123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098 |
- /*************************************************************************/
- /* geometry.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "geometry.h"
- #include "print_string.h"
- void Geometry::MeshData::optimize_vertices() {
- Map<int, int> vtx_remap;
- for (int i = 0; i < faces.size(); i++) {
- for (int j = 0; j < faces[i].indices.size(); j++) {
- int idx = faces[i].indices[j];
- if (!vtx_remap.has(idx)) {
- int ni = vtx_remap.size();
- vtx_remap[idx] = ni;
- }
- faces[i].indices[j] = vtx_remap[idx];
- }
- }
- for (int i = 0; i < edges.size(); i++) {
- int a = edges[i].a;
- int b = edges[i].b;
- if (!vtx_remap.has(a)) {
- int ni = vtx_remap.size();
- vtx_remap[a] = ni;
- }
- if (!vtx_remap.has(b)) {
- int ni = vtx_remap.size();
- vtx_remap[b] = ni;
- }
- edges[i].a = vtx_remap[a];
- edges[i].b = vtx_remap[b];
- }
- Vector<Vector3> new_vertices;
- new_vertices.resize(vtx_remap.size());
- for (int i = 0; i < vertices.size(); i++) {
- if (vtx_remap.has(i))
- new_vertices[vtx_remap[i]] = vertices[i];
- }
- vertices = new_vertices;
- }
- Vector<Vector<Vector2> > (*Geometry::_decompose_func)(const Vector<Vector2> &p_polygon) = NULL;
- struct _FaceClassify {
- struct _Link {
- int face;
- int edge;
- void clear() {
- face = -1;
- edge = -1;
- }
- _Link() {
- face = -1;
- edge = -1;
- }
- };
- bool valid;
- int group;
- _Link links[3];
- Face3 face;
- _FaceClassify() {
- group = -1;
- valid = false;
- };
- };
- static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) {
- /* connect faces, error will occur if an edge is shared between more than 2 faces */
- /* clear connections */
- bool error = false;
- for (int i = 0; i < len; i++) {
- for (int j = 0; j < 3; j++) {
- p_faces[i].links[j].clear();
- }
- }
- for (int i = 0; i < len; i++) {
- if (p_faces[i].group != p_group)
- continue;
- for (int j = i + 1; j < len; j++) {
- if (p_faces[j].group != p_group)
- continue;
- for (int k = 0; k < 3; k++) {
- Vector3 vi1 = p_faces[i].face.vertex[k];
- Vector3 vi2 = p_faces[i].face.vertex[(k + 1) % 3];
- for (int l = 0; l < 3; l++) {
- Vector3 vj2 = p_faces[j].face.vertex[l];
- Vector3 vj1 = p_faces[j].face.vertex[(l + 1) % 3];
- if (vi1.distance_to(vj1) < 0.00001 &&
- vi2.distance_to(vj2) < 0.00001) {
- if (p_faces[i].links[k].face != -1) {
- ERR_PRINT("already linked\n");
- error = true;
- break;
- }
- if (p_faces[j].links[l].face != -1) {
- ERR_PRINT("already linked\n");
- error = true;
- break;
- }
- p_faces[i].links[k].face = j;
- p_faces[i].links[k].edge = l;
- p_faces[j].links[l].face = i;
- p_faces[j].links[l].edge = k;
- }
- }
- if (error)
- break;
- }
- if (error)
- break;
- }
- if (error)
- break;
- }
- for (int i = 0; i < len; i++) {
- p_faces[i].valid = true;
- for (int j = 0; j < 3; j++) {
- if (p_faces[i].links[j].face == -1)
- p_faces[i].valid = false;
- }
- /*printf("face %i is valid: %i, group %i. connected to %i:%i,%i:%i,%i:%i\n",i,p_faces[i].valid,p_faces[i].group,
- p_faces[i].links[0].face,
- p_faces[i].links[0].edge,
- p_faces[i].links[1].face,
- p_faces[i].links[1].edge,
- p_faces[i].links[2].face,
- p_faces[i].links[2].edge);*/
- }
