pool_allocator.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. /*************************************************************************/
  2. /* pool_allocator.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "pool_allocator.h"
  31. #include "core/error_macros.h"
  32. #include "core/os/copymem.h"
  33. #include "core/os/memory.h"
  34. #include "core/os/os.h"
  35. #include "core/print_string.h"
  36. #include <assert.h>
  37. #define COMPACT_CHUNK(m_entry, m_to_pos) \
  38. do { \
  39. void *_dst = &((unsigned char *)pool)[m_to_pos]; \
  40. void *_src = &((unsigned char *)pool)[(m_entry).pos]; \
  41. movemem(_dst, _src, aligned((m_entry).len)); \
  42. (m_entry).pos = m_to_pos; \
  43. } while (0);
  44. void PoolAllocator::mt_lock() const {
  45. }
  46. void PoolAllocator::mt_unlock() const {
  47. }
  48. bool PoolAllocator::get_free_entry(EntryArrayPos *p_pos) {
  49. if (entry_count == entry_max)
  50. return false;
  51. for (int i = 0; i < entry_max; i++) {
  52. if (entry_array[i].len == 0) {
  53. *p_pos = i;
  54. return true;
  55. }
  56. }
  57. ERR_PRINT("Out of memory Chunks!");
  58. return false; //
  59. }
  60. /**
  61. * Find a hole
  62. * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end
  63. * @param p_for_size hole size
  64. * @return false if hole found, true if no hole found
  65. */
  66. bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) {
  67. /* position where previous entry ends. Defaults to zero (begin of pool) */
  68. int prev_entry_end_pos = 0;
  69. for (int i = 0; i < entry_count; i++) {
  70. Entry &entry = entry_array[entry_indices[i]];
  71. /* determine hole size to previous entry */
  72. int hole_size = entry.pos - prev_entry_end_pos;
  73. /* determine if what we want fits in that hole */
  74. if (hole_size >= p_for_size) {
  75. *p_pos = i;
  76. return true;
  77. }
  78. /* prepare for next one */
  79. prev_entry_end_pos = entry_end(entry);
  80. }
  81. /* No holes between entries, check at the end..*/
  82. if ((pool_size - prev_entry_end_pos) >= p_for_size) {
  83. *p_pos = entry_count;
  84. return true;
  85. }
  86. return false;
  87. }
  88. void PoolAllocator::compact(int p_up_to) {
  89. uint32_t prev_entry_end_pos = 0;
  90. if (p_up_to < 0)
  91. p_up_to = entry_count;
  92. for (int i = 0; i < p_up_to; i++) {
  93. Entry &entry = entry_array[entry_indices[i]];
  94. /* determine hole size to previous entry */
  95. int hole_size = entry.pos - prev_entry_end_pos;
  96. /* if we can compact, do it */
  97. if (hole_size > 0 && !entry.lock) {
  98. COMPACT_CHUNK(entry, prev_entry_end_pos);
  99. }
  100. /* prepare for next one */
  101. prev_entry_end_pos = entry_end(entry);
  102. }
  103. }
  104. void PoolAllocator::compact_up(int p_from) {
  105. uint32_t next_entry_end_pos = pool_size; // - static_area_size;
  106. for (int i = entry_count - 1; i >= p_from; i--) {
  107. Entry &entry = entry_array[entry_indices[i]];
  108. /* determine hole size to nextious entry */
  109. int hole_size = next_entry_end_pos - (entry.pos + aligned(entry.len));
  110. /* if we can compact, do it */
  111. if (hole_size > 0 && !entry.lock) {
  112. COMPACT_CHUNK(entry, (next_entry_end_pos - aligned(entry.len)));
  113. }
  114. /* prepare for next one */
  115. next_entry_end_pos = entry.pos;
  116. }
  117. }
  118. bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos, Entry *p_entry) {
  119. EntryArrayPos entry_pos = entry_max;
  120. for (int i = 0; i < entry_count; i++) {
  121. if (&entry_array[entry_indices[i]] == p_entry) {
  122. entry_pos = i;
  123. break;
  124. }
  125. }
  126. if (entry_pos == entry_max)
