shape_2d_sw.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074
  1. /*************************************************************************/
  2. /* shape_2d_sw.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "shape_2d_sw.h"
  31. #include "geometry.h"
  32. #include "sort.h"
  33. void Shape2DSW::configure(const Rect2 &p_aabb) {
  34. aabb = p_aabb;
  35. configured = true;
  36. for (Map<ShapeOwner2DSW *, int>::Element *E = owners.front(); E; E = E->next()) {
  37. ShapeOwner2DSW *co = (ShapeOwner2DSW *)E->key();
  38. co->_shape_changed();
  39. }
  40. }
  41. Vector2 Shape2DSW::get_support(const Vector2 &p_normal) const {
  42. Vector2 res[2];
  43. int amnt;
  44. get_supports(p_normal, res, amnt);
  45. return res[0];
  46. }
  47. void Shape2DSW::add_owner(ShapeOwner2DSW *p_owner) {
  48. Map<ShapeOwner2DSW *, int>::Element *E = owners.find(p_owner);
  49. if (E) {
  50. E->get()++;
  51. } else {
  52. owners[p_owner] = 1;
  53. }
  54. }
  55. void Shape2DSW::remove_owner(ShapeOwner2DSW *p_owner) {
  56. Map<ShapeOwner2DSW *, int>::Element *E = owners.find(p_owner);
  57. ERR_FAIL_COND(!E);
  58. E->get()--;
  59. if (E->get() == 0) {
  60. owners.erase(E);
  61. }
  62. }
  63. bool Shape2DSW::is_owner(ShapeOwner2DSW *p_owner) const {
  64. return owners.has(p_owner);
  65. }
  66. const Map<ShapeOwner2DSW *, int> &Shape2DSW::get_owners() const {
  67. return owners;
  68. }
  69. Shape2DSW::Shape2DSW() {
  70. custom_bias = 0;
  71. configured = false;
  72. }
  73. Shape2DSW::~Shape2DSW() {
  74. ERR_FAIL_COND(owners.size());
  75. }
  76. /*********************************************************/
  77. /*********************************************************/
  78. /*********************************************************/
  79. void LineShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  80. r_amount = 0;
  81. }
  82. bool LineShape2DSW::contains_point(const Vector2 &p_point) const {
  83. return normal.dot(p_point) < d;
  84. }
  85. bool LineShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  86. Vector2 segment = p_begin - p_end;
  87. real_t den = normal.dot(segment);
  88. //printf("den is %i\n",den);
  89. if (Math::abs(den) <= CMP_EPSILON) {
  90. return false;
  91. }
  92. real_t dist = (normal.dot(p_begin) - d) / den;
  93. //printf("dist is %i\n",dist);
  94. if (dist < -CMP_EPSILON || dist > (1.0 + CMP_EPSILON)) {
  95. return false;
  96. }
  97. r_point = p_begin + segment * -dist;
  98. r_normal = normal;
  99. return true;
  100. }
  101. real_t LineShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  102. return 0;
  103. }
  104. void LineShape2DSW::set_data(const Variant &p_data) {
  105. ERR_FAIL_COND(p_data.get_type() != Variant::ARRAY);
  106. Array arr = p_data;
  107. ERR_FAIL_COND(arr.size() != 2);
  108. normal = arr[0];
  109. d = arr[1];
  110. configure(Rect2(Vector2(-1e4, -1e4), Vector2(1e4 * 2, 1e4 * 2)));
  111. }
  112. Variant LineShape2DSW::get_data() const {
  113. Array arr;
  114. arr.resize(2);
  115. arr[0] = normal;
  116. arr[1] = d;
  117. return arr;
  118. }
  119. /*********************************************************/
  120. /*********************************************************/
  121. /*********************************************************/
  122. void RayShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  123. r_amount = 1;
  124. if (p_normal.y > 0)
  125. *r_supports = Vector2(0, length);
  126. else
  127. *r_supports = Vector2();
  128. }
  129. bool RayShape2DSW::contains_point(const Vector2 &p_point) const {