- return error;
- }
- static bool _group_face(_FaceClassify *p_faces, int len, int p_index, int p_group) {
- if (p_faces[p_index].group >= 0)
- return false;
- p_faces[p_index].group = p_group;
- for (int i = 0; i < 3; i++) {
- ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face, len, true);
- _group_face(p_faces, len, p_faces[p_index].links[i].face, p_group);
- }
- return true;
- }
- DVector<DVector<Face3> > Geometry::separate_objects(DVector<Face3> p_array) {
- DVector<DVector<Face3> > objects;
- int len = p_array.size();
- DVector<Face3>::Read r = p_array.read();
- const Face3 *arrayptr = r.ptr();
- DVector<_FaceClassify> fc;
- fc.resize(len);
- DVector<_FaceClassify>::Write fcw = fc.write();
- _FaceClassify *_fcptr = fcw.ptr();
- for (int i = 0; i < len; i++) {
- _fcptr[i].face = arrayptr[i];
- }
- bool error = _connect_faces(_fcptr, len, -1);
- if (error) {
- ERR_FAIL_COND_V(error, DVector<DVector<Face3> >()); // invalid geometry
- }
- /* group connected faces in separate objects */
- int group = 0;
- for (int i = 0; i < len; i++) {
- if (!_fcptr[i].valid)
- continue;
- if (_group_face(_fcptr, len, i, group)) {
- group++;
- }
- }
- /* group connected faces in separate objects */
- for (int i = 0; i < len; i++) {
- _fcptr[i].face = arrayptr[i];
- }
- if (group >= 0) {
- objects.resize(group);
- DVector<DVector<Face3> >::Write obw = objects.write();
- DVector<Face3> *group_faces = obw.ptr();
- for (int i = 0; i < len; i++) {
- if (!_fcptr[i].valid)
- continue;
- if (_fcptr[i].group >= 0 && _fcptr[i].group < group) {
- group_faces[_fcptr[i].group].push_back(_fcptr[i].face);
- }
- }
- }
- return objects;
- }
- /*** GEOMETRY WRAPPER ***/
- enum _CellFlags {
- _CELL_SOLID = 1,
- _CELL_EXTERIOR = 2,
- _CELL_STEP_MASK = 0x1C,
- _CELL_STEP_NONE = 0 << 2,
- _CELL_STEP_Y_POS = 1 << 2,
- _CELL_STEP_Y_NEG = 2 << 2,
- _CELL_STEP_X_POS = 3 << 2,
- _CELL_STEP_X_NEG = 4 << 2,
- _CELL_STEP_Z_POS = 5 << 2,
- _CELL_STEP_Z_NEG = 6 << 2,
- _CELL_STEP_DONE = 7 << 2,
- _CELL_PREV_MASK = 0xE0,
- _CELL_PREV_NONE = 0 << 5,
- _CELL_PREV_Y_POS = 1 << 5,
- _CELL_PREV_Y_NEG = 2 << 5,
- _CELL_PREV_X_POS = 3 << 5,
- _CELL_PREV_X_NEG = 4 << 5,
- _CELL_PREV_Z_POS = 5 << 5,
- _CELL_PREV_Z_NEG = 6 << 5,
- _CELL_PREV_FIRST = 7 << 5,
- };
- static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) {
- AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z));
- aabb.pos = aabb.pos * voxelsize;
- aabb.size = aabb.size * voxelsize;
- if (!p_face.intersects_aabb(aabb))
- return;
- if (len_x == 1 && len_y == 1 && len_z == 1) {
- p_cell_status[x][y][z] = _CELL_SOLID;
- return;
- }
- int div_x = len_x > 1 ? 2 : 1;
- int div_y = len_y > 1 ? 2 : 1;
- int div_z = len_z > 1 ? 2 : 1;
- #define _SPLIT(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \
- if (m_div == 1) { \
- m_new_v = m_v; \
- m_new_len_v = 1; \
- } else if (m_i == 0) { \
- m_new_v = m_v; \
- m_new_len_v = m_len_v / 2; \
- } else { \
- m_new_v = m_v + m_len_v / 2; \
- m_new_len_v = m_len_v - m_len_v / 2; \
- }
- int new_x;
- int new_len_x;
- int new_y;
- int new_len_y;
- int new_z;
- int new_len_z;
- for (int i = 0; i < div_x; i++) {
- _SPLIT(i, div_x, x, len_x, new_x, new_len_x);
