : " + String(Variant(ratio)));
- if ((ratio > 0.95) && (ratio < 1.05)) {
- _measurement_allows_smoothing = true;
- } else {
- _measurement_allows_smoothing = false;
- }
- }
- } // estimate complete
- // new start time for next iteration
- _measurement_start_time = _measurement_time;
- _measurement_end_frame += MEASURE_FPS_OVER_NUM_FRAMES;
- }
- return _measurement_allows_smoothing;
- }
- int64_t MainTimerSync::DeltaSmoother::smooth_delta(int64_t p_delta) {
- // Conditions to disable smoothing.
- // Note that vsync is a request, it cannot be relied on, the OS may override this.
- // If the OS turns vsync on without vsync in the app, smoothing will not be enabled.
- // If the OS turns vsync off with sync enabled in the app, the smoothing must detect this
- // via the error metric and switch off.
- if (!OS::get_singleton()->is_delta_smoothing_enabled() || !OS::get_singleton()->is_vsync_enabled() || Engine::get_singleton()->is_editor_hint()) {
- return p_delta;
- }
- // Very important, ignore long deltas and pass them back unmodified.
- // This is to deal with resuming after suspend for long periods.
- if (p_delta > 1000000) {
- return p_delta;
- }
- // keep a running guesstimate of the FPS, and turn off smoothing if
- // conditions not close to the estimated FPS
- if (!fps_allows_smoothing(p_delta)) {
- return p_delta;
- }
- // we can't cope with negative deltas .. OS bug on some hardware
- // and also very small deltas caused by vsync being off.
- // This could possibly be part of a hiccup, this value isn't fixed in stone...
- if (p_delta < 1000) {
- return p_delta;
- }
- // note still some vsync off will still get through to this point...
- // and we need to cope with it by not converging the estimator / and / or not smoothing
- update_refresh_rate_estimator(p_delta);
- // no smoothing until we know what the refresh rate is
- if (!_estimate_complete) {
- return p_delta;
- }
- // accumulate the time we have available to use
- _leftover_time += p_delta;
- // how many vsyncs units can we fit?
- int64_t units = _leftover_time / _vsync_delta;
- // a delta must include minimum 1 vsync
- // (if it is less than that, it is either random error or we are no longer running at the vsync rate,
- // in which case we should switch off delta smoothing, or re-estimate the refresh rate)
- units = MAX(units, 1);
- _leftover_time -= units * _vsync_delta;
- // print_line("units " + itos(units) + ", leftover " + itos(_leftover_time/1000) + " ms");
- return units * _vsync_delta;
- }
- /////////////////////////////////////
- // returns the fraction of p_frame_slice required for the timer to overshoot
- // before advance_core considers changing the physics_steps return from
- // the typical values as defined by typical_physics_steps
- float MainTimerSync::get_physics_jitter_fix() {
- return Engine::get_singleton()->get_physics_jitter_fix();
- }
- // gets our best bet for the average number of physics steps per render frame
- // return value: number of frames back this data is consistent
- int MainTimerSync::get_average_physics_steps(float &p_min, float &p_max) {
- p_min = typical_physics_steps[0];
- p_max = p_min + 1;
- for (int i = 1; i < CONTROL_STEPS; ++i) {
- const float typical_lower = typical_physics_steps[i];
- const float current_min = typical_lower / (i + 1);
- if (current_min > p_max) {
- return i; // bail out if further restrictions would void the interval
- } else if (current_min > p_min) {
- p_min = current_min;
- }
- const float current_max = (typical_lower + 1) / (i + 1);
- if (current_max < p_min) {
- return i;
- } else if (current_max < p_max) {
- p_max = current_max;
- }
- }
- return CONTROL_STEPS;
- }
- // advance physics clock by p_idle_step, return appropriate number of steps to simulate
- MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_per_second, float p_idle_step) {
- MainFrameTime ret;
- ret.idle_step = p_idle_step;
- // simple determination of number of physics iteration
- time_accum += ret.idle_step;
- ret.physics_steps = floor(time_accum * p_iterations_per_second);
- int min_typical_steps = typical_physics_steps[0];
- int max_typical_steps = min_typical_steps + 1;
- // given the past recorded steps and typical steps to match, calculate bounds for this
- // step to be typical
- bool update_typical = false;
- for (int i = 0; i < CONTROL_STEPS - 1; ++i) {
- int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i];
- if (steps_left_to_match_typical > max_typical_steps ||
- steps_left_to_match_typical + 1 < min_typical_steps) {
- update_typical = true;
- break;
- }
- if (steps_left_to_match_typical > min_typical_steps) {
- min_typical_steps = steps_left_to_match_typical;
- }
- if (steps_left_to_match_typical + 1 < max_typical_steps) {
- max_typical_steps = steps_left_to_match_typical + 1;
- }
- }
- #ifdef DEBUG_ENABLED
- if (max_typical_steps < 0) {
- WARN_PRINT_ONCE("`max_typical_steps` is negative. This could hint at an engine bug or system timer misconfiguration.");
- }
- #endif
- // try to keep it consistent with previous iterations
- if (ret.physics_steps < min_typical_steps) {
- const int max_possible_steps = floor((time_accum)*p_iterations_per_second + get_physics_jitter_fix());
- if (max_possible_steps < min_typical_steps) {
- ret.physics_steps = max_possible_steps;
- update_typical = true;
- } else {