  130. return false;
  131. }
  132. bool RayShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  133. return false; //rays can't be intersected
  134. }
  135. real_t RayShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  136. return 0; //rays are mass-less
  137. }
  138. void RayShape2DSW::set_data(const Variant &p_data) {
  139. length = p_data;
  140. configure(Rect2(0, 0, 0.001, length));
  141. }
  142. Variant RayShape2DSW::get_data() const {
  143. return length;
  144. }
  145. /*********************************************************/
  146. /*********************************************************/
  147. /*********************************************************/
  148. void SegmentShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  149. if (Math::abs(p_normal.dot(n)) > _SEGMENT_IS_VALID_SUPPORT_THRESHOLD) {
  150. r_supports[0] = a;
  151. r_supports[1] = b;
  152. r_amount = 2;
  153. return;
  154. }
  155. real_t dp = p_normal.dot(b - a);
  156. if (dp > 0)
  157. *r_supports = b;
  158. else
  159. *r_supports = a;
  160. r_amount = 1;
  161. }
  162. bool SegmentShape2DSW::contains_point(const Vector2 &p_point) const {
  163. return false;
  164. }
  165. bool SegmentShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  166. if (!Geometry::segment_intersects_segment_2d(p_begin, p_end, a, b, &r_point))
  167. return false;
  168. if (n.dot(p_begin) > n.dot(a)) {
  169. r_normal = n;
  170. } else {
  171. r_normal = -n;
  172. }
  173. return true;
  174. }
  175. real_t SegmentShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  176. Vector2 s[2] = { a * p_scale, b * p_scale };
  177. real_t l = s[1].distance_to(s[0]);
  178. Vector2 ofs = (s[0] + s[1]) * 0.5;
  179. return p_mass * (l * l / 12.0 + ofs.length_squared());
  180. }
  181. void SegmentShape2DSW::set_data(const Variant &p_data) {
  182. ERR_FAIL_COND(p_data.get_type() != Variant::RECT2);
  183. Rect2 r = p_data;
  184. a = r.position;
  185. b = r.size;
  186. n = (b - a).tangent();
  187. Rect2 aabb;
  188. aabb.position = a;
  189. aabb.expand_to(b);
  190. if (aabb.size.x == 0)
  191. aabb.size.x = 0.001;
  192. if (aabb.size.y == 0)
  193. aabb.size.y = 0.001;
  194. configure(aabb);
  195. }
  196. Variant SegmentShape2DSW::get_data() const {
  197. Rect2 r;
  198. r.position = a;
  199. r.size = b;
  200. return r;
  201. }
  202. /*********************************************************/
  203. /*********************************************************/
  204. /*********************************************************/
  205. void CircleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  206. r_amount = 1;
  207. *r_supports = p_normal * radius;
  208. }
  209. bool CircleShape2DSW::contains_point(const Vector2 &p_point) const {
  210. return p_point.length_squared() < radius * radius;
  211. }
  212. bool CircleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  213. Vector2 line_vec = p_end - p_begin;
  214. real_t a, b, c;
  215. a = line_vec.dot(line_vec);
  216. b = 2 * p_begin.dot(line_vec);
  217. c = p_begin.dot(p_begin) - radius * radius;
  218. real_t sqrtterm = b * b - 4 * a * c;
  219. if (sqrtterm < 0)
  220. return false;
  221. sqrtterm = Math::sqrt(sqrtterm);
  222. real_t res = (-b - sqrtterm) / (2 * a);
  223. if (res < 0 || res > 1 + CMP_EPSILON) {
  224. return false;
  225. }
  226. r_point = p_begin + line_vec * res;
  227. r_normal = r_point.normalized();
  228. return true;
  229. }
