shape_sw.cpp 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666
  1. /*************************************************************************/
  2. /* shape_sw.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "shape_sw.h"
  31. #include "geometry.h"
  32. #include "quick_hull.h"
  33. #include "sort.h"
  34. #define _POINT_SNAP 0.001953125
  35. #define _EDGE_IS_VALID_SUPPORT_THRESHOLD 0.0002
  36. #define _FACE_IS_VALID_SUPPORT_THRESHOLD 0.9998
  37. void ShapeSW::configure(const AABB &p_aabb) {
  38. aabb = p_aabb;
  39. configured = true;
  40. for (Map<ShapeOwnerSW *, int>::Element *E = owners.front(); E; E = E->next()) {
  41. ShapeOwnerSW *co = (ShapeOwnerSW *)E->key();
  42. co->_shape_changed();
  43. }
  44. }
  45. Vector3 ShapeSW::get_support(const Vector3 &p_normal) const {
  46. Vector3 res;
  47. int amnt;
  48. get_supports(p_normal, 1, &res, amnt);
  49. return res;
  50. }
  51. void ShapeSW::add_owner(ShapeOwnerSW *p_owner) {
  52. Map<ShapeOwnerSW *, int>::Element *E = owners.find(p_owner);
  53. if (E) {
  54. E->get()++;
  55. } else {
  56. owners[p_owner] = 1;
  57. }
  58. }
  59. void ShapeSW::remove_owner(ShapeOwnerSW *p_owner) {
  60. Map<ShapeOwnerSW *, int>::Element *E = owners.find(p_owner);
  61. ERR_FAIL_COND(!E);
  62. E->get()--;
  63. if (E->get() == 0) {
  64. owners.erase(E);
  65. }
  66. }
  67. bool ShapeSW::is_owner(ShapeOwnerSW *p_owner) const {
  68. return owners.has(p_owner);
  69. }
  70. const Map<ShapeOwnerSW *, int> &ShapeSW::get_owners() const {
  71. return owners;
  72. }
  73. ShapeSW::ShapeSW() {
  74. custom_bias = 0;
  75. configured = false;
  76. }
  77. ShapeSW::~ShapeSW() {
  78. ERR_FAIL_COND(owners.size());
  79. }
  80. Plane PlaneShapeSW::get_plane() const {
  81. return plane;
  82. }
  83. void PlaneShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  84. // gibberish, a plane is infinity
  85. r_min = -1e7;
  86. r_max = 1e7;
  87. }
  88. Vector3 PlaneShapeSW::get_support(const Vector3 &p_normal) const {
  89. return p_normal * 1e15;
  90. }
  91. bool PlaneShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
  92. bool inters = plane.intersects_segment(p_begin, p_end, &r_result);
  93. if (inters)
  94. r_normal = plane.normal;
  95. return inters;
  96. }
  97. bool PlaneShapeSW::intersect_point(const Vector3 &p_point) const {
  98. return plane.distance_to(p_point) < 0;
  99. }
  100. Vector3 PlaneShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  101. if (plane.is_point_over(p_point)) {
  102. return plane.project(p_point);
  103. } else {
  104. return p_point;
  105. }
  106. }
  107. Vector3 PlaneShapeSW::get_moment_of_inertia(real_t p_mass) const {
  108. return Vector3(); //wtf
  109. }
  110. void PlaneShapeSW::_setup(const Plane &p_plane) {
  111. plane = p_plane;
  112. configure(AABB(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2)));
  113. }
  114. void PlaneShapeSW::set_data(const Variant &p_data) {
  115. _setup(p_data);
  116. }
  117. Variant PlaneShapeSW::get_data() const {
  118. return plane;
  119. }
  120. PlaneShapeSW::PlaneShapeSW() {
  121. }
  122. //
  123. real_t RayShapeSW::get_length() const {
  124. return length;
  125. }
  126. void RayShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  127. // don't think this will be even used
  128. r_min = 0;
  129. r_max = 1;
  130. }
  131. Vector3 RayShapeSW::get_support(const Vector3 &p_normal) const {
  132. if (p_normal.z > 0)
  133. return Vector3(0, 0, length);
  134. else
  135. return Vector3(0, 0, 0);
  136. }
  137. void RayShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
  138. if (Math::abs(p_normal.z) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
  139. r_amount = 2;
  140. r_supports[0] = Vector3(0, 0, 0);
  141. r_supports[1] = Vector3(0, 0, length);
  142. } else if (p_normal.z > 0) {
  143. r_amount = 1;
  144. *r_supports = Vector3(0, 0, length);
  145. } else {
  146. r_amount = 1;
  147. *r_supports = Vector3(0, 0, 0);
  148. }
  149. }
  150. bool RayShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
  151. return false; //simply not possible
  152. }
  153. bool RayShapeSW::intersect_point(const Vector3 &p_point) const {
  154. return false; //simply not possible
  155. }
  156. Vector3 RayShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  157. Vector3 s[2] = {
  158. Vector3(0, 0, 0),
  159. Vector3(0, 0, length)
  160. };
  161. return Geometry::get_closest_point_to_segment(p_point, s);
  162. }
  163. Vector3 RayShapeSW::get_moment_of_inertia(real_t p_mass) const {
  164. return Vector3();
  165. }
  166. void RayShapeSW::_setup(real_t p_length) {
  167. length = p_length;
  168. configure(AABB(Vector3(0, 0, 0), Vector3(0.1, 0.1, length)));
  169. }
  170. void RayShapeSW::set_data(const Variant &p_data) {
  171. _setup(p_data);
  172. }
  173. Variant RayShapeSW::get_data() const {
  174. return length;
  175. }
  176. RayShapeSW::RayShapeSW() {
  177. length = 1;
  178. }
  179. /********** SPHERE *************/
  180. real_t SphereShapeSW::get_radius() const {
  181. return radius;
  182. }