  127. return false;
  128. *p_map_pos = entry_pos;
  129. return true;
  130. }
  131. PoolAllocator::ID PoolAllocator::alloc(int p_size) {
  132. ERR_FAIL_COND_V(p_size < 1, POOL_ALLOCATOR_INVALID_ID);
  133. #ifdef DEBUG_ENABLED
  134. if (p_size > free_mem) OS::get_singleton()->debug_break();
  135. #endif
  136. ERR_FAIL_COND_V(p_size > free_mem, POOL_ALLOCATOR_INVALID_ID);
  137. mt_lock();
  138. if (entry_count == entry_max) {
  139. mt_unlock();
  140. ERR_PRINT("entry_count==entry_max");
  141. return POOL_ALLOCATOR_INVALID_ID;
  142. }
  143. int size_to_alloc = aligned(p_size);
  144. EntryIndicesPos new_entry_indices_pos;
  145. if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
  146. /* No hole could be found, try compacting mem */
  147. compact();
  148. /* Then search again */
  149. if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
  150. mt_unlock();
  151. ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "Memory can't be compacted further.");
  152. }
  153. }
  154. EntryArrayPos new_entry_array_pos;
  155. bool found_free_entry = get_free_entry(&new_entry_array_pos);
  156. if (!found_free_entry) {
  157. mt_unlock();
  158. ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "No free entry found in PoolAllocator.");
  159. }
  160. /* move all entry indices up, make room for this one */
  161. for (int i = entry_count; i > new_entry_indices_pos; i--) {
  162. entry_indices[i] = entry_indices[i - 1];
  163. }
  164. entry_indices[new_entry_indices_pos] = new_entry_array_pos;
  165. entry_count++;
  166. Entry &entry = entry_array[entry_indices[new_entry_indices_pos]];
  167. entry.len = p_size;
  168. entry.pos = (new_entry_indices_pos == 0) ? 0 : entry_end(entry_array[entry_indices[new_entry_indices_pos - 1]]); //alloc either at beginning or end of previous
  169. entry.lock = 0;
  170. entry.check = (check_count++) & CHECK_MASK;
  171. free_mem -= size_to_alloc;
  172. if (free_mem < free_mem_peak)
  173. free_mem_peak = free_mem;
  174. ID retval = (entry_indices[new_entry_indices_pos] << CHECK_BITS) | entry.check;
  175. mt_unlock();
  176. //ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval );
  177. return retval;
  178. }
  179. PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) {
  180. unsigned int check = p_mem & CHECK_MASK;
  181. int entry = p_mem >> CHECK_BITS;
  182. ERR_FAIL_INDEX_V(entry, entry_max, NULL);
  183. ERR_FAIL_COND_V(entry_array[entry].check != check, NULL);
  184. ERR_FAIL_COND_V(entry_array[entry].len == 0, NULL);
  185. return &entry_array[entry];
  186. }
  187. const PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) const {
  188. unsigned int check = p_mem & CHECK_MASK;
  189. int entry = p_mem >> CHECK_BITS;
  190. ERR_FAIL_INDEX_V(entry, entry_max, NULL);
  191. ERR_FAIL_COND_V(entry_array[entry].check != check, NULL);
  192. ERR_FAIL_COND_V(entry_array[entry].len == 0, NULL);
  193. return &entry_array[entry];
  194. }
  195. void PoolAllocator::free(ID p_mem) {
  196. mt_lock();
  197. Entry *e = get_entry(p_mem);
  198. if (!e) {
  199. mt_unlock();
  200. ERR_PRINT("!e");
  201. return;
  202. }
  203. if (e->lock) {
  204. mt_unlock();
  205. ERR_PRINT("e->lock");
  206. return;
  207. }
  208. EntryIndicesPos entry_indices_pos;
  209. bool index_found = find_entry_index(&entry_indices_pos, e);
  210. if (!index_found) {
  211. mt_unlock();
  212. ERR_FAIL_COND(!index_found);
  213. }
  214. for (int i = entry_indices_pos; i < (entry_count - 1); i++) {
  215. entry_indices[i] = entry_indices[i + 1];
  216. }
  217. entry_count--;
  218. free_mem += aligned(e->len);
  219. e->clear();
  220. mt_unlock();
  221. }