  230. real_t CircleShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  231. return (radius * radius) * (p_scale.x * 0.5 + p_scale.y * 0.5);
  232. }
  233. void CircleShape2DSW::set_data(const Variant &p_data) {
  234. ERR_FAIL_COND(!p_data.is_num());
  235. radius = p_data;
  236. configure(Rect2(-radius, -radius, radius * 2, radius * 2));
  237. }
  238. Variant CircleShape2DSW::get_data() const {
  239. return radius;
  240. }
  241. /*********************************************************/
  242. /*********************************************************/
  243. /*********************************************************/
  244. void RectangleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  245. for (int i = 0; i < 2; i++) {
  246. Vector2 ag;
  247. ag[i] = 1.0;
  248. real_t dp = ag.dot(p_normal);
  249. if (Math::abs(dp) < _SEGMENT_IS_VALID_SUPPORT_THRESHOLD)
  250. continue;
  251. real_t sgn = dp > 0 ? 1.0 : -1.0;
  252. r_amount = 2;
  253. r_supports[0][i] = half_extents[i] * sgn;
  254. r_supports[0][i ^ 1] = half_extents[i ^ 1];
  255. r_supports[1][i] = half_extents[i] * sgn;
  256. r_supports[1][i ^ 1] = -half_extents[i ^ 1];
  257. return;
  258. }
  259. /* USE POINT */
  260. r_amount = 1;
  261. r_supports[0] = Vector2(
  262. (p_normal.x < 0) ? -half_extents.x : half_extents.x,
  263. (p_normal.y < 0) ? -half_extents.y : half_extents.y);
  264. }
  265. bool RectangleShape2DSW::contains_point(const Vector2 &p_point) const {
  266. return Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y;
  267. }
  268. bool RectangleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  269. return get_aabb().intersects_segment(p_begin, p_end, &r_point, &r_normal);
  270. }
  271. real_t RectangleShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  272. Vector2 he2 = half_extents * 2 * p_scale;
  273. return p_mass * he2.dot(he2) / 12.0;
  274. }
  275. void RectangleShape2DSW::set_data(const Variant &p_data) {
  276. ERR_FAIL_COND(p_data.get_type() != Variant::VECTOR2);
  277. half_extents = p_data;
  278. configure(Rect2(-half_extents, half_extents * 2.0));
  279. }
  280. Variant RectangleShape2DSW::get_data() const {
  281. return half_extents;
  282. }
  283. /*********************************************************/
  284. /*********************************************************/
  285. /*********************************************************/
  286. void CapsuleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  287. Vector2 n = p_normal;
  288. real_t d = n.y;
  289. if (Math::abs(d) < (1.0 - _SEGMENT_IS_VALID_SUPPORT_THRESHOLD)) {
  290. // make it flat
  291. n.y = 0.0;
  292. n.normalize();
  293. n *= radius;
  294. r_amount = 2;
  295. r_supports[0] = n;
  296. r_supports[0].y += height * 0.5;
  297. r_supports[1] = n;
  298. r_supports[1].y -= height * 0.5;
  299. } else {
  300. real_t h = (d > 0) ? height : -height;
  301. n *= radius;
  302. n.y += h * 0.5;
  303. r_amount = 1;
  304. *r_supports = n;
  305. }
  306. }
  307. bool CapsuleShape2DSW::contains_point(const Vector2 &p_point) const {
  308. Vector2 p = p_point;
  309. p.y = Math::abs(p.y);
  310. p.y -= height * 0.5;
  311. if (p.y < 0)
  312. p.y = 0;
  313. return p.length_squared() < radius * radius;
  314. }
  315. bool CapsuleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  316. real_t d = 1e10;
  317. Vector2 n = (p_end - p_begin).normalized();
  318. bool collided = false;
  319. //try spheres
  320. for (int i = 0; i < 2; i++) {
  321. Vector2 begin = p_begin;
  322. Vector2 end = p_end;
  323. real_t ofs = (i == 0) ? -height * 0.5 : height * 0.5;