- for (int j = 0; j < div_y; j++) {
- _SPLIT(j, div_y, y, len_y, new_y, new_len_y);
- for (int k = 0; k < div_z; k++) {
- _SPLIT(k, div_z, z, len_z, new_z, new_len_z);
- _plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face);
- }
- }
- }
- }
- static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) {
- if (p_cell_status[x][y][z] & 3)
- return; // nothing to do, already used and/or visited
- p_cell_status[x][y][z] = _CELL_PREV_FIRST;
- while (true) {
- uint8_t &c = p_cell_status[x][y][z];
- //printf("at %i,%i,%i\n",x,y,z);
- if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) {
- /* Haven't been in here, mark as outside */
- p_cell_status[x][y][z] |= _CELL_EXTERIOR;
- //printf("not marked as anything, marking exterior\n");
- }
- //printf("cell step is %i\n",(c&_CELL_STEP_MASK));
- if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) {
- /* if not done, increase step */
- c += 1 << 2;
- //printf("incrementing cell step\n");
- }
- if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) {
- /* Go back */
- //printf("done, going back a cell\n");
- switch (c & _CELL_PREV_MASK) {
- case _CELL_PREV_FIRST: {
- //printf("at end, finished marking\n");
- return;
- } break;
- case _CELL_PREV_Y_POS: {
- y++;
- ERR_FAIL_COND(y >= len_y);
- } break;
- case _CELL_PREV_Y_NEG: {
- y--;
- ERR_FAIL_COND(y < 0);
- } break;
- case _CELL_PREV_X_POS: {
- x++;
- ERR_FAIL_COND(x >= len_x);
- } break;
- case _CELL_PREV_X_NEG: {
- x--;
- ERR_FAIL_COND(x < 0);
- } break;
- case _CELL_PREV_Z_POS: {
- z++;
- ERR_FAIL_COND(z >= len_z);
- } break;
- case _CELL_PREV_Z_NEG: {
- z--;
- ERR_FAIL_COND(z < 0);
- } break;
- default: {
- ERR_FAIL();
- }
- }
- continue;
- }
- //printf("attempting new cell!\n");
- int next_x = x, next_y = y, next_z = z;
- uint8_t prev = 0;
- switch (c & _CELL_STEP_MASK) {
- case _CELL_STEP_Y_POS: {
- next_y++;
- prev = _CELL_PREV_Y_NEG;
- } break;
- case _CELL_STEP_Y_NEG: {
- next_y--;
- prev = _CELL_PREV_Y_POS;
- } break;
- case _CELL_STEP_X_POS: {
- next_x++;
- prev = _CELL_PREV_X_NEG;
- } break;
- case _CELL_STEP_X_NEG: {
- next_x--;
- prev = _CELL_PREV_X_POS;
- } break;
- case _CELL_STEP_Z_POS: {
- next_z++;
- prev = _CELL_PREV_Z_NEG;
- } break;
- case _CELL_STEP_Z_NEG: {
- next_z--;
- prev = _CELL_PREV_Z_POS;
- } break;
- default: ERR_FAIL();
- }
- //printf("testing if new cell will be ok...!\n");
- if (next_x < 0 || next_x >= len_x)
- continue;
- if (next_y < 0 || next_y >= len_y)
- continue;
- if (next_z < 0 || next_z >= len_z)
- continue;
- //printf("testing if new cell is traversable\n");
- if (p_cell_status[next_x][next_y][next_z] & 3)
- continue;
- //printf("move to it\n");
- x = next_x;
- y = next_y;
- z = next_z;
- p_cell_status[x][y][z] |= prev;
- }
- }
- static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, DVector<Face3> &p_faces) {
- ERR_FAIL_INDEX(x, len_x);
- ERR_FAIL_INDEX(y, len_y);
- ERR_FAIL_INDEX(z, len_z);
- if (p_cell_status[x][y][z] & _CELL_EXTERIOR)
- return;
- /* static const Vector3 vertices[8]={
- Vector3(0,0,0),
- Vector3(0,0,1),
- Vector3(0,1,0),
- Vector3(0,1,1),
- Vector3(1,0,0),
- Vector3(1,0,1),
- Vector3(1,1,0),
- Vector3(1,1,1),
- };
- */