  183. void SphereShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  184. real_t d = p_normal.dot(p_transform.origin);
  185. // figure out scale at point
  186. Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
  187. real_t scale = local_normal.length();
  188. r_min = d - (radius)*scale;
  189. r_max = d + (radius)*scale;
  190. }
  191. Vector3 SphereShapeSW::get_support(const Vector3 &p_normal) const {
  192. return p_normal * radius;
  193. }
  194. void SphereShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
  195. *r_supports = p_normal * radius;
  196. r_amount = 1;
  197. }
  198. bool SphereShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
  199. return Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal);
  200. }
  201. bool SphereShapeSW::intersect_point(const Vector3 &p_point) const {
  202. return p_point.length() < radius;
  203. }
  204. Vector3 SphereShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  205. Vector3 p = p_point;
  206. float l = p.length();
  207. if (l < radius)
  208. return p_point;
  209. return (p / l) * radius;
  210. }
  211. Vector3 SphereShapeSW::get_moment_of_inertia(real_t p_mass) const {
  212. real_t s = 0.4 * p_mass * radius * radius;
  213. return Vector3(s, s, s);
  214. }
  215. void SphereShapeSW::_setup(real_t p_radius) {
  216. radius = p_radius;
  217. configure(AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0)));
  218. }
  219. void SphereShapeSW::set_data(const Variant &p_data) {
  220. _setup(p_data);
  221. }
  222. Variant SphereShapeSW::get_data() const {
  223. return radius;
  224. }
  225. SphereShapeSW::SphereShapeSW() {
  226. radius = 0;
  227. }
  228. /********** BOX *************/
  229. void BoxShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  230. // no matter the angle, the box is mirrored anyway
  231. Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
  232. real_t length = local_normal.abs().dot(half_extents);
  233. real_t distance = p_normal.dot(p_transform.origin);
  234. r_min = distance - length;
  235. r_max = distance + length;
  236. }
  237. Vector3 BoxShapeSW::get_support(const Vector3 &p_normal) const {
  238. Vector3 point(
  239. (p_normal.x < 0) ? -half_extents.x : half_extents.x,
  240. (p_normal.y < 0) ? -half_extents.y : half_extents.y,
  241. (p_normal.z < 0) ? -half_extents.z : half_extents.z);
  242. return point;
  243. }
  244. void BoxShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
  245. static const int next[3] = { 1, 2, 0 };
  246. static const int next2[3] = { 2, 0, 1 };
  247. for (int i = 0; i < 3; i++) {
  248. Vector3 axis;
  249. axis[i] = 1.0;
  250. real_t dot = p_normal.dot(axis);
  251. if (Math::abs(dot) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
  252. //Vector3 axis_b;
  253. bool neg = dot < 0;
  254. r_amount = 4;
  255. Vector3 point;
  256. point[i] = half_extents[i];
  257. int i_n = next[i];
  258. int i_n2 = next2[i];
  259. static const real_t sign[4][2] = {
  260. { -1.0, 1.0 },
  261. { 1.0, 1.0 },
  262. { 1.0, -1.0 },
  263. { -1.0, -1.0 },
  264. };
  265. for (int j = 0; j < 4; j++) {
  266. point[i_n] = sign[j][0] * half_extents[i_n];
  267. point[i_n2] = sign[j][1] * half_extents[i_n2];
  268. r_supports[j] = neg ? -point : point;
  269. }
  270. if (neg) {
  271. SWAP(r_supports[1], r_supports[2]);
  272. SWAP(r_supports[0], r_supports[3]);
  273. }
  274. return;
  275. }
  276. r_amount = 0;
  277. }
  278. for (int i = 0; i < 3; i++) {
  279. Vector3 axis;
  280. axis[i] = 1.0;
  281. if (Math::abs(p_normal.dot(axis)) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
  282. r_amount = 2;
  283. int i_n = next[i];
  284. int i_n2 = next2[i];
  285. Vector3 point = half_extents;
  286. if (p_normal[i_n] < 0) {
  287. point[i_n] = -point[i_n];
  288. }
  289. if (p_normal[i_n2] < 0) {
  290. point[i_n2] = -point[i_n2];
  291. }
  292. r_supports[0] = point;
  293. point[i] = -point[i];
  294. r_supports[1] = point;
  295. return;
  296. }
  297. }
  298. /* USE POINT */
  299. Vector3 point(
  300. (p_normal.x < 0) ? -half_extents.x : half_extents.x,
  301. (p_normal.y < 0) ? -half_extents.y : half_extents.y,
  302. (p_normal.z < 0) ? -half_extents.z : half_extents.z);
  303. r_amount = 1;
  304. r_supports[0] = point;
  305. }
  306. bool BoxShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
  307. AABB aabb(-half_extents, half_extents * 2.0);
  308. return aabb.intersects_segment(p_begin, p_end, &r_result, &r_normal);
  309. }
  310. bool BoxShapeSW::intersect_point(const Vector3 &p_point) const {
  311. return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z);
  312. }
  313. Vector3 BoxShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  314. int outside = 0;
  315. Vector3 min_point;
  316. for (int i = 0; i < 3; i++) {
  317. if (Math::abs(p_point[i]) > half_extents[i]) {
  318. outside++;
  319. if (outside == 1) {
  320. //use plane if only one side matches
  321. Vector3 n;
  322. n[i] = SGN(p_point[i]);
  323. Plane p(n, half_extents[i]);
  324. min_point = p.project(p_point);
  325. }
  326. }
  327. }
  328. if (!outside)
