vector3.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. /*************************************************************************/
  2. /* vector3.h */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifndef VECTOR3_H
  31. #define VECTOR3_H
  32. #include "core/math/math_funcs.h"
  33. #include "core/ustring.h"
  34. class Basis;
  35. struct Vector3 {
  36. enum Axis {
  37. AXIS_X,
  38. AXIS_Y,
  39. AXIS_Z,
  40. };
  41. union {
  42. struct {
  43. real_t x;
  44. real_t y;
  45. real_t z;
  46. };
  47. real_t coord[3];
  48. };
  49. _FORCE_INLINE_ const real_t &operator[](int p_axis) const {
  50. return coord[p_axis];
  51. }
  52. _FORCE_INLINE_ real_t &operator[](int p_axis) {
  53. return coord[p_axis];
  54. }
  55. void set_axis(int p_axis, real_t p_value);
  56. real_t get_axis(int p_axis) const;
  57. int min_axis() const;
  58. int max_axis() const;
  59. _FORCE_INLINE_ real_t length() const;
  60. _FORCE_INLINE_ real_t length_squared() const;
  61. _FORCE_INLINE_ void normalize();
  62. _FORCE_INLINE_ Vector3 normalized() const;
  63. _FORCE_INLINE_ bool is_normalized() const;
  64. _FORCE_INLINE_ Vector3 inverse() const;
  65. _FORCE_INLINE_ void zero();
  66. void snap(Vector3 p_val);
  67. Vector3 snapped(Vector3 p_val) const;
  68. void rotate(const Vector3 &p_axis, real_t p_phi);
  69. Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;
  70. /* Static Methods between 2 vector3s */
  71. _FORCE_INLINE_ Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const;
  72. _FORCE_INLINE_ Vector3 slerp(const Vector3 &p_b, real_t p_t) const;
  73. Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
  74. Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
  75. Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
  76. _FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
  77. _FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;
  78. Basis outer(const Vector3 &p_b) const;
  79. Basis to_diagonal_matrix() const;
  80. _FORCE_INLINE_ Vector3 abs() const;
  81. _FORCE_INLINE_ Vector3 floor() const;
  82. _FORCE_INLINE_ Vector3 sign() const;
  83. _FORCE_INLINE_ Vector3 ceil() const;
  84. _FORCE_INLINE_ Vector3 round() const;
  85. _FORCE_INLINE_ real_t distance_to(const Vector3 &p_b) const;
  86. _FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_b) const;
  87. _FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
  88. _FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
  89. _FORCE_INLINE_ Vector3 project(const Vector3 &p_b) const;
  90. _FORCE_INLINE_ real_t angle_to(const Vector3 &p_b) const;
  91. _FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_b) const;
  92. _FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
  93. _FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
  94. _FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
  95. bool is_equal_approx(const Vector3 &p_v) const;
  96. /* Operators */
  97. _FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
  98. _FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
  99. _FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
  100. _FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
  101. _FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
  102. _FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
  103. _FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
  104. _FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
  105. _FORCE_INLINE_ Vector3 &operator*=(real_t p_scalar);
  106. _FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const;
  107. _FORCE_INLINE_ Vector3 &operator/=(real_t p_scalar);
  108. _FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const;
  109. _FORCE_INLINE_ Vector3 operator-() const;
  110. _FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
  111. _FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
  112. _FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