  324. begin.y += ofs;
  325. end.y += ofs;
  326. Vector2 line_vec = end - begin;
  327. real_t a, b, c;
  328. a = line_vec.dot(line_vec);
  329. b = 2 * begin.dot(line_vec);
  330. c = begin.dot(begin) - radius * radius;
  331. real_t sqrtterm = b * b - 4 * a * c;
  332. if (sqrtterm < 0)
  333. continue;
  334. sqrtterm = Math::sqrt(sqrtterm);
  335. real_t res = (-b - sqrtterm) / (2 * a);
  336. if (res < 0 || res > 1 + CMP_EPSILON) {
  337. continue;
  338. }
  339. Vector2 point = begin + line_vec * res;
  340. Vector2 pointf(point.x, point.y - ofs);
  341. real_t pd = n.dot(pointf);
  342. if (pd < d) {
  343. r_point = pointf;
  344. r_normal = point.normalized();
  345. d = pd;
  346. collided = true;
  347. }
  348. }
  349. Vector2 rpos, rnorm;
  350. if (Rect2(Point2(-radius, -height * 0.5), Size2(radius * 2.0, height)).intersects_segment(p_begin, p_end, &rpos, &rnorm)) {
  351. real_t pd = n.dot(rpos);
  352. if (pd < d) {
  353. r_point = rpos;
  354. r_normal = rnorm;
  355. d = pd;
  356. collided = true;
  357. }
  358. }
  359. //return get_aabb().intersects_segment(p_begin,p_end,&r_point,&r_normal);
  360. return collided; //todo
  361. }
  362. real_t CapsuleShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  363. Vector2 he2 = Vector2(radius * 2, height + radius * 2) * p_scale;
  364. return p_mass * he2.dot(he2) / 12.0;
  365. }
  366. void CapsuleShape2DSW::set_data(const Variant &p_data) {
  367. ERR_FAIL_COND(p_data.get_type() != Variant::ARRAY && p_data.get_type() != Variant::VECTOR2);
  368. if (p_data.get_type() == Variant::ARRAY) {
  369. Array arr = p_data;
  370. ERR_FAIL_COND(arr.size() != 2);
  371. height = arr[0];
  372. radius = arr[1];
  373. } else {
  374. Point2 p = p_data;
  375. radius = p.x;
  376. height = p.y;
  377. }
  378. Point2 he(radius, height * 0.5 + radius);
  379. configure(Rect2(-he, he * 2));
  380. }
  381. Variant CapsuleShape2DSW::get_data() const {
  382. return Point2(height, radius);
  383. }
  384. /*********************************************************/
  385. /*********************************************************/
  386. /*********************************************************/
  387. void ConvexPolygonShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  388. int support_idx = -1;
  389. real_t d = -1e10;
  390. for (int i = 0; i < point_count; i++) {
  391. //test point
  392. real_t ld = p_normal.dot(points[i].pos);
  393. if (ld > d) {
  394. support_idx = i;
  395. d = ld;
  396. }
  397. //test segment
  398. if (points[i].normal.dot(p_normal) > _SEGMENT_IS_VALID_SUPPORT_THRESHOLD) {
  399. r_amount = 2;
  400. r_supports[0] = points[i].pos;
  401. r_supports[1] = points[(i + 1) % point_count].pos;
  402. return;
  403. }
  404. }
  405. ERR_FAIL_COND(support_idx == -1);
  406. r_amount = 1;
  407. r_supports[0] = points[support_idx].pos;
  408. }
  409. bool ConvexPolygonShape2DSW::contains_point(const Vector2 &p_point) const {
  410. bool out = false;
  411. bool in = false;
  412. for (int i = 0; i < point_count; i++) {
  413. real_t d = points[i].normal.dot(p_point) - points[i].normal.dot(points[i].pos);
  414. if (d > 0)
  415. out = true;
  416. else
  417. in = true;
  418. }
  419. return (in && !out) || (!in && out);
  420. }
  421. bool ConvexPolygonShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  422. Vector2 n = (p_end - p_begin).normalized();
  423. real_t d = 1e10;
  424. bool inters = false;
  425. for (int i = 0; i < point_count; i++) {
  426. //hmm.. no can do..