- ret.physics_steps = min_typical_steps;
- }
- } else if (ret.physics_steps > max_typical_steps) {
- const int min_possible_steps = floor((time_accum)*p_iterations_per_second - get_physics_jitter_fix());
- if (min_possible_steps > max_typical_steps) {
- ret.physics_steps = min_possible_steps;
- update_typical = true;
- } else {
- ret.physics_steps = max_typical_steps;
- }
- }
- if (ret.physics_steps < 0) {
- ret.physics_steps = 0;
- }
- time_accum -= ret.physics_steps * p_frame_slice;
- // keep track of accumulated step counts
- for (int i = CONTROL_STEPS - 2; i >= 0; --i) {
- accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps;
- }
- accumulated_physics_steps[0] = ret.physics_steps;
- if (update_typical) {
- for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
- if (typical_physics_steps[i] > accumulated_physics_steps[i]) {
- typical_physics_steps[i] = accumulated_physics_steps[i];
- } else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) {
- typical_physics_steps[i] = accumulated_physics_steps[i] - 1;
- }
- }
- }
- return ret;
- }
- // calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero
- MainFrameTime MainTimerSync::advance_checked(float p_frame_slice, int p_iterations_per_second, float p_idle_step) {
- if (fixed_fps != -1) {
- p_idle_step = 1.0 / fixed_fps;
- }
- float min_output_step = p_idle_step / 8;
- min_output_step = MAX(min_output_step, 1E-6);
- // compensate for last deficit
- p_idle_step += time_deficit;
- MainFrameTime ret = advance_core(p_frame_slice, p_iterations_per_second, p_idle_step);
- // we will do some clamping on ret.idle_step and need to sync those changes to time_accum,
- // that's easiest if we just remember their fixed difference now
- const double idle_minus_accum = ret.idle_step - time_accum;
- // first, least important clamping: keep ret.idle_step consistent with typical_physics_steps.
- // this smoothes out the idle steps and culls small but quick variations.
- {
- float min_average_physics_steps, max_average_physics_steps;
- int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps);
- if (consistent_steps > 3) {
- ret.clamp_idle(min_average_physics_steps * p_frame_slice, max_average_physics_steps * p_frame_slice);
- }
- }
- // second clamping: keep abs(time_deficit) < jitter_fix * frame_slise
- float max_clock_deviation = get_physics_jitter_fix() * p_frame_slice;
- ret.clamp_idle(p_idle_step - max_clock_deviation, p_idle_step + max_clock_deviation);
- // last clamping: make sure time_accum is between 0 and p_frame_slice for consistency between physics and idle
- ret.clamp_idle(idle_minus_accum, idle_minus_accum + p_frame_slice);
- // all the operations above may have turned ret.idle_step negative or zero, keep a minimal value
- if (ret.idle_step < min_output_step) {
- ret.idle_step = min_output_step;
- }
- // restore time_accum
- time_accum = ret.idle_step - idle_minus_accum;
- // forcing ret.idle_step to be positive may trigger a violation of the
- // promise that time_accum is between 0 and p_frame_slice
- #ifdef DEBUG_ENABLED
- if (time_accum < -1E-7) {
- WARN_PRINT_ONCE("Intermediate value of `time_accum` is negative. This could hint at an engine bug or system timer misconfiguration.");
- }
- #endif
- if (time_accum > p_frame_slice) {
- const int extra_physics_steps = floor(time_accum * p_iterations_per_second);
- time_accum -= extra_physics_steps * p_frame_slice;
- ret.physics_steps += extra_physics_steps;
- }
- #ifdef DEBUG_ENABLED
- if (time_accum < -1E-7) {
- WARN_PRINT_ONCE("Final value of `time_accum` is negative. It should always be between 0 and `p_physics_step`. This hints at an engine bug.");
- }
- if (time_accum > p_frame_slice + 1E-7) {
- WARN_PRINT_ONCE("Final value of `time_accum` is larger than `p_frame_slice`. It should always be between 0 and `p_frame_slice`. This hints at an engine bug.");
- }
- #endif
- // track deficit
- time_deficit = p_idle_step - ret.idle_step;
- // p_frame_slice is 1.0 / iterations_per_sec
- // i.e. the time in seconds taken by a physics tick
- ret.interpolation_fraction = time_accum / p_frame_slice;
- return ret;
- }
- // determine wall clock step since last iteration
- float MainTimerSync::get_cpu_idle_step() {
- uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec;
- last_cpu_ticks_usec = current_cpu_ticks_usec;
- cpu_ticks_elapsed = _delta_smoother.smooth_delta(cpu_ticks_elapsed);
- return cpu_ticks_elapsed / 1000000.0;
- }
- MainTimerSync::MainTimerSync() :
- last_cpu_ticks_usec(0),
- current_cpu_ticks_usec(0),
- time_accum(0),
- time_deficit(0),
- fixed_fps(0) {
- for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
- typical_physics_steps[i] = i;
- accumulated_physics_steps[i] = i;
- }
- }
- // start the clock
- void MainTimerSync::init(uint64_t p_cpu_ticks_usec) {
- current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec;
- }
- // set measured wall clock time
- void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) {
- current_cpu_ticks_usec = p_cpu_ticks_usec;
- }
- void MainTimerSync::set_fixed_fps(int p_fixed_fps) {
- fixed_fps = p_fixed_fps;
- }
- // advance one frame, return timesteps to take
- MainFrameTime MainTimerSync::advance(float p_frame_slice, int p_iterations_per_second) {
- float cpu_idle_step = get_cpu_idle_step();
- return advance_checked(p_frame_slice, p_iterations_per_second, cpu_idle_step);
- }
|