  222. int PoolAllocator::get_size(ID p_mem) const {
  223. int size;
  224. mt_lock();
  225. const Entry *e = get_entry(p_mem);
  226. if (!e) {
  227. mt_unlock();
  228. ERR_PRINT("!e");
  229. return 0;
  230. }
  231. size = e->len;
  232. mt_unlock();
  233. return size;
  234. }
  235. Error PoolAllocator::resize(ID p_mem, int p_new_size) {
  236. mt_lock();
  237. Entry *e = get_entry(p_mem);
  238. if (!e) {
  239. mt_unlock();
  240. ERR_FAIL_COND_V(!e, ERR_INVALID_PARAMETER);
  241. }
  242. if (needs_locking && e->lock) {
  243. mt_unlock();
  244. ERR_FAIL_COND_V(e->lock, ERR_ALREADY_IN_USE);
  245. }
  246. uint32_t alloc_size = aligned(p_new_size);
  247. if ((uint32_t)aligned(e->len) == alloc_size) {
  248. e->len = p_new_size;
  249. mt_unlock();
  250. return OK;
  251. } else if (e->len > (uint32_t)p_new_size) {
  252. free_mem += aligned(e->len);
  253. free_mem -= alloc_size;
  254. e->len = p_new_size;
  255. mt_unlock();
  256. return OK;
  257. }
  258. //p_new_size = align(p_new_size)
  259. int _free = free_mem; // - static_area_size;
  260. if (uint32_t(_free + aligned(e->len)) < alloc_size) {
  261. mt_unlock();
  262. ERR_FAIL_V(ERR_OUT_OF_MEMORY);
  263. };
  264. EntryIndicesPos entry_indices_pos;
  265. bool index_found = find_entry_index(&entry_indices_pos, e);
  266. if (!index_found) {
  267. mt_unlock();
  268. ERR_FAIL_COND_V(!index_found, ERR_BUG);
  269. }
  270. //no need to move stuff around, it fits before the next block
  271. uint32_t next_pos;
  272. if (entry_indices_pos + 1 == entry_count) {
  273. next_pos = pool_size; // - static_area_size;
  274. } else {
  275. next_pos = entry_array[entry_indices[entry_indices_pos + 1]].pos;
  276. };
  277. if ((next_pos - e->pos) > alloc_size) {
  278. free_mem += aligned(e->len);
  279. e->len = p_new_size;
  280. free_mem -= alloc_size;
  281. mt_unlock();
  282. return OK;
  283. }
  284. //it doesn't fit, compact around BEFORE current index (make room behind)
  285. compact(entry_indices_pos + 1);
  286. if ((next_pos - e->pos) > alloc_size) {
  287. //now fits! hooray!
  288. free_mem += aligned(e->len);
  289. e->len = p_new_size;
  290. free_mem -= alloc_size;
  291. mt_unlock();
  292. if (free_mem < free_mem_peak)
  293. free_mem_peak = free_mem;
  294. return OK;
  295. }
  296. //STILL doesn't fit, compact around AFTER current index (make room after)
  297. compact_up(entry_indices_pos + 1);
  298. if ((entry_array[entry_indices[entry_indices_pos + 1]].pos - e->pos) > alloc_size) {
  299. //now fits! hooray!
  300. free_mem += aligned(e->len);
  301. e->len = p_new_size;
  302. free_mem -= alloc_size;
  303. mt_unlock();
  304. if (free_mem < free_mem_peak)
  305. free_mem_peak = free_mem;
  306. return OK;
  307. }
  308. mt_unlock();
  309. ERR_FAIL_V(ERR_OUT_OF_MEMORY);
  310. }
  311. Error PoolAllocator::lock(ID p_mem) {
  312. if (!needs_locking)
  313. return OK;
  314. mt_lock();
  315. Entry *e = get_entry(p_mem);
  316. if (!e) {
  317. mt_unlock();
  318. ERR_PRINT("!e");
  319. return ERR_INVALID_PARAMETER;
  320. }
  321. e->lock++;
  322. mt_unlock();
  323. return OK;
  324. }
  325. bool PoolAllocator::is_locked(ID p_mem) const {
  326. if (!needs_locking)
  327. return false;
  328. mt_lock();
  329. const Entry *e = ((PoolAllocator *)(this))->get_entry(p_mem);
  330. if (!e) {
  331. mt_unlock();
  332. ERR_PRINT("!e");
  333. return false;
  334. }
  335. bool locked = e->lock;
  336. mt_unlock();
  337. return locked;
  338. }
  339. const void *PoolAllocator::get(ID p_mem) const {
  340. if (!needs_locking) {
  341. const Entry *e = get_entry(p_mem);
  342. ERR_FAIL_COND_V(!e, NULL);