  427. /*
  428. if (d.dot(points[i].normal)>=0)
  429. continue;
  430. */
  431. Vector2 res;
  432. if (!Geometry::segment_intersects_segment_2d(p_begin, p_end, points[i].pos, points[(i + 1) % point_count].pos, &res))
  433. continue;
  434. real_t nd = n.dot(res);
  435. if (nd < d) {
  436. d = nd;
  437. r_point = res;
  438. r_normal = points[i].normal;
  439. inters = true;
  440. }
  441. }
  442. if (inters) {
  443. if (n.dot(r_normal) > 0)
  444. r_normal = -r_normal;
  445. }
  446. //return get_aabb().intersects_segment(p_begin,p_end,&r_point,&r_normal);
  447. return inters; //todo
  448. }
  449. real_t ConvexPolygonShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  450. Rect2 aabb;
  451. aabb.position = points[0].pos * p_scale;
  452. for (int i = 0; i < point_count; i++) {
  453. aabb.expand_to(points[i].pos * p_scale);
  454. }
  455. return p_mass * aabb.size.dot(aabb.size) / 12.0 + p_mass * (aabb.position + aabb.size * 0.5).length_squared();
  456. }
  457. void ConvexPolygonShape2DSW::set_data(const Variant &p_data) {
  458. ERR_FAIL_COND(p_data.get_type() != Variant::POOL_VECTOR2_ARRAY && p_data.get_type() != Variant::POOL_REAL_ARRAY);
  459. if (points)
  460. memdelete_arr(points);
  461. points = NULL;
  462. point_count = 0;
  463. if (p_data.get_type() == Variant::POOL_VECTOR2_ARRAY) {
  464. PoolVector<Vector2> arr = p_data;
  465. ERR_FAIL_COND(arr.size() == 0);
  466. point_count = arr.size();
  467. points = memnew_arr(Point, point_count);
  468. PoolVector<Vector2>::Read r = arr.read();
  469. for (int i = 0; i < point_count; i++) {
  470. points[i].pos = r[i];
  471. }
  472. for (int i = 0; i < point_count; i++) {
  473. Vector2 p = points[i].pos;
  474. Vector2 pn = points[(i + 1) % point_count].pos;
  475. points[i].normal = (pn - p).tangent().normalized();
  476. }
  477. } else {
  478. PoolVector<real_t> dvr = p_data;
  479. point_count = dvr.size() / 4;
  480. ERR_FAIL_COND(point_count == 0);
  481. points = memnew_arr(Point, point_count);
  482. PoolVector<real_t>::Read r = dvr.read();
  483. for (int i = 0; i < point_count; i++) {
  484. int idx = i << 2;
  485. points[i].pos.x = r[idx + 0];
  486. points[i].pos.y = r[idx + 1];
  487. points[i].normal.x = r[idx + 2];
  488. points[i].normal.y = r[idx + 3];
  489. }
  490. }
  491. ERR_FAIL_COND(point_count == 0);
  492. Rect2 aabb;
  493. aabb.position = points[0].pos;
  494. for (int i = 1; i < point_count; i++)
  495. aabb.expand_to(points[i].pos);
  496. configure(aabb);
  497. }
  498. Variant ConvexPolygonShape2DSW::get_data() const {
  499. PoolVector<Vector2> dvr;
  500. dvr.resize(point_count);
  501. for (int i = 0; i < point_count; i++) {
  502. dvr.set(i, points[i].pos);
  503. }
  504. return dvr;
  505. }
  506. ConvexPolygonShape2DSW::ConvexPolygonShape2DSW() {
  507. points = NULL;
  508. point_count = 0;
  509. }
  510. ConvexPolygonShape2DSW::~ConvexPolygonShape2DSW() {
  511. if (points)
  512. memdelete_arr(points);
  513. }
  514. //////////////////////////////////////////////////
  515. void ConcavePolygonShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  516. real_t d = -1e10;
  517. int idx = -1;
  518. for (int i = 0; i < points.size(); i++) {
  519. real_t ld = p_normal.dot(points[i]);
  520. if (ld > d) {
  521. d = ld;
  522. idx = i;
  523. }
  524. }
  525. r_amount = 1;
  526. ERR_FAIL_COND(idx == -1);
  527. *r_supports = points[idx];
  528. }
  529. bool ConcavePolygonShape2DSW::contains_point(const Vector2 &p_point) const {
  530. return false; //sorry
  531. }
  532. bool ConcavePolygonShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  533. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * bvh_depth);
  534. enum {
  535. TEST_AABB_BIT = 0,
  536. VISIT_LEFT_BIT = 1,