- #define vert(m_idx) Vector3((m_idx & 4) >> 2, (m_idx & 2) >> 1, m_idx & 1)
- static const uint8_t indices[6][4] = {
- { 7, 6, 4, 5 },
- { 7, 3, 2, 6 },
- { 7, 5, 1, 3 },
- { 0, 2, 3, 1 },
- { 0, 1, 5, 4 },
- { 0, 4, 6, 2 },
- };
- /*
- {0,1,2,3},
- {0,1,4,5},
- {0,2,4,6},
- {4,5,6,7},
- {2,3,7,6},
- {1,3,5,7},
- {0,2,3,1},
- {0,1,5,4},
- {0,4,6,2},
- {7,6,4,5},
- {7,3,2,6},
- {7,5,1,3},
- */
- for (int i = 0; i < 6; i++) {
- Vector3 face_points[4];
- int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- bool plot = false;
- if (disp_x < 0 || disp_x >= len_x)
- plot = true;
- if (disp_y < 0 || disp_y >= len_y)
- plot = true;
- if (disp_z < 0 || disp_z >= len_z)
- plot = true;
- if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR))
- plot = true;
- if (!plot)
- continue;
- for (int j = 0; j < 4; j++)
- face_points[j] = vert(indices[i][j]) + Vector3(x, y, z);
- p_faces.push_back(
- Face3(
- face_points[0],
- face_points[1],
- face_points[2]));
- p_faces.push_back(
- Face3(
- face_points[2],
- face_points[3],
- face_points[0]));
- }
- }
- DVector<Face3> Geometry::wrap_geometry(DVector<Face3> p_array, float *p_error) {
- #define _MIN_SIZE 1.0
- #define _MAX_LENGTH 20
- int face_count = p_array.size();
- DVector<Face3>::Read facesr = p_array.read();
- const Face3 *faces = facesr.ptr();
- AABB global_aabb;
- for (int i = 0; i < face_count; i++) {
- if (i == 0) {
- global_aabb = faces[i].get_aabb();
- } else {
- global_aabb.merge_with(faces[i].get_aabb());
- }
- }
- global_aabb.grow_by(0.01); // avoid numerical error
- // determine amount of cells in grid axis
- int div_x, div_y, div_z;
- if (global_aabb.size.x / _MIN_SIZE < _MAX_LENGTH)
- div_x = (int)(global_aabb.size.x / _MIN_SIZE) + 1;
- else
- div_x = _MAX_LENGTH;
- if (global_aabb.size.y / _MIN_SIZE < _MAX_LENGTH)
- div_y = (int)(global_aabb.size.y / _MIN_SIZE) + 1;
- else
- div_y = _MAX_LENGTH;
- if (global_aabb.size.z / _MIN_SIZE < _MAX_LENGTH)
- div_z = (int)(global_aabb.size.z / _MIN_SIZE) + 1;
- else
- div_z = _MAX_LENGTH;
- Vector3 voxelsize = global_aabb.size;
- voxelsize.x /= div_x;
- voxelsize.y /= div_y;
- voxelsize.z /= div_z;
- // create and initialize cells to zero
- //print_line("Wrapper: Initializing Cells");
- uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
- for (int i = 0; i < div_x; i++) {
- cell_status[i] = memnew_arr(uint8_t *, div_y);
- for (int j = 0; j < div_y; j++) {
- cell_status[i][j] = memnew_arr(uint8_t, div_z);
- for (int k = 0; k < div_z; k++) {
- cell_status[i][j][k] = 0;
- }
- }
- }
- // plot faces into cells
- //print_line("Wrapper (1/6): Plotting Faces");
- for (int i = 0; i < face_count; i++) {
- Face3 f = faces[i];
- for (int j = 0; j < 3; j++) {
- f.vertex[j] -= global_aabb.pos;
- }
- _plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
- }
- // determine which cells connect to the outside by traversing the outside and recursively flood-fill marking
- //print_line("Wrapper (2/6): Flood Filling");
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- _mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
- _mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
- }
- }
- for (int i = 0; i < div_z; i++) {
- for (int j = 0; j < div_y; j++) {