  329. return p_point; //it's inside, don't do anything else
  330. if (outside == 1) //if only above one plane, this plane clearly wins
  331. return min_point;
  332. //check segments
  333. float min_distance = 1e20;
  334. Vector3 closest_vertex = half_extents * p_point.sign();
  335. Vector3 s[2] = {
  336. closest_vertex,
  337. closest_vertex
  338. };
  339. for (int i = 0; i < 3; i++) {
  340. s[1] = closest_vertex;
  341. s[1][i] = -s[1][i]; //edge
  342. Vector3 closest_edge = Geometry::get_closest_point_to_segment(p_point, s);
  343. float d = p_point.distance_to(closest_edge);
  344. if (d < min_distance) {
  345. min_point = closest_edge;
  346. min_distance = d;
  347. }
  348. }
  349. return min_point;
  350. }
  351. Vector3 BoxShapeSW::get_moment_of_inertia(real_t p_mass) const {
  352. real_t lx = half_extents.x;
  353. real_t ly = half_extents.y;
  354. real_t lz = half_extents.z;
  355. return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly));
  356. }
  357. void BoxShapeSW::_setup(const Vector3 &p_half_extents) {
  358. half_extents = p_half_extents.abs();
  359. configure(AABB(-half_extents, half_extents * 2));
  360. }
  361. void BoxShapeSW::set_data(const Variant &p_data) {
  362. _setup(p_data);
  363. }
  364. Variant BoxShapeSW::get_data() const {
  365. return half_extents;
  366. }
  367. BoxShapeSW::BoxShapeSW() {
  368. }
  369. /********** CAPSULE *************/
  370. void CapsuleShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  371. Vector3 n = p_transform.basis.xform_inv(p_normal).normalized();
  372. real_t h = (n.z > 0) ? height : -height;
  373. n *= radius;
  374. n.z += h * 0.5;
  375. r_max = p_normal.dot(p_transform.xform(n));
  376. r_min = p_normal.dot(p_transform.xform(-n));
  377. return;
  378. n = p_transform.basis.xform(n);
  379. real_t distance = p_normal.dot(p_transform.origin);
  380. real_t length = Math::abs(p_normal.dot(n));
  381. r_min = distance - length;
  382. r_max = distance + length;
  383. ERR_FAIL_COND(r_max < r_min);
  384. }
  385. Vector3 CapsuleShapeSW::get_support(const Vector3 &p_normal) const {
  386. Vector3 n = p_normal;
  387. real_t h = (n.z > 0) ? height : -height;
  388. n *= radius;
  389. n.z += h * 0.5;
  390. return n;
  391. }
  392. void CapsuleShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
  393. Vector3 n = p_normal;
  394. real_t d = n.z;
  395. if (Math::abs(d) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
  396. // make it flat
  397. n.z = 0.0;
  398. n.normalize();
  399. n *= radius;
  400. r_amount = 2;
  401. r_supports[0] = n;
  402. r_supports[0].z += height * 0.5;
  403. r_supports[1] = n;
  404. r_supports[1].z -= height * 0.5;
  405. } else {
  406. real_t h = (d > 0) ? height : -height;
  407. n *= radius;
  408. n.z += h * 0.5;
  409. r_amount = 1;
  410. *r_supports = n;
  411. }
  412. }
  413. bool CapsuleShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
  414. Vector3 norm = (p_end - p_begin).normalized();
  415. real_t min_d = 1e20;
  416. Vector3 res, n;
  417. bool collision = false;
  418. Vector3 auxres, auxn;
  419. bool collided;
  420. // test against cylinder and spheres :-|
  421. collided = Geometry::segment_intersects_cylinder(p_begin, p_end, height, radius, &auxres, &auxn);
  422. if (collided) {
  423. real_t d = norm.dot(auxres);
  424. if (d < min_d) {
  425. min_d = d;
  426. res = auxres;
  427. n = auxn;
  428. collision = true;
  429. }
  430. }
  431. collided = Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(0, 0, height * 0.5), radius, &auxres, &auxn);
  432. if (collided) {
  433. real_t d = norm.dot(auxres);
  434. if (d < min_d) {
  435. min_d = d;
  436. res = auxres;
  437. n = auxn;
  438. collision = true;
  439. }
  440. }
  441. collided = Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(0, 0, height * -0.5), radius, &auxres, &auxn);
  442. if (collided) {
  443. real_t d = norm.dot(auxres);
  444. if (d < min_d) {
  445. min_d = d;
  446. res = auxres;
  447. n = auxn;
  448. collision = true;
  449. }
  450. }
  451. if (collision) {
  452. r_result = res;
  453. r_normal = n;
  454. }
  455. return collision;
  456. }
  457. bool CapsuleShapeSW::intersect_point(const Vector3 &p_point) const {
  458. if (Math::abs(p_point.z) < height * 0.5) {
  459. return Vector3(p_point.x, p_point.y, 0).length() < radius;
  460. } else {
  461. Vector3 p = p_point;
  462. p.z = Math::abs(p.z) - height * 0.5;
  463. return p.length() < radius;
  464. }
  465. }
  466. Vector3 CapsuleShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  467. Vector3 s[2] = {
  468. Vector3(0, 0, -height * 0.5),
  469. Vector3(0, 0, height * 0.5),
  470. };
  471. Vector3 p = Geometry::get_closest_point_to_segment(p_point, s);
  472. if (p.distance_to(p_point) < radius)
  473. return p_point;
  474. return p + (p_point - p).normalized() * radius;
  475. }
  476. Vector3 CapsuleShapeSW::get_moment_of_inertia(real_t p_mass) const {
  477. // use bad AABB approximation
  478. Vector3 extents = get_aabb().size * 0.5;
  479. return Vector3(
  480. (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