  537. VISIT_RIGHT_BIT = 2,
  538. VISIT_DONE_BIT = 3,
  539. VISITED_BIT_SHIFT = 29,
  540. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  541. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  542. };
  543. Vector2 n = (p_end - p_begin).normalized();
  544. real_t d = 1e10;
  545. bool inters = false;
  546. /*
  547. for(int i=0;i<bvh_depth;i++)
  548. stack[i]=0;
  549. */
  550. int level = 0;
  551. const Segment *segmentptr = &segments[0];
  552. const Vector2 *pointptr = &points[0];
  553. const BVH *bvhptr = &bvh[0];
  554. stack[0] = 0;
  555. while (true) {
  556. uint32_t node = stack[level] & NODE_IDX_MASK;
  557. const BVH &b = bvhptr[node];
  558. bool done = false;
  559. switch (stack[level] >> VISITED_BIT_SHIFT) {
  560. case TEST_AABB_BIT: {
  561. bool valid = b.aabb.intersects_segment(p_begin, p_end);
  562. if (!valid) {
  563. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  564. } else {
  565. if (b.left < 0) {
  566. const Segment &s = segmentptr[b.right];
  567. Vector2 a = pointptr[s.points[0]];
  568. Vector2 b = pointptr[s.points[1]];
  569. Vector2 res;
  570. if (Geometry::segment_intersects_segment_2d(p_begin, p_end, a, b, &res)) {
  571. real_t nd = n.dot(res);
  572. if (nd < d) {
  573. d = nd;
  574. r_point = res;
  575. r_normal = (b - a).tangent().normalized();
  576. inters = true;
  577. }
  578. }
  579. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  580. } else {
  581. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  582. }
  583. }
  584. }
  585. continue;
  586. case VISIT_LEFT_BIT: {
  587. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  588. stack[level + 1] = b.left | TEST_AABB_BIT;
  589. level++;
  590. }
  591. continue;
  592. case VISIT_RIGHT_BIT: {
  593. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  594. stack[level + 1] = b.right | TEST_AABB_BIT;
  595. level++;
  596. }
  597. continue;
  598. case VISIT_DONE_BIT: {
  599. if (level == 0) {
  600. done = true;
  601. break;
  602. } else
  603. level--;
  604. }
  605. continue;
  606. }
  607. if (done)
  608. break;
  609. }
  610. if (inters) {
  611. if (n.dot(r_normal) > 0)
  612. r_normal = -r_normal;
  613. }
  614. return inters;
  615. }
  616. int ConcavePolygonShape2DSW::_generate_bvh(BVH *p_bvh, int p_len, int p_depth) {
  617. if (p_len == 1) {
  618. bvh_depth = MAX(p_depth, bvh_depth);
  619. bvh.push_back(*p_bvh);
  620. return bvh.size() - 1;
  621. }
  622. //else sort best
  623. Rect2 global_aabb = p_bvh[0].aabb;
  624. for (int i = 1; i < p_len; i++) {
  625. global_aabb = global_aabb.merge(p_bvh[i].aabb);
  626. }
  627. if (global_aabb.size.x > global_aabb.size.y) {
  628. SortArray<BVH, BVH_CompareX> sort;
  629. sort.sort(p_bvh, p_len);
  630. } else {
  631. SortArray<BVH, BVH_CompareY> sort;
  632. sort.sort(p_bvh, p_len);
  633. }
  634. int median = p_len / 2;
  635. BVH node;
  636. node.aabb = global_aabb;
  637. int node_idx = bvh.size();
  638. bvh.push_back(node);
  639. int l = _generate_bvh(p_bvh, median, p_depth + 1);
  640. int r = _generate_bvh(&p_bvh[median], p_len - median, p_depth + 1);
  641. bvh[node_idx].left = l;
  642. bvh[node_idx].right = r;
  643. return node_idx;
  644. }
  645. void ConcavePolygonShape2DSW::set_data(const Variant &p_data) {
  646. ERR_FAIL_COND(p_data.get_type() != Variant::POOL_VECTOR2_ARRAY && p_data.get_type() != Variant::POOL_REAL_ARRAY);
  647. Rect2 aabb;
  648. if (p_data.get_type() == Variant::POOL_VECTOR2_ARRAY) {
  649. PoolVector<Vector2> p2arr = p_data;
  650. int len = p2arr.size();
  651. ERR_FAIL_COND(len % 2);
  652. segments.clear();
  653. points.clear();
  654. bvh.clear();
  655. bvh_depth = 1;
  656. if (len == 0) {
  657. configure(aabb);
  658. return;
  659. }