- _mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
- _mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
- }
- }
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_z; j++) {
- _mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
- _mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
- }
- }
- // build faces for the inside-outside cell divisors
- //print_line("Wrapper (3/6): Building Faces");
- DVector<Face3> wrapped_faces;
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- for (int k = 0; k < div_z; k++) {
- _build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
- }
- }
- }
- //print_line("Wrapper (4/6): Transforming Back Vertices");
- // transform face vertices to global coords
- int wrapped_faces_count = wrapped_faces.size();
- DVector<Face3>::Write wrapped_facesw = wrapped_faces.write();
- Face3 *wrapped_faces_ptr = wrapped_facesw.ptr();
- for (int i = 0; i < wrapped_faces_count; i++) {
- for (int j = 0; j < 3; j++) {
- Vector3 &v = wrapped_faces_ptr[i].vertex[j];
- v = v * voxelsize;
- v += global_aabb.pos;
- }
- }
- // clean up grid
- //print_line("Wrapper (5/6): Grid Cleanup");
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- memdelete_arr(cell_status[i][j]);
- }
- memdelete_arr(cell_status[i]);
- }
- memdelete_arr(cell_status);
- if (p_error)
- *p_error = voxelsize.length();
- //print_line("Wrapper (6/6): Finished.");
- return wrapped_faces;
- }
- Geometry::MeshData Geometry::build_convex_mesh(const DVector<Plane> &p_planes) {
- MeshData mesh;
- #define SUBPLANE_SIZE 1024.0
- float subplane_size = 1024.0; // should compute this from the actual plane
- for (int i = 0; i < p_planes.size(); i++) {
- Plane p = p_planes[i];
- Vector3 ref = Vector3(0.0, 1.0, 0.0);
- if (ABS(p.normal.dot(ref)) > 0.95)
- ref = Vector3(0.0, 0.0, 1.0); // change axis
- Vector3 right = p.normal.cross(ref).normalized();
- Vector3 up = p.normal.cross(right).normalized();
- Vector<Vector3> vertices;
- Vector3 center = p.get_any_point();
- // make a quad clockwise
- vertices.push_back(center - up * subplane_size + right * subplane_size);
- vertices.push_back(center - up * subplane_size - right * subplane_size);
- vertices.push_back(center + up * subplane_size - right * subplane_size);
- vertices.push_back(center + up * subplane_size + right * subplane_size);
- for (int j = 0; j < p_planes.size(); j++) {
- if (j == i)
- continue;
- Vector<Vector3> new_vertices;
- Plane clip = p_planes[j];
- if (clip.normal.dot(p.normal) > 0.95)
- continue;
- if (vertices.size() < 3)
- break;
- for (int k = 0; k < vertices.size(); k++) {
- int k_n = (k + 1) % vertices.size();
- Vector3 edge0_A = vertices[k];
- Vector3 edge1_A = vertices[k_n];
- real_t dist0 = clip.distance_to(edge0_A);
- real_t dist1 = clip.distance_to(edge1_A);
- if (dist0 <= 0) { // behind plane
- new_vertices.push_back(vertices[k]);
- }
- // check for different sides and non coplanar
- if ((dist0 * dist1) < 0) {
- // calculate intersection
- Vector3 rel = edge1_A - edge0_A;
- real_t den = clip.normal.dot(rel);
- if (Math::abs(den) < CMP_EPSILON)
- continue; // point too short
- real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
