123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647 |
- /*************************************************************************/
- /* math_2d.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "math_2d.h"
- real_t Vector2::angle() const {
- return Math::atan2(x, y);
- }
- float Vector2::length() const {
- return Math::sqrt(x * x + y * y);
- }
- float Vector2::length_squared() const {
- return x * x + y * y;
- }
- void Vector2::normalize() {
- float l = x * x + y * y;
- if (l != 0) {
- l = Math::sqrt(l);
- x /= l;
- y /= l;
- }
- }
- Vector2 Vector2::normalized() const {
- Vector2 v = *this;
- v.normalize();
- return v;
- }
- float Vector2::distance_to(const Vector2 &p_vector2) const {
- return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
- }
- float Vector2::distance_squared_to(const Vector2 &p_vector2) const {
- return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
- }
- float Vector2::angle_to(const Vector2 &p_vector2) const {
- return Math::atan2(tangent().dot(p_vector2), dot(p_vector2));
- }
- float Vector2::angle_to_point(const Vector2 &p_vector2) const {
- return Math::atan2(x - p_vector2.x, y - p_vector2.y);
- }
- float Vector2::dot(const Vector2 &p_other) const {
- return x * p_other.x + y * p_other.y;
- }
- float Vector2::cross(const Vector2 &p_other) const {
- return x * p_other.y - y * p_other.x;
- }
- Vector2 Vector2::cross(real_t p_other) const {
- return Vector2(p_other * y, -p_other * x);
- }
- Vector2 Vector2::operator+(const Vector2 &p_v) const {
- return Vector2(x + p_v.x, y + p_v.y);
- }
- void Vector2::operator+=(const Vector2 &p_v) {
- x += p_v.x;
- y += p_v.y;
- }
- Vector2 Vector2::operator-(const Vector2 &p_v) const {
- return Vector2(x - p_v.x, y - p_v.y);
- }
- void Vector2::operator-=(const Vector2 &p_v) {
- x -= p_v.x;
- y -= p_v.y;
- }
- Vector2 Vector2::operator*(const Vector2 &p_v1) const {
- return Vector2(x * p_v1.x, y * p_v1.y);
- };
- Vector2 Vector2::operator*(const float &rvalue) const {
- return Vector2(x * rvalue, y * rvalue);
- };
- void Vector2::operator*=(const float &rvalue) {
- x *= rvalue;
- y *= rvalue;
- };
- Vector2 Vector2::operator/(const Vector2 &p_v1) const {
- return Vector2(x / p_v1.x, y / p_v1.y);
- };
- Vector2 Vector2::operator/(const float &rvalue) const {
- return Vector2(x / rvalue, y / rvalue);
- };
- void Vector2::operator/=(const float &rvalue) {
- x /= rvalue;
- y /= rvalue;
- };
- Vector2 Vector2::operator-() const {
- return Vector2(-x, -y);
- }
- bool Vector2::operator==(const Vector2 &p_vec2) const {
- return x == p_vec2.x && y == p_vec2.y;
- }
- bool Vector2::operator!=(const Vector2 &p_vec2) const {
- return x != p_vec2.x || y != p_vec2.y;
- }
- Vector2 Vector2::floor() const {
- return Vector2(Math::floor(x), Math::floor(y));
- }
- Vector2 Vector2::rotated(float p_by) const {
- Vector2 v;
- v.set_rotation(angle() + p_by);
- v *= length();
- return v;
- }
- Vector2 Vector2::project(const Vector2 &p_vec) const {
- Vector2 v1 = p_vec;
- Vector2 v2 = *this;
- return v2 * (v1.dot(v2) / v2.dot(v2));
- }
- Vector2 Vector2::snapped(const Vector2 &p_by) const {
- return Vector2(
- Math::stepify(x, p_by.x),
- Math::stepify(y, p_by.y));
- }
- Vector2 Vector2::clamped(real_t p_len) const {
- real_t l = length();
- Vector2 v = *this;
- if (l > 0 && p_len < l) {
- v /= l;
- v *= p_len;
- }
- return v;
- }
- Vector2 Vector2::cubic_interpolate_soft(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, float p_t) const {
- #if 0
- k[0] = ((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) (vi[0],
- vi[1],vi[2])); //fk = a0
- k[1] = (((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) ((int) (v(0) -
- 1), vi[1],vi[2])))*0.5; //dk = a1
- k[2] = (((*this) ((int) (v(0) + 2), vi[1], vi[2])) - ((*this) (vi[0],
- vi[1],vi[2])))*0.5; //dk+1
- k[3] = k[0]*3 - k[1]*2 - k[2];//a2
- k[4] = k[1] + k[2] - k[0]*2;//a3
- //ip = a3(t-tk)³ + a2(t-tk)² + a1(t-tk) + a0
- //
- //a3 = dk + dk+1 - Dk
- //a2 = 3Dk - 2dk - dk+1
- //a1 = dk
- //a0 = fk
- //
- //dk = (fk+1 - fk-1)*0.5
- //Dk = (fk+1 - fk)
- float dk =
- #endif
- return Vector2();
- }
- Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, float p_t) const {