  481. (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
  482. (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
  483. }
  484. void CapsuleShapeSW::_setup(real_t p_height, real_t p_radius) {
  485. height = p_height;
  486. radius = p_radius;
  487. configure(AABB(Vector3(-radius, -radius, -height * 0.5 - radius), Vector3(radius * 2, radius * 2, height + radius * 2.0)));
  488. }
  489. void CapsuleShapeSW::set_data(const Variant &p_data) {
  490. Dictionary d = p_data;
  491. ERR_FAIL_COND(!d.has("radius"));
  492. ERR_FAIL_COND(!d.has("height"));
  493. _setup(d["height"], d["radius"]);
  494. }
  495. Variant CapsuleShapeSW::get_data() const {
  496. Dictionary d;
  497. d["radius"] = radius;
  498. d["height"] = height;
  499. return d;
  500. }
  501. CapsuleShapeSW::CapsuleShapeSW() {
  502. height = radius = 0;
  503. }
  504. /********** CONVEX POLYGON *************/
  505. void ConvexPolygonShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  506. int vertex_count = mesh.vertices.size();
  507. if (vertex_count == 0)
  508. return;
  509. const Vector3 *vrts = &mesh.vertices[0];
  510. for (int i = 0; i < vertex_count; i++) {
  511. real_t d = p_normal.dot(p_transform.xform(vrts[i]));
  512. if (i == 0 || d > r_max)
  513. r_max = d;
  514. if (i == 0 || d < r_min)
  515. r_min = d;
  516. }
  517. }
  518. Vector3 ConvexPolygonShapeSW::get_support(const Vector3 &p_normal) const {
  519. Vector3 n = p_normal;
  520. int vert_support_idx = -1;
  521. real_t support_max = 0;
  522. int vertex_count = mesh.vertices.size();
  523. if (vertex_count == 0)
  524. return Vector3();
  525. const Vector3 *vrts = &mesh.vertices[0];
  526. for (int i = 0; i < vertex_count; i++) {
  527. real_t d = n.dot(vrts[i]);
  528. if (i == 0 || d > support_max) {
  529. support_max = d;
  530. vert_support_idx = i;
  531. }
  532. }
  533. return vrts[vert_support_idx];
  534. }
  535. void ConvexPolygonShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
  536. const Geometry::MeshData::Face *faces = mesh.faces.ptr();
  537. int fc = mesh.faces.size();
  538. const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
  539. int ec = mesh.edges.size();
  540. const Vector3 *vertices = mesh.vertices.ptr();
  541. int vc = mesh.vertices.size();
  542. //find vertex first
  543. real_t max = 0;
  544. int vtx = 0;
  545. for (int i = 0; i < vc; i++) {
  546. real_t d = p_normal.dot(vertices[i]);
  547. if (i == 0 || d > max) {
  548. max = d;
  549. vtx = i;
  550. }
  551. }
  552. for (int i = 0; i < fc; i++) {
  553. if (faces[i].plane.normal.dot(p_normal) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
  554. int ic = faces[i].indices.size();
  555. const int *ind = faces[i].indices.ptr();
  556. bool valid = false;
  557. for (int j = 0; j < ic; j++) {
  558. if (ind[j] == vtx) {
  559. valid = true;
  560. break;
  561. }
  562. }
  563. if (!valid)
  564. continue;
  565. int m = MIN(p_max, ic);
  566. for (int j = 0; j < m; j++) {
  567. r_supports[j] = vertices[ind[j]];
  568. }
  569. r_amount = m;
  570. return;
  571. }
  572. }
  573. for (int i = 0; i < ec; i++) {
  574. real_t dot = (vertices[edges[i].a] - vertices[edges[i].b]).normalized().dot(p_normal);
  575. dot = ABS(dot);
  576. if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD && (edges[i].a == vtx || edges[i].b == vtx)) {
  577. r_amount = 2;
  578. r_supports[0] = vertices[edges[i].a];
  579. r_supports[1] = vertices[edges[i].b];
  580. return;
  581. }
  582. }
  583. r_supports[0] = vertices[vtx];
  584. r_amount = 1;
  585. }
  586. bool ConvexPolygonShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
  587. const Geometry::MeshData::Face *faces = mesh.faces.ptr();
  588. int fc = mesh.faces.size();
  589. const Vector3 *vertices = mesh.vertices.ptr();
  590. Vector3 n = p_end - p_begin;
  591. real_t min = 1e20;
  592. bool col = false;
  593. for (int i = 0; i < fc; i++) {
  594. if (faces[i].plane.normal.dot(n) > 0)
  595. continue; //opposing face
  596. int ic = faces[i].indices.size();
  597. const int *ind = faces[i].indices.ptr();
  598. for (int j = 1; j < ic - 1; j++) {
  599. Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]);
  600. Vector3 result;
  601. if (f.intersects_segment(p_begin, p_end, &result)) {
  602. real_t d = n.dot(result);
  603. if (d < min) {
  604. min = d;
  605. r_result = result;
  606. r_normal = faces[i].plane.normal;
  607. col = true;
  608. }
  609. break;
  610. }
  611. }
  612. }
  613. return col;
  614. }
  615. bool ConvexPolygonShapeSW::intersect_point(const Vector3 &p_point) const {
  616. const Geometry::MeshData::Face *faces = mesh.faces.ptr();
  617. int fc = mesh.faces.size();
  618. for (int i = 0; i < fc; i++) {
  619. if (faces[i].plane.distance_to(p_point) >= 0)
  620. return false;
  621. }
  622. return true;
  623. }
  624. Vector3 ConvexPolygonShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  625. const Geometry::MeshData::Face *faces = mesh.faces.ptr();
  626. int fc = mesh.faces.size();
  627. const Vector3 *vertices = mesh.vertices.ptr();