- Vector3 inters = edge0_A + rel * dist;
- new_vertices.push_back(inters);
- }
- }
- vertices = new_vertices;
- }
- if (vertices.size() < 3)
- continue;
- //result is a clockwise face
- MeshData::Face face;
- // add face indices
- for (int j = 0; j < vertices.size(); j++) {
- int idx = -1;
- for (int k = 0; k < mesh.vertices.size(); k++) {
- if (mesh.vertices[k].distance_to(vertices[j]) < 0.001) {
- idx = k;
- break;
- }
- }
- if (idx == -1) {
- idx = mesh.vertices.size();
- mesh.vertices.push_back(vertices[j]);
- }
- face.indices.push_back(idx);
- }
- face.plane = p;
- mesh.faces.push_back(face);
- //add edge
- for (int j = 0; j < face.indices.size(); j++) {
- int a = face.indices[j];
- int b = face.indices[(j + 1) % face.indices.size()];
- bool found = false;
- for (int k = 0; k < mesh.edges.size(); k++) {
- if (mesh.edges[k].a == a && mesh.edges[k].b == b) {
- found = true;
- break;
- }
- if (mesh.edges[k].b == a && mesh.edges[k].a == b) {
- found = true;
- break;
- }
- }
- if (found)
- continue;
- MeshData::Edge edge;
- edge.a = a;
- edge.b = b;
- mesh.edges.push_back(edge);
- }
- }
- return mesh;
- }
- DVector<Plane> Geometry::build_box_planes(const Vector3 &p_extents) {
- DVector<Plane> planes;
- planes.push_back(Plane(Vector3(1, 0, 0), p_extents.x));
- planes.push_back(Plane(Vector3(-1, 0, 0), p_extents.x));
- planes.push_back(Plane(Vector3(0, 1, 0), p_extents.y));
- planes.push_back(Plane(Vector3(0, -1, 0), p_extents.y));
- planes.push_back(Plane(Vector3(0, 0, 1), p_extents.z));
- planes.push_back(Plane(Vector3(0, 0, -1), p_extents.z));
- return planes;
- }
- DVector<Plane> Geometry::build_cylinder_planes(float p_radius, float p_height, int p_sides, Vector3::Axis p_axis) {
- DVector<Plane> planes;
- for (int i = 0; i < p_sides; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
- normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
- planes.push_back(Plane(normal, p_radius));
- }
- Vector3 axis;
- axis[p_axis] = 1.0;
- planes.push_back(Plane(axis, p_height * 0.5));
- planes.push_back(Plane(-axis, p_height * 0.5));
- return planes;
- }
- DVector<Plane> Geometry::build_sphere_planes(float p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) {
- DVector<Plane> planes;
- Vector3 axis;
- axis[p_axis] = 1.0;
- Vector3 axis_neg;
- axis_neg[(p_axis + 1) % 3] = 1.0;
- axis_neg[(p_axis + 2) % 3] = 1.0;
- axis_neg[p_axis] = -1.0;
- for (int i = 0; i < p_lons; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_lons);
- normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_lons);
- planes.push_back(Plane(normal, p_radius));
- for (int j = 1; j <= p_lats; j++) {
- //todo this is stupid, fix
- Vector3 angle = normal.linear_interpolate(axis, j / (float)p_lats).normalized();
- Vector3 pos = angle * p_radius;
- planes.push_back(Plane(pos, angle));
- planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
- }
- }
- return planes;
- }
- DVector<Plane> Geometry::build_capsule_planes(float p_radius, float p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
- DVector<Plane> planes;
- Vector3 axis;
- axis[p_axis] = 1.0;
- Vector3 axis_neg;
- axis_neg[(p_axis + 1) % 3] = 1.0;
- axis_neg[(p_axis + 2) % 3] = 1.0;