- Vector2 p0 = p_pre_a;
- Vector2 p1 = *this;
- Vector2 p2 = p_b;
- Vector2 p3 = p_post_b;
- float t = p_t;
- float t2 = t * t;
- float t3 = t2 * t;
- Vector2 out;
- out = 0.5f * ((p1 * 2.0f) +
- (-p0 + p2) * t +
- (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 +
- (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
- return out;
- /*
- float mu = p_t;
- float mu2 = mu*mu;
- Vector2 a0 = p_post_b - p_b - p_pre_a + *this;
- Vector2 a1 = p_pre_a - *this - a0;
- Vector2 a2 = p_b - p_pre_a;
- Vector2 a3 = *this;
- return ( a0*mu*mu2 + a1*mu2 + a2*mu + a3 );
- */
- /*
- float t = p_t;
- real_t t2 = t*t;
- real_t t3 = t2*t;
- real_t a = 2.0*t3- 3.0*t2 + 1;
- real_t b = -2.0*t3+ 3.0*t2;
- real_t c = t3- 2.0*t2 + t;
- real_t d = t3- t2;
- Vector2 p_a=*this;
- return Vector2(
- (a * p_a.x) + (b *p_b.x) + (c * p_pre_a.x) + (d * p_post_b.x),
- (a * p_a.y) + (b *p_b.y) + (c * p_pre_a.y) + (d * p_post_b.y)
- );
- */
- }
- Vector2 Vector2::slide(const Vector2 &p_vec) const {
- return p_vec - *this * this->dot(p_vec);
- }
- Vector2 Vector2::reflect(const Vector2 &p_vec) const {
- return p_vec - *this * this->dot(p_vec) * 2.0;
- }
- bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
- real_t min = 0, max = 1;
- int axis = 0;
- float sign = 0;
- for (int i = 0; i < 2; i++) {
- real_t seg_from = p_from[i];
- real_t seg_to = p_to[i];
- real_t box_begin = pos[i];
- real_t box_end = box_begin + size[i];
- real_t cmin, cmax;
- float csign;
- if (seg_from < seg_to) {
- if (seg_from > box_end || seg_to < box_begin)
- return false;
- real_t length = seg_to - seg_from;
- cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
- cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
- csign = -1.0;
- } else {
- if (seg_to > box_end || seg_from < box_begin)
- return false;
- real_t length = seg_to - seg_from;
- cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
- cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
- csign = 1.0;
- }
- if (cmin > min) {
- min = cmin;
- axis = i;
- sign = csign;
- }
- if (cmax < max)
- max = cmax;
- if (max < min)
- return false;
- }
- Vector2 rel = p_to - p_from;
- if (r_normal) {
- Vector2 normal;
- normal[axis] = sign;
- *r_normal = normal;
- }
- if (r_pos)
- *r_pos = p_from + rel * min;
- return true;
- }
- /* Point2i */
- Point2i Point2i::operator+(const Point2i &p_v) const {
- return Point2i(x + p_v.x, y + p_v.y);
- }
- void Point2i::operator+=(const Point2i &p_v) {
- x += p_v.x;
- y += p_v.y;
- }
- Point2i Point2i::operator-(const Point2i &p_v) const {
- return Point2i(x - p_v.x, y - p_v.y);
- }
- void Point2i::operator-=(const Point2i &p_v) {
- x -= p_v.x;
- y -= p_v.y;
- }
- Point2i Point2i::operator*(const Point2i &p_v1) const {
- return Point2i(x * p_v1.x, y * p_v1.y);
- };
- Point2i Point2i::operator*(const int &rvalue) const {
- return Point2i(x * rvalue, y * rvalue);
- };
- void Point2i::operator*=(const int &rvalue) {
- x *= rvalue;
- y *= rvalue;
- };
- Point2i Point2i::operator/(const Point2i &p_v1) const {
- return Point2i(x / p_v1.x, y / p_v1.y);
- };
- Point2i Point2i::operator/(const int &rvalue) const {
- return Point2i(x / rvalue, y / rvalue);
- };
- void Point2i::operator/=(const int &rvalue) {
- x /= rvalue;
- y /= rvalue;
- };
- Point2i Point2i::operator-() const {
- return Point2i(-x, -y);
- }
- bool Point2i::operator==(const Point2i &p_vec2) const {
- return x == p_vec2.x && y == p_vec2.y;
- }
- bool Point2i::operator!=(const Point2i &p_vec2) const {
- return x != p_vec2.x || y != p_vec2.y;
- }
- void Matrix32::invert() {
- SWAP(elements[0][1], elements[1][0]);
- elements[2] = basis_xform(-elements[2]);
- }
- Matrix32 Matrix32::inverse() const {
- Matrix32 inv = *this;
- inv.invert();
- return inv;
- }
- void Matrix32::affine_invert() {
- float det = basis_determinant();
- ERR_FAIL_COND(det == 0);
- float idet = 1.0 / det;
- SWAP(elements[0][0], elements[1][1]);
- elements[0] *= Vector2(idet, -idet);
- elements[1] *= Vector2(-idet, idet);
- elements[2] = basis_xform(-elements[2]);
- }
- Matrix32 Matrix32::affine_inverse() const {
- Matrix32 inv = *this;
- inv.affine_invert();
- return inv;
- }