  628. bool all_inside = true;
  629. for (int i = 0; i < fc; i++) {
  630. if (!faces[i].plane.is_point_over(p_point))
  631. continue;
  632. all_inside = false;
  633. bool is_inside = true;
  634. int ic = faces[i].indices.size();
  635. const int *indices = faces[i].indices.ptr();
  636. for (int j = 0; j < ic; j++) {
  637. Vector3 a = vertices[indices[j]];
  638. Vector3 b = vertices[indices[(j + 1) % ic]];
  639. Vector3 n = (a - b).cross(faces[i].plane.normal).normalized();
  640. if (Plane(a, n).is_point_over(p_point)) {
  641. is_inside = false;
  642. break;
  643. }
  644. }
  645. if (is_inside) {
  646. return faces[i].plane.project(p_point);
  647. }
  648. }
  649. if (all_inside) {
  650. return p_point;
  651. }
  652. float min_distance = 1e20;
  653. Vector3 min_point;
  654. //check edges
  655. const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
  656. int ec = mesh.edges.size();
  657. for (int i = 0; i < ec; i++) {
  658. Vector3 s[2] = {
  659. vertices[edges[i].a],
  660. vertices[edges[i].b]
  661. };
  662. Vector3 closest = Geometry::get_closest_point_to_segment(p_point, s);
  663. float d = closest.distance_to(p_point);
  664. if (d < min_distance) {
  665. min_distance = d;
  666. min_point = closest;
  667. }
  668. }
  669. return min_point;
  670. }
  671. Vector3 ConvexPolygonShapeSW::get_moment_of_inertia(real_t p_mass) const {
  672. // use bad AABB approximation
  673. Vector3 extents = get_aabb().size * 0.5;
  674. return Vector3(
  675. (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
  676. (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
  677. (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
  678. }
  679. void ConvexPolygonShapeSW::_setup(const Vector<Vector3> &p_vertices) {
  680. Error err = QuickHull::build(p_vertices, mesh);
  681. if (err != OK)
  682. ERR_PRINT("Failed to build QuickHull");
  683. AABB _aabb;
  684. for (int i = 0; i < mesh.vertices.size(); i++) {
  685. if (i == 0)
  686. _aabb.position = mesh.vertices[i];
  687. else
  688. _aabb.expand_to(mesh.vertices[i]);
  689. }
  690. configure(_aabb);
  691. }
  692. void ConvexPolygonShapeSW::set_data(const Variant &p_data) {
  693. _setup(p_data);
  694. }
  695. Variant ConvexPolygonShapeSW::get_data() const {
  696. return mesh.vertices;
  697. }
  698. ConvexPolygonShapeSW::ConvexPolygonShapeSW() {
  699. }
  700. /********** FACE POLYGON *************/
  701. void FaceShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  702. for (int i = 0; i < 3; i++) {
  703. Vector3 v = p_transform.xform(vertex[i]);
  704. real_t d = p_normal.dot(v);
  705. if (i == 0 || d > r_max)
  706. r_max = d;
  707. if (i == 0 || d < r_min)
  708. r_min = d;
  709. }
  710. }
  711. Vector3 FaceShapeSW::get_support(const Vector3 &p_normal) const {
  712. int vert_support_idx = -1;
  713. real_t support_max = 0;
  714. for (int i = 0; i < 3; i++) {
  715. real_t d = p_normal.dot(vertex[i]);
  716. if (i == 0 || d > support_max) {
  717. support_max = d;
  718. vert_support_idx = i;
  719. }
  720. }
  721. return vertex[vert_support_idx];
  722. }
  723. void FaceShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
  724. Vector3 n = p_normal;
  725. /** TEST FACE AS SUPPORT **/
  726. if (normal.dot(n) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
  727. r_amount = 3;
  728. for (int i = 0; i < 3; i++) {
  729. r_supports[i] = vertex[i];
  730. }
  731. return;
  732. }
  733. /** FIND SUPPORT VERTEX **/
  734. int vert_support_idx = -1;
  735. real_t support_max;
  736. for (int i = 0; i < 3; i++) {
  737. real_t d = n.dot(vertex[i]);
  738. if (i == 0 || d > support_max) {
  739. support_max = d;
  740. vert_support_idx = i;
  741. }
  742. }
  743. /** TEST EDGES AS SUPPORT **/
  744. for (int i = 0; i < 3; i++) {
  745. int nx = (i + 1) % 3;
  746. if (i != vert_support_idx && nx != vert_support_idx)
  747. continue;
  748. // check if edge is valid as a support
  749. real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n);
  750. dot = ABS(dot);
  751. if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
  752. r_amount = 2;
  753. r_supports[0] = vertex[i];
  754. r_supports[1] = vertex[nx];
  755. return;
  756. }
  757. }
  758. r_amount = 1;
  759. r_supports[0] = vertex[vert_support_idx];
  760. }
  761. bool FaceShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
  762. bool c = Geometry::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result);
  763. if (c) {
  764. r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal;
  765. if (r_normal.dot(p_end - p_begin) > 0) {
  766. r_normal = -r_normal;
  767. }
  768. }
  769. return c;
  770. }
  771. bool FaceShapeSW::intersect_point(const Vector3 &p_point) const {
  772. return false; //face is flat
  773. }
  774. Vector3 FaceShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  775. return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point);
  776. }
  777. Vector3 FaceShapeSW::get_moment_of_inertia(real_t p_mass) const {
  778. return Vector3(); // Sorry, but i don't think anyone cares, FaceShape!