  113. _FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
  114. _FORCE_INLINE_ bool operator>(const Vector3 &p_v) const;
  115. _FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;
  116. operator String() const;
  117. _FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) {
  118. x = p_x;
  119. y = p_y;
  120. z = p_z;
  121. }
  122. _FORCE_INLINE_ Vector3() { x = y = z = 0; }
  123. };
  124. Vector3 Vector3::cross(const Vector3 &p_b) const {
  125. Vector3 ret(
  126. (y * p_b.z) - (z * p_b.y),
  127. (z * p_b.x) - (x * p_b.z),
  128. (x * p_b.y) - (y * p_b.x));
  129. return ret;
  130. }
  131. real_t Vector3::dot(const Vector3 &p_b) const {
  132. return x * p_b.x + y * p_b.y + z * p_b.z;
  133. }
  134. Vector3 Vector3::abs() const {
  135. return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
  136. }
  137. Vector3 Vector3::sign() const {
  138. return Vector3(SGN(x), SGN(y), SGN(z));
  139. }
  140. Vector3 Vector3::floor() const {
  141. return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
  142. }
  143. Vector3 Vector3::ceil() const {
  144. return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
  145. }
  146. Vector3 Vector3::round() const {
  147. return Vector3(Math::round(x), Math::round(y), Math::round(z));
  148. }
  149. Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const {
  150. return Vector3(
  151. x + (p_t * (p_b.x - x)),
  152. y + (p_t * (p_b.y - y)),
  153. z + (p_t * (p_b.z - z)));
  154. }
  155. Vector3 Vector3::slerp(const Vector3 &p_b, real_t p_t) const {
  156. real_t theta = angle_to(p_b);
  157. return rotated(cross(p_b).normalized(), theta * p_t);
  158. }
  159. real_t Vector3::distance_to(const Vector3 &p_b) const {
  160. return (p_b - *this).length();
  161. }
  162. real_t Vector3::distance_squared_to(const Vector3 &p_b) const {
  163. return (p_b - *this).length_squared();
  164. }
  165. Vector3 Vector3::posmod(const real_t p_mod) const {
  166. return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
  167. }
  168. Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
  169. return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
  170. }
  171. Vector3 Vector3::project(const Vector3 &p_b) const {
  172. return p_b * (dot(p_b) / p_b.length_squared());
  173. }
  174. real_t Vector3::angle_to(const Vector3 &p_b) const {
  175. return Math::atan2(cross(p_b).length(), dot(p_b));
  176. }
  177. Vector3 Vector3::direction_to(const Vector3 &p_b) const {
  178. Vector3 ret(p_b.x - x, p_b.y - y, p_b.z - z);
  179. ret.normalize();
  180. return ret;
  181. }
  182. /* Operators */
  183. Vector3 &Vector3::operator+=(const Vector3 &p_v) {
  184. x += p_v.x;
  185. y += p_v.y;
  186. z += p_v.z;
  187. return *this;
  188. }
  189. Vector3 Vector3::operator+(const Vector3 &p_v) const {
  190. return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
  191. }
  192. Vector3 &Vector3::operator-=(const Vector3 &p_v) {
  193. x -= p_v.x;
  194. y -= p_v.y;
  195. z -= p_v.z;
  196. return *this;
  197. }
  198. Vector3 Vector3::operator-(const Vector3 &p_v) const {
  199. return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
  200. }
  201. Vector3 &Vector3::operator*=(const Vector3 &p_v) {
  202. x *= p_v.x;
  203. y *= p_v.y;
  204. z *= p_v.z;
  205. return *this;
  206. }
  207. Vector3 Vector3::operator*(const Vector3 &p_v) const {
  208. return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
  209. }
  210. Vector3 &Vector3::operator/=(const Vector3 &p_v) {
  211. x /= p_v.x;
  212. y /= p_v.y;
  213. z /= p_v.z;
  214. return *this;
  215. }
  216. Vector3 Vector3::operator/(const Vector3 &p_v) const {
  217. return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
  218. }
  219. Vector3 &Vector3::operator*=(real_t p_scalar) {
  220. x *= p_scalar;
  221. y *= p_scalar;
  222. z *= p_scalar;
  223. return *this;
  224. }