- void Matrix32::rotate(real_t p_phi) {
- Matrix32 rot(p_phi, Vector2());
- *this *= rot;
- }
- real_t Matrix32::get_rotation() const {
- return Math::atan2(elements[1].x, elements[1].y);
- }
- void Matrix32::set_rotation(real_t p_rot) {
- real_t cr = Math::cos(p_rot);
- real_t sr = Math::sin(p_rot);
- elements[0][0] = cr;
- elements[1][1] = cr;
- elements[0][1] = -sr;
- elements[1][0] = sr;
- }
- Matrix32::Matrix32(real_t p_rot, const Vector2 &p_pos) {
- real_t cr = Math::cos(p_rot);
- real_t sr = Math::sin(p_rot);
- elements[0][0] = cr;
- elements[1][1] = cr;
- elements[0][1] = -sr;
- elements[1][0] = sr;
- elements[2] = p_pos;
- }
- Size2 Matrix32::get_scale() const {
- return Size2(elements[0].length(), elements[1].length());
- }
- void Matrix32::scale(const Size2 &p_scale) {
- elements[0] *= p_scale;
- elements[1] *= p_scale;
- elements[2] *= p_scale;
- }
- void Matrix32::scale_basis(const Size2 &p_scale) {
- elements[0] *= p_scale;
- elements[1] *= p_scale;
- }
- void Matrix32::translate(real_t p_tx, real_t p_ty) {
- translate(Vector2(p_tx, p_ty));
- }
- void Matrix32::translate(const Vector2 &p_translation) {
- elements[2] += basis_xform(p_translation);
- }
- void Matrix32::orthonormalize() {
- // Gram-Schmidt Process
- Vector2 x = elements[0];
- Vector2 y = elements[1];
- x.normalize();
- y = (y - x * (x.dot(y)));
- y.normalize();
- elements[0] = x;
- elements[1] = y;
- }
- Matrix32 Matrix32::orthonormalized() const {
- Matrix32 on = *this;
- on.orthonormalize();
- return on;
- }
- bool Matrix32::operator==(const Matrix32 &p_transform) const {
- for (int i = 0; i < 3; i++) {
- if (elements[i] != p_transform.elements[i])
- return false;
- }
- return true;
- }
- bool Matrix32::operator!=(const Matrix32 &p_transform) const {
- for (int i = 0; i < 3; i++) {
- if (elements[i] != p_transform.elements[i])
- return true;
- }
- return false;
- }
- void Matrix32::operator*=(const Matrix32 &p_transform) {
- elements[2] = xform(p_transform.elements[2]);
- float x0, x1, y0, y1;
- x0 = tdotx(p_transform.elements[0]);
- x1 = tdoty(p_transform.elements[0]);
- y0 = tdotx(p_transform.elements[1]);
- y1 = tdoty(p_transform.elements[1]);
- elements[0][0] = x0;
- elements[0][1] = x1;
- elements[1][0] = y0;
- elements[1][1] = y1;
- }
- Matrix32 Matrix32::operator*(const Matrix32 &p_transform) const {
- Matrix32 t = *this;
- t *= p_transform;
- return t;
- }
- Matrix32 Matrix32::scaled(const Size2 &p_scale) const {
- Matrix32 copy = *this;
- copy.scale(p_scale);
- return copy;
- }
- Matrix32 Matrix32::basis_scaled(const Size2 &p_scale) const {
- Matrix32 copy = *this;
- copy.scale_basis(p_scale);
- return copy;
- }
- Matrix32 Matrix32::untranslated() const {
- Matrix32 copy = *this;
- copy.elements[2] = Vector2();
- return copy;
- }
- Matrix32 Matrix32::translated(const Vector2 &p_offset) const {
- Matrix32 copy = *this;
- copy.translate(p_offset);
- return copy;
- }
- Matrix32 Matrix32::rotated(float p_phi) const {
- Matrix32 copy = *this;
- copy.rotate(p_phi);
- return copy;
- }
- float Matrix32::basis_determinant() const {
- return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
- }
- Matrix32 Matrix32::interpolate_with(const Matrix32 &p_transform, float p_c) const {
- //extract parameters
- Vector2 p1 = get_origin();
- Vector2 p2 = p_transform.get_origin();
- real_t r1 = get_rotation();
- real_t r2 = p_transform.get_rotation();
- Size2 s1 = get_scale();
- Size2 s2 = p_transform.get_scale();
- //slerp rotation
- Vector2 v1(Math::cos(r1), Math::sin(r1));
- Vector2 v2(Math::cos(r2), Math::sin(r2));
- real_t dot = v1.dot(v2);
- dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
- Vector2 v;
- if (dot > 0.9995) {
- v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
- } else {
- real_t angle = p_c * Math::acos(dot);
- Vector2 v3 = (v2 - v1 * dot).normalized();
- v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
- }
- //construct matrix
- Matrix32 res(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
- res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
- return res;
- }
- Matrix32::operator String() const {
- return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
- }
|