  779. }
  780. FaceShapeSW::FaceShapeSW() {
  781. configure(AABB());
  782. }
  783. PoolVector<Vector3> ConcavePolygonShapeSW::get_faces() const {
  784. PoolVector<Vector3> rfaces;
  785. rfaces.resize(faces.size() * 3);
  786. for (int i = 0; i < faces.size(); i++) {
  787. Face f = faces.get(i);
  788. for (int j = 0; j < 3; j++) {
  789. rfaces.set(i * 3 + j, vertices.get(f.indices[j]));
  790. }
  791. }
  792. return rfaces;
  793. }
  794. void ConcavePolygonShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  795. int count = vertices.size();
  796. if (count == 0) {
  797. r_min = 0;
  798. r_max = 0;
  799. return;
  800. }
  801. PoolVector<Vector3>::Read r = vertices.read();
  802. const Vector3 *vptr = r.ptr();
  803. for (int i = 0; i < count; i++) {
  804. real_t d = p_normal.dot(p_transform.xform(vptr[i]));
  805. if (i == 0 || d > r_max)
  806. r_max = d;
  807. if (i == 0 || d < r_min)
  808. r_min = d;
  809. }
  810. }
  811. Vector3 ConcavePolygonShapeSW::get_support(const Vector3 &p_normal) const {
  812. int count = vertices.size();
  813. if (count == 0)
  814. return Vector3();
  815. PoolVector<Vector3>::Read r = vertices.read();
  816. const Vector3 *vptr = r.ptr();
  817. Vector3 n = p_normal;
  818. int vert_support_idx = -1;
  819. real_t support_max = 0;
  820. for (int i = 0; i < count; i++) {
  821. real_t d = n.dot(vptr[i]);
  822. if (i == 0 || d > support_max) {
  823. support_max = d;
  824. vert_support_idx = i;
  825. }
  826. }
  827. return vptr[vert_support_idx];
  828. }
  829. void ConcavePolygonShapeSW::_cull_segment(int p_idx, _SegmentCullParams *p_params) const {
  830. const BVH *bvh = &p_params->bvh[p_idx];
  831. /*
  832. if (p_params->dir.dot(bvh->aabb.get_support(-p_params->dir))>p_params->min_d)
  833. return; //test against whole AABB, which isn't very costly
  834. */
  835. //printf("addr: %p\n",bvh);
  836. if (!bvh->aabb.intersects_segment(p_params->from, p_params->to)) {
  837. return;
  838. }
  839. if (bvh->face_index >= 0) {
  840. Vector3 res;
  841. Vector3 vertices[3] = {
  842. p_params->vertices[p_params->faces[bvh->face_index].indices[0]],
  843. p_params->vertices[p_params->faces[bvh->face_index].indices[1]],
  844. p_params->vertices[p_params->faces[bvh->face_index].indices[2]]
  845. };
  846. if (Geometry::segment_intersects_triangle(
  847. p_params->from,
  848. p_params->to,
  849. vertices[0],
  850. vertices[1],
  851. vertices[2],
  852. &res)) {
  853. real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from);
  854. //TODO, seems segmen/triangle intersection is broken :(
  855. if (d > 0 && d < p_params->min_d) {
  856. p_params->min_d = d;
  857. p_params->result = res;
  858. p_params->normal = Plane(vertices[0], vertices[1], vertices[2]).normal;
  859. p_params->collisions++;
  860. }
  861. }
  862. } else {
  863. if (bvh->left >= 0)
  864. _cull_segment(bvh->left, p_params);
  865. if (bvh->right >= 0)
  866. _cull_segment(bvh->right, p_params);
  867. }
  868. }
  869. bool ConcavePolygonShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
  870. if (faces.size() == 0)
  871. return false;
  872. // unlock data
  873. PoolVector<Face>::Read fr = faces.read();
  874. PoolVector<Vector3>::Read vr = vertices.read();
  875. PoolVector<BVH>::Read br = bvh.read();
  876. _SegmentCullParams params;
  877. params.from = p_begin;
  878. params.to = p_end;
  879. params.collisions = 0;
  880. params.dir = (p_end - p_begin).normalized();
  881. params.faces = fr.ptr();
  882. params.vertices = vr.ptr();
  883. params.bvh = br.ptr();
  884. params.min_d = 1e20;
  885. // cull
  886. _cull_segment(0, &params);
  887. if (params.collisions > 0) {
  888. r_result = params.result;
  889. r_normal = params.normal;
  890. return true;
  891. } else {
  892. return false;
  893. }
  894. }
  895. bool ConcavePolygonShapeSW::intersect_point(const Vector3 &p_point) const {
  896. return false; //face is flat
  897. }
  898. Vector3 ConcavePolygonShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  899. return Vector3();
  900. }
  901. void ConcavePolygonShapeSW::_cull(int p_idx, _CullParams *p_params) const {
  902. const BVH *bvh = &p_params->bvh[p_idx];
  903. if (!p_params->aabb.intersects(bvh->aabb))
  904. return;
  905. if (bvh->face_index >= 0) {
  906. const Face *f = &p_params->faces[bvh->face_index];
  907. FaceShapeSW *face = p_params->face;
  908. face->normal = f->normal;
  909. face->vertex[0] = p_params->vertices[f->indices[0]];
  910. face->vertex[1] = p_params->vertices[f->indices[1]];
  911. face->vertex[2] = p_params->vertices[f->indices[2]];
  912. p_params->callback(p_params->userdata, face);
  913. } else {
  914. if (bvh->left >= 0) {
  915. _cull(bvh->left, p_params);
  916. }
  917. if (bvh->right >= 0) {
  918. _cull(bvh->right, p_params);
  919. }