  225. _FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
  226. return p_vec * p_scalar;
  227. }
  228. Vector3 Vector3::operator*(real_t p_scalar) const {
  229. return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
  230. }
  231. Vector3 &Vector3::operator/=(real_t p_scalar) {
  232. x /= p_scalar;
  233. y /= p_scalar;
  234. z /= p_scalar;
  235. return *this;
  236. }
  237. Vector3 Vector3::operator/(real_t p_scalar) const {
  238. return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
  239. }
  240. Vector3 Vector3::operator-() const {
  241. return Vector3(-x, -y, -z);
  242. }
  243. bool Vector3::operator==(const Vector3 &p_v) const {
  244. return x == p_v.x && y == p_v.y && z == p_v.z;
  245. }
  246. bool Vector3::operator!=(const Vector3 &p_v) const {
  247. return x != p_v.x || y != p_v.y || z != p_v.z;
  248. }
  249. bool Vector3::operator<(const Vector3 &p_v) const {
  250. if (Math::is_equal_approx(x, p_v.x)) {
  251. if (Math::is_equal_approx(y, p_v.y))
  252. return z < p_v.z;
  253. else
  254. return y < p_v.y;
  255. } else {
  256. return x < p_v.x;
  257. }
  258. }
  259. bool Vector3::operator>(const Vector3 &p_v) const {
  260. if (Math::is_equal_approx(x, p_v.x)) {
  261. if (Math::is_equal_approx(y, p_v.y))
  262. return z > p_v.z;
  263. else
  264. return y > p_v.y;
  265. } else {
  266. return x > p_v.x;
  267. }
  268. }
  269. bool Vector3::operator<=(const Vector3 &p_v) const {
  270. if (Math::is_equal_approx(x, p_v.x)) {
  271. if (Math::is_equal_approx(y, p_v.y))
  272. return z <= p_v.z;
  273. else
  274. return y < p_v.y;
  275. } else {
  276. return x < p_v.x;
  277. }
  278. }
  279. bool Vector3::operator>=(const Vector3 &p_v) const {
  280. if (Math::is_equal_approx(x, p_v.x)) {
  281. if (Math::is_equal_approx(y, p_v.y))
  282. return z >= p_v.z;
  283. else
  284. return y > p_v.y;
  285. } else {
  286. return x > p_v.x;
  287. }
  288. }
  289. _FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
  290. return p_a.cross(p_b);
  291. }
  292. _FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
  293. return p_a.dot(p_b);
  294. }
  295. real_t Vector3::length() const {
  296. real_t x2 = x * x;
  297. real_t y2 = y * y;
  298. real_t z2 = z * z;
  299. return Math::sqrt(x2 + y2 + z2);
  300. }
  301. real_t Vector3::length_squared() const {
  302. real_t x2 = x * x;
  303. real_t y2 = y * y;
  304. real_t z2 = z * z;
  305. return x2 + y2 + z2;
  306. }
  307. void Vector3::normalize() {
  308. real_t lengthsq = length_squared();
  309. if (lengthsq == 0) {
  310. x = y = z = 0;
  311. } else {
  312. real_t length = Math::sqrt(lengthsq);
  313. x /= length;
  314. y /= length;
  315. z /= length;
  316. }
  317. }
  318. Vector3 Vector3::normalized() const {
  319. Vector3 v = *this;
  320. v.normalize();
  321. return v;
  322. }
  323. bool Vector3::is_normalized() const {
  324. // use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
  325. return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
  326. }
  327. Vector3 Vector3::inverse() const {
  328. return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
  329. }
  330. void Vector3::zero() {
  331. x = y = z = 0;
  332. }
  333. // slide returns the component of the vector along the given plane, specified by its normal vector.
  334. Vector3 Vector3::slide(const Vector3 &p_normal) const {
  335. #ifdef MATH_CHECKS
  336. ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
  337. #endif
  338. return *this - p_normal * this->dot(p_normal);
  339. }
  340. Vector3 Vector3::bounce(const Vector3 &p_normal) const {
  341. return -reflect(p_normal);
  342. }
  343. Vector3 Vector3::reflect(const Vector3 &p_normal) const {
  344. #ifdef MATH_CHECKS
  345. ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
  346. #endif
  347. return 2.0 * p_normal * this->dot(p_normal) - *this;
  348. }
  349. #endif // VECTOR3_H