  343. return &pool[e->pos];
  344. }
  345. mt_lock();
  346. const Entry *e = get_entry(p_mem);
  347. if (!e) {
  348. mt_unlock();
  349. ERR_FAIL_COND_V(!e, NULL);
  350. }
  351. if (e->lock == 0) {
  352. mt_unlock();
  353. ERR_PRINT("e->lock == 0");
  354. return NULL;
  355. }
  356. if ((int)e->pos >= pool_size) {
  357. mt_unlock();
  358. ERR_PRINT("e->pos<0 || e->pos>=pool_size");
  359. return NULL;
  360. }
  361. const void *ptr = &pool[e->pos];
  362. mt_unlock();
  363. return ptr;
  364. }
  365. void *PoolAllocator::get(ID p_mem) {
  366. if (!needs_locking) {
  367. Entry *e = get_entry(p_mem);
  368. ERR_FAIL_COND_V(!e, NULL);
  369. return &pool[e->pos];
  370. }
  371. mt_lock();
  372. Entry *e = get_entry(p_mem);
  373. if (!e) {
  374. mt_unlock();
  375. ERR_FAIL_COND_V(!e, NULL);
  376. }
  377. if (e->lock == 0) {
  378. //assert(0);
  379. mt_unlock();
  380. ERR_PRINT("e->lock == 0");
  381. return NULL;
  382. }
  383. if ((int)e->pos >= pool_size) {
  384. mt_unlock();
  385. ERR_PRINT("e->pos<0 || e->pos>=pool_size");
  386. return NULL;
  387. }
  388. void *ptr = &pool[e->pos];
  389. mt_unlock();
  390. return ptr;
  391. }
  392. void PoolAllocator::unlock(ID p_mem) {
  393. if (!needs_locking)
  394. return;
  395. mt_lock();
  396. Entry *e = get_entry(p_mem);
  397. if (!e) {
  398. mt_unlock();
  399. ERR_FAIL_COND(!e);
  400. }
  401. if (e->lock == 0) {
  402. mt_unlock();
  403. ERR_PRINT("e->lock == 0");
  404. return;
  405. }
  406. e->lock--;
  407. mt_unlock();
  408. }
  409. int PoolAllocator::get_used_mem() const {
  410. return pool_size - free_mem;
  411. }
  412. int PoolAllocator::get_free_peak() {
  413. return free_mem_peak;
  414. }
  415. int PoolAllocator::get_free_mem() {
  416. return free_mem;
  417. }
  418. void PoolAllocator::create_pool(void *p_mem, int p_size, int p_max_entries) {
  419. pool = (uint8_t *)p_mem;
  420. pool_size = p_size;
  421. entry_array = memnew_arr(Entry, p_max_entries);
  422. entry_indices = memnew_arr(int, p_max_entries);
  423. entry_max = p_max_entries;
  424. entry_count = 0;
  425. free_mem = p_size;
  426. free_mem_peak = p_size;
  427. check_count = 0;
  428. }
  429. PoolAllocator::PoolAllocator(int p_size, bool p_needs_locking, int p_max_entries) {
  430. mem_ptr = memalloc(p_size);
  431. ERR_FAIL_COND(!mem_ptr);
  432. align = 1;
  433. create_pool(mem_ptr, p_size, p_max_entries);
  434. needs_locking = p_needs_locking;
  435. }
  436. PoolAllocator::PoolAllocator(void *p_mem, int p_size, int p_align, bool p_needs_locking, int p_max_entries) {
  437. if (p_align > 1) {
  438. uint8_t *mem8 = (uint8_t *)p_mem;
  439. uint64_t ofs = (uint64_t)mem8;
  440. if (ofs % p_align) {
  441. int dif = p_align - (ofs % p_align);
  442. mem8 += p_align - (ofs % p_align);
  443. p_size -= dif;
  444. p_mem = (void *)mem8;
  445. };
  446. };
  447. create_pool(p_mem, p_size, p_max_entries);
  448. needs_locking = p_needs_locking;
  449. align = p_align;
  450. mem_ptr = NULL;
  451. }
  452. PoolAllocator::PoolAllocator(int p_align, int p_size, bool p_needs_locking, int p_max_entries) {
  453. ERR_FAIL_COND(p_align < 1);
  454. mem_ptr = Memory::alloc_static(p_size + p_align, true);
  455. uint8_t *mem8 = (uint8_t *)mem_ptr;
  456. uint64_t ofs = (uint64_t)mem8;
  457. if (ofs % p_align)
  458. mem8 += p_align - (ofs % p_align);
  459. create_pool(mem8, p_size, p_max_entries);
  460. needs_locking = p_needs_locking;
  461. align = p_align;
  462. }
  463. PoolAllocator::~PoolAllocator() {
  464. if (mem_ptr)
  465. memfree(mem_ptr);
  466. memdelete_arr(entry_array);
  467. memdelete_arr(entry_indices);
  468. }