  920. }
  921. }
  922. void ConcavePolygonShapeSW::cull(const AABB &p_local_aabb, Callback p_callback, void *p_userdata) const {
  923. // make matrix local to concave
  924. if (faces.size() == 0)
  925. return;
  926. AABB local_aabb = p_local_aabb;
  927. // unlock data
  928. PoolVector<Face>::Read fr = faces.read();
  929. PoolVector<Vector3>::Read vr = vertices.read();
  930. PoolVector<BVH>::Read br = bvh.read();
  931. FaceShapeSW face; // use this to send in the callback
  932. _CullParams params;
  933. params.aabb = local_aabb;
  934. params.face = &face;
  935. params.faces = fr.ptr();
  936. params.vertices = vr.ptr();
  937. params.bvh = br.ptr();
  938. params.callback = p_callback;
  939. params.userdata = p_userdata;
  940. // cull
  941. _cull(0, &params);
  942. }
  943. Vector3 ConcavePolygonShapeSW::get_moment_of_inertia(real_t p_mass) const {
  944. // use bad AABB approximation
  945. Vector3 extents = get_aabb().size * 0.5;
  946. return Vector3(
  947. (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
  948. (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
  949. (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
  950. }
  951. struct _VolumeSW_BVH_Element {
  952. AABB aabb;
  953. Vector3 center;
  954. int face_index;
  955. };
  956. struct _VolumeSW_BVH_CompareX {
  957. _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
  958. return a.center.x < b.center.x;
  959. }
  960. };
  961. struct _VolumeSW_BVH_CompareY {
  962. _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
  963. return a.center.y < b.center.y;
  964. }
  965. };
  966. struct _VolumeSW_BVH_CompareZ {
  967. _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
  968. return a.center.z < b.center.z;
  969. }
  970. };
  971. struct _VolumeSW_BVH {
  972. AABB aabb;
  973. _VolumeSW_BVH *left;
  974. _VolumeSW_BVH *right;
  975. int face_index;
  976. };
  977. _VolumeSW_BVH *_volume_sw_build_bvh(_VolumeSW_BVH_Element *p_elements, int p_size, int &count) {
  978. _VolumeSW_BVH *bvh = memnew(_VolumeSW_BVH);
  979. if (p_size == 1) {
  980. //leaf
  981. bvh->aabb = p_elements[0].aabb;
  982. bvh->left = NULL;
  983. bvh->right = NULL;
  984. bvh->face_index = p_elements->face_index;
  985. count++;
  986. return bvh;
  987. } else {
  988. bvh->face_index = -1;
  989. }
  990. AABB aabb;
  991. for (int i = 0; i < p_size; i++) {
  992. if (i == 0)
  993. aabb = p_elements[i].aabb;
  994. else
  995. aabb.merge_with(p_elements[i].aabb);
  996. }
  997. bvh->aabb = aabb;
  998. switch (aabb.get_longest_axis_index()) {
  999. case 0: {
  1000. SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareX> sort_x;
  1001. sort_x.sort(p_elements, p_size);
  1002. } break;
  1003. case 1: {
  1004. SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareY> sort_y;
  1005. sort_y.sort(p_elements, p_size);
  1006. } break;
  1007. case 2: {
  1008. SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareZ> sort_z;
  1009. sort_z.sort(p_elements, p_size);
  1010. } break;
  1011. }
  1012. int split = p_size / 2;
  1013. bvh->left = _volume_sw_build_bvh(p_elements, split, count);
  1014. bvh->right = _volume_sw_build_bvh(&p_elements[split], p_size - split, count);
  1015. //printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index);
  1016. count++;
  1017. return bvh;
  1018. }
  1019. void ConcavePolygonShapeSW::_fill_bvh(_VolumeSW_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) {
  1020. int idx = p_idx;
  1021. p_bvh_array[idx].aabb = p_bvh_tree->aabb;
  1022. p_bvh_array[idx].face_index = p_bvh_tree->face_index;
  1023. //printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right);
  1024. if (p_bvh_tree->left) {
  1025. p_bvh_array[idx].left = ++p_idx;
  1026. _fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx);
  1027. } else {
  1028. p_bvh_array[p_idx].left = -1;
  1029. }
  1030. if (p_bvh_tree->right) {
  1031. p_bvh_array[idx].right = ++p_idx;
  1032. _fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx);
  1033. } else {
  1034. p_bvh_array[p_idx].right = -1;
  1035. }
  1036. memdelete(p_bvh_tree);
  1037. }
  1038. void ConcavePolygonShapeSW::_setup(PoolVector<Vector3> p_faces) {
  1039. int src_face_count = p_faces.size();
  1040. if (src_face_count == 0) {
  1041. configure(AABB());
  1042. return;
  1043. }
  1044. ERR_FAIL_COND(src_face_count % 3);
  1045. src_face_count /= 3;
  1046. PoolVector<Vector3>::Read r = p_faces.read();
  1047. const Vector3 *facesr = r.ptr();
  1048. PoolVector<_VolumeSW_BVH_Element> bvh_array;
  1049. bvh_array.resize(src_face_count);
  1050. PoolVector<_VolumeSW_BVH_Element>::Write bvhw = bvh_array.write();
  1051. _VolumeSW_BVH_Element *bvh_arrayw = bvhw.ptr();
  1052. faces.resize(src_face_count);
  1053. PoolVector<Face>::Write w = faces.write();
  1054. Face *facesw = w.ptr();