- axis_neg[p_axis] = -1.0;
- for (int i = 0; i < p_sides; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
- normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
- planes.push_back(Plane(normal, p_radius));
- for (int j = 1; j <= p_lats; j++) {
- Vector3 angle = normal.linear_interpolate(axis, j / (float)p_lats).normalized();
- Vector3 pos = axis * p_height * 0.5 + angle * p_radius;
- planes.push_back(Plane(pos, angle));
- planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
- }
- }
- return planes;
- }
- struct _AtlasWorkRect {
- Size2i s;
- Point2i p;
- int idx;
- _FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; };
- };
- struct _AtlasWorkRectResult {
- Vector<_AtlasWorkRect> result;
- int max_w;
- int max_h;
- };
- void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
- //super simple, almost brute force scanline stacking fitter
- //it's pretty basic for now, but it tries to make sure that the aspect ratio of the
- //resulting atlas is somehow square. This is necesary because video cards have limits
- //on texture size (usually 2048 or 4096), so the more square a texture, the more chances
- //it will work in every hardware.
- // for example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
- // 256x8192 atlas (won't work anywhere).
- ERR_FAIL_COND(p_rects.size() == 0);
- Vector<_AtlasWorkRect> wrects;
- wrects.resize(p_rects.size());
- for (int i = 0; i < p_rects.size(); i++) {
- wrects[i].s = p_rects[i];
- wrects[i].idx = i;
- }
- wrects.sort();
- int widest = wrects[0].s.width;
- Vector<_AtlasWorkRectResult> results;
- for (int i = 0; i <= 12; i++) {
- int w = 1 << i;
- int max_h = 0;
- int max_w = 0;
- if (w < widest)
- continue;
- Vector<int> hmax;
- hmax.resize(w);
- for (int j = 0; j < w; j++)
- hmax[j] = 0;
- //place them
- int ofs = 0;
- int limit_h = 0;
- for (int j = 0; j < wrects.size(); j++) {
- if (ofs + wrects[j].s.width > w) {
- ofs = 0;
- }
- int from_y = 0;
- for (int k = 0; k < wrects[j].s.width; k++) {
- if (hmax[ofs + k] > from_y)
- from_y = hmax[ofs + k];
- }
- wrects[j].p.x = ofs;
- wrects[j].p.y = from_y;
- int end_h = from_y + wrects[j].s.height;
- int end_w = ofs + wrects[j].s.width;
- if (ofs == 0)
- limit_h = end_h;
- for (int k = 0; k < wrects[j].s.width; k++) {
- hmax[ofs + k] = end_h;
- }
- if (end_h > max_h)
- max_h = end_h;
- if (end_w > max_w)
- max_w = end_w;
- if (ofs == 0 || end_h > limit_h) //while h limit not reched, keep stacking
- ofs += wrects[j].s.width;
- }
- _AtlasWorkRectResult result;
- result.result = wrects;
- result.max_h = max_h;
- result.max_w = max_w;
- results.push_back(result);
- }
- //find the result with the best aspect ratio
- int best = -1;
- float best_aspect = 1e20;
- for (int i = 0; i < results.size(); i++) {
- float h = next_power_of_2(results[i].max_h);
- float w = next_power_of_2(results[i].max_w);
- float aspect = h > w ? h / w : w / h;
- if (aspect < best_aspect) {
- best = i;
- best_aspect = aspect;
- }
- }
- r_result.resize(p_rects.size());
- for (int i = 0; i < p_rects.size(); i++) {
- r_result[results[best].result[i].idx] = results[best].result[i].p;
- }
- r_size = Size2(results[best].max_w, results[best].max_h);
- }
|