  660. PoolVector<Vector2>::Read arr = p2arr.read();
  661. Map<Point2, int> pointmap;
  662. for (int i = 0; i < len; i += 2) {
  663. Point2 p1 = arr[i];
  664. Point2 p2 = arr[i + 1];
  665. int idx_p1, idx_p2;
  666. if (pointmap.has(p1)) {
  667. idx_p1 = pointmap[p1];
  668. } else {
  669. idx_p1 = pointmap.size();
  670. pointmap[p1] = idx_p1;
  671. }
  672. if (pointmap.has(p2)) {
  673. idx_p2 = pointmap[p2];
  674. } else {
  675. idx_p2 = pointmap.size();
  676. pointmap[p2] = idx_p2;
  677. }
  678. Segment s;
  679. s.points[0] = idx_p1;
  680. s.points[1] = idx_p2;
  681. segments.push_back(s);
  682. }
  683. points.resize(pointmap.size());
  684. aabb.position = pointmap.front()->key();
  685. for (Map<Point2, int>::Element *E = pointmap.front(); E; E = E->next()) {
  686. aabb.expand_to(E->key());
  687. points[E->get()] = E->key();
  688. }
  689. Vector<BVH> main_vbh;
  690. main_vbh.resize(segments.size());
  691. for (int i = 0; i < main_vbh.size(); i++) {
  692. main_vbh[i].aabb.position = points[segments[i].points[0]];
  693. main_vbh[i].aabb.expand_to(points[segments[i].points[1]]);
  694. main_vbh[i].left = -1;
  695. main_vbh[i].right = i;
  696. }
  697. _generate_bvh(&main_vbh[0], main_vbh.size(), 1);
  698. } else {
  699. //dictionary with arrays
  700. }
  701. configure(aabb);
  702. }
  703. Variant ConcavePolygonShape2DSW::get_data() const {
  704. PoolVector<Vector2> rsegments;
  705. int len = segments.size();
  706. rsegments.resize(len * 2);
  707. PoolVector<Vector2>::Write w = rsegments.write();
  708. for (int i = 0; i < len; i++) {
  709. w[(i << 1) + 0] = points[segments[i].points[0]];
  710. w[(i << 1) + 1] = points[segments[i].points[1]];
  711. }
  712. w = PoolVector<Vector2>::Write();
  713. return rsegments;
  714. }
  715. void ConcavePolygonShape2DSW::cull(const Rect2 &p_local_aabb, Callback p_callback, void *p_userdata) const {
  716. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * bvh_depth);
  717. enum {
  718. TEST_AABB_BIT = 0,
  719. VISIT_LEFT_BIT = 1,
  720. VISIT_RIGHT_BIT = 2,
  721. VISIT_DONE_BIT = 3,
  722. VISITED_BIT_SHIFT = 29,
  723. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  724. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  725. };
  726. /*
  727. for(int i=0;i<bvh_depth;i++)
  728. stack[i]=0;
  729. */
  730. int level = 0;
  731. const Segment *segmentptr = &segments[0];
  732. const Vector2 *pointptr = &points[0];
  733. const BVH *bvhptr = &bvh[0];
  734. stack[0] = 0;
  735. while (true) {
  736. uint32_t node = stack[level] & NODE_IDX_MASK;
  737. const BVH &b = bvhptr[node];
  738. switch (stack[level] >> VISITED_BIT_SHIFT) {
  739. case TEST_AABB_BIT: {
  740. bool valid = p_local_aabb.intersects(b.aabb);
  741. if (!valid) {
  742. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  743. } else {
  744. if (b.left < 0) {
  745. const Segment &s = segmentptr[b.right];
  746. Vector2 a = pointptr[s.points[0]];
  747. Vector2 b = pointptr[s.points[1]];
  748. SegmentShape2DSW ss(a, b, (b - a).tangent().normalized());
  749. p_callback(p_userdata, &ss);
  750. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  751. } else {
  752. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  753. }
  754. }
  755. }
  756. continue;
  757. case VISIT_LEFT_BIT: {
  758. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  759. stack[level + 1] = b.left | TEST_AABB_BIT;
  760. level++;
  761. }
  762. continue;
  763. case VISIT_RIGHT_BIT: {
  764. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  765. stack[level + 1] = b.right | TEST_AABB_BIT;
  766. level++;
  767. }
  768. continue;
  769. case VISIT_DONE_BIT: {
  770. if (level == 0)
  771. return;
  772. else
  773. level--;
  774. }
  775. continue;
  776. }
  777. }
  778. }