  1055. vertices.resize(src_face_count * 3);
  1056. PoolVector<Vector3>::Write vw = vertices.write();
  1057. Vector3 *verticesw = vw.ptr();
  1058. AABB _aabb;
  1059. for (int i = 0; i < src_face_count; i++) {
  1060. Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]);
  1061. bvh_arrayw[i].aabb = face.get_aabb();
  1062. bvh_arrayw[i].center = bvh_arrayw[i].aabb.position + bvh_arrayw[i].aabb.size * 0.5;
  1063. bvh_arrayw[i].face_index = i;
  1064. facesw[i].indices[0] = i * 3 + 0;
  1065. facesw[i].indices[1] = i * 3 + 1;
  1066. facesw[i].indices[2] = i * 3 + 2;
  1067. facesw[i].normal = face.get_plane().normal;
  1068. verticesw[i * 3 + 0] = face.vertex[0];
  1069. verticesw[i * 3 + 1] = face.vertex[1];
  1070. verticesw[i * 3 + 2] = face.vertex[2];
  1071. if (i == 0)
  1072. _aabb = bvh_arrayw[i].aabb;
  1073. else
  1074. _aabb.merge_with(bvh_arrayw[i].aabb);
  1075. }
  1076. w = PoolVector<Face>::Write();
  1077. vw = PoolVector<Vector3>::Write();
  1078. int count = 0;
  1079. _VolumeSW_BVH *bvh_tree = _volume_sw_build_bvh(bvh_arrayw, src_face_count, count);
  1080. bvh.resize(count + 1);
  1081. PoolVector<BVH>::Write bvhw2 = bvh.write();
  1082. BVH *bvh_arrayw2 = bvhw2.ptr();
  1083. int idx = 0;
  1084. _fill_bvh(bvh_tree, bvh_arrayw2, idx);
  1085. configure(_aabb); // this type of shape has no margin
  1086. }
  1087. void ConcavePolygonShapeSW::set_data(const Variant &p_data) {
  1088. _setup(p_data);
  1089. }
  1090. Variant ConcavePolygonShapeSW::get_data() const {
  1091. return get_faces();
  1092. }
  1093. ConcavePolygonShapeSW::ConcavePolygonShapeSW() {
  1094. }
  1095. /* HEIGHT MAP SHAPE */
  1096. PoolVector<real_t> HeightMapShapeSW::get_heights() const {
  1097. return heights;
  1098. }
  1099. int HeightMapShapeSW::get_width() const {
  1100. return width;
  1101. }
  1102. int HeightMapShapeSW::get_depth() const {
  1103. return depth;
  1104. }
  1105. real_t HeightMapShapeSW::get_cell_size() const {
  1106. return cell_size;
  1107. }
  1108. void HeightMapShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
  1109. //not very useful, but not very used either
  1110. p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal, 0), r_min, r_max);
  1111. }
  1112. Vector3 HeightMapShapeSW::get_support(const Vector3 &p_normal) const {
  1113. //not very useful, but not very used either
  1114. return get_aabb().get_support(p_normal);
  1115. }
  1116. bool HeightMapShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal) const {
  1117. return false;
  1118. }
  1119. bool HeightMapShapeSW::intersect_point(const Vector3 &p_point) const {
  1120. return false;
  1121. }
  1122. Vector3 HeightMapShapeSW::get_closest_point_to(const Vector3 &p_point) const {
  1123. return Vector3();
  1124. }
  1125. void HeightMapShapeSW::cull(const AABB &p_local_aabb, Callback p_callback, void *p_userdata) const {
  1126. }
  1127. Vector3 HeightMapShapeSW::get_moment_of_inertia(real_t p_mass) const {
  1128. // use bad AABB approximation
  1129. Vector3 extents = get_aabb().size * 0.5;
  1130. return Vector3(
  1131. (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
  1132. (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
  1133. (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
  1134. }
  1135. void HeightMapShapeSW::_setup(PoolVector<real_t> p_heights, int p_width, int p_depth, real_t p_cell_size) {
  1136. heights = p_heights;
  1137. width = p_width;
  1138. depth = p_depth;
  1139. cell_size = p_cell_size;
  1140. PoolVector<real_t>::Read r = heights.read();
  1141. AABB aabb;
  1142. for (int i = 0; i < depth; i++) {
  1143. for (int j = 0; j < width; j++) {
  1144. real_t h = r[i * width + j];
  1145. Vector3 pos(j * cell_size, h, i * cell_size);
  1146. if (i == 0 || j == 0)
  1147. aabb.position = pos;
  1148. else
  1149. aabb.expand_to(pos);
  1150. }
  1151. }
  1152. configure(aabb);
  1153. }
  1154. void HeightMapShapeSW::set_data(const Variant &p_data) {
  1155. ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY);
  1156. Dictionary d = p_data;
  1157. ERR_FAIL_COND(!d.has("width"));
  1158. ERR_FAIL_COND(!d.has("depth"));
  1159. ERR_FAIL_COND(!d.has("cell_size"));
  1160. ERR_FAIL_COND(!d.has("heights"));
  1161. int width = d["width"];
  1162. int depth = d["depth"];
  1163. real_t cell_size = d["cell_size"];
  1164. PoolVector<real_t> heights = d["heights"];
  1165. ERR_FAIL_COND(width <= 0);
  1166. ERR_FAIL_COND(depth <= 0);
  1167. ERR_FAIL_COND(cell_size <= CMP_EPSILON);
  1168. ERR_FAIL_COND(heights.size() != (width * depth));
  1169. _setup(heights, width, depth, cell_size);
  1170. }
  1171. Variant HeightMapShapeSW::get_data() const {
  1172. ERR_FAIL_V(Variant());
  1173. }
  1174. HeightMapShapeSW::HeightMapShapeSW() {
  1175. width = 0;
  1176. depth = 0;
  1177. cell_size = 0;
  1178. }