123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- /**************************************************************************/
- /* test_vector2.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef TEST_VECTOR2_H
- #define TEST_VECTOR2_H
- #include "core/math/vector2.h"
- #include "core/math/vector2i.h"
- #include "tests/test_macros.h"
- namespace TestVector2 {
- TEST_CASE("[Vector2] Constructor methods") {
- const Vector2 vector_empty = Vector2();
- const Vector2 vector_zero = Vector2(0.0, 0.0);
- CHECK_MESSAGE(
- vector_empty == vector_zero,
- "Vector2 Constructor with no inputs should return a zero Vector2.");
- }
- TEST_CASE("[Vector2] Angle methods") {
- const Vector2 vector_x = Vector2(1, 0);
- const Vector2 vector_y = Vector2(0, 1);
- CHECK_MESSAGE(
- vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
- "Vector2 angle_to should work as expected.");
- CHECK_MESSAGE(
- vector_y.angle_to(vector_x) == doctest::Approx((real_t)-Math_TAU / 4),
- "Vector2 angle_to should work as expected.");
- CHECK_MESSAGE(
- vector_x.angle_to_point(vector_y) == doctest::Approx((real_t)Math_TAU * 3 / 8),
- "Vector2 angle_to_point should work as expected.");
- CHECK_MESSAGE(
- vector_y.angle_to_point(vector_x) == doctest::Approx((real_t)-Math_TAU / 8),
- "Vector2 angle_to_point should work as expected.");
- }
- TEST_CASE("[Vector2] Axis methods") {
- Vector2 vector = Vector2(1.2, 3.4);
- CHECK_MESSAGE(
- vector.max_axis_index() == Vector2::Axis::AXIS_Y,
- "Vector2 max_axis_index should work as expected.");
- CHECK_MESSAGE(
- vector.min_axis_index() == Vector2::Axis::AXIS_X,
- "Vector2 min_axis_index should work as expected.");
- CHECK_MESSAGE(
- vector[vector.min_axis_index()] == (real_t)1.2,
- "Vector2 array operator should work as expected.");
- vector[Vector2::Axis::AXIS_Y] = 3.7;
- CHECK_MESSAGE(
- vector[Vector2::Axis::AXIS_Y] == (real_t)3.7,
- "Vector2 array operator setter should work as expected.");
- }
- TEST_CASE("[Vector2] Interpolation methods") {
- const Vector2 vector1 = Vector2(1, 2);
- const Vector2 vector2 = Vector2(4, 5);
- CHECK_MESSAGE(
- vector1.lerp(vector2, 0.5) == Vector2(2.5, 3.5),
- "Vector2 lerp should work as expected.");
- CHECK_MESSAGE(
- vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector2(2, 3)),
- "Vector2 lerp should work as expected.");
- CHECK_MESSAGE(
- vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector2(0.538953602313995361, 0.84233558177947998)),
- "Vector2 slerp should work as expected.");
- CHECK_MESSAGE(
- vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector2(0.508990883827209473, 0.860771894454956055)),
- "Vector2 slerp should work as expected.");
- CHECK_MESSAGE(
- Vector2(5, 0).slerp(Vector2(0, 5), 0.5).is_equal_approx(Vector2(5, 5) * Math_SQRT12),
- "Vector2 slerp with non-normalized values should work as expected.");
- CHECK_MESSAGE(
- Vector2(1, 1).slerp(Vector2(2, 2), 0.5).is_equal_approx(Vector2(1.5, 1.5)),
- "Vector2 slerp with colinear inputs should behave as expected.");
- CHECK_MESSAGE(
- Vector2().slerp(Vector2(), 0.5) == Vector2(),
- "Vector2 slerp with both inputs as zero vectors should return a zero vector.");
- CHECK_MESSAGE(
- Vector2().slerp(Vector2(1, 1), 0.5) == Vector2(0.5, 0.5),
- "Vector2 slerp with one input as zero should behave like a regular lerp.");
- CHECK_MESSAGE(
- Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5),
- "Vector2 slerp with one input as zero should behave like a regular lerp.");
- CHECK_MESSAGE(
- Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)),
- "Vector2 slerp should work as expected.");
- CHECK_MESSAGE(
- vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)4.31959610746631919),
- "Vector2 slerp with different length input should return a vector with an interpolated length.");
- CHECK_MESSAGE(
- vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
- "Vector2 slerp with different length input should return a vector with an interpolated angle.");
- CHECK_MESSAGE(
- vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5),
- "Vector2 cubic_interpolate should work as expected.");
- CHECK_MESSAGE(
- vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 1.0 / 3.0).is_equal_approx(Vector2(1.851851940155029297, 2.962963104248046875)),
- "Vector2 cubic_interpolate should work as expected.");
- CHECK_MESSAGE(
- Vector2(1, 0).move_toward(Vector2(10, 0), 3) == Vector2(4, 0),
- "Vector2 move_toward should work as expected.");
- }
- TEST_CASE("[Vector2] Length methods") {
- const Vector2 vector1 = Vector2(10, 10);
- const Vector2 vector2 = Vector2(20, 30);
- CHECK_MESSAGE(
- vector1.length_squared() == 200,
- "Vector2 length_squared should work as expected and return exact result.");
- CHECK_MESSAGE(
- vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT2),
- "Vector2 length should work as expected.");
- CHECK_MESSAGE(
- vector2.length_squared() == 1300,
- "Vector2 length_squared should work as expected and return exact result.");
- CHECK_MESSAGE(
- vector2.length() == doctest::Approx((real_t)36.05551275463989293119),
- "Vector2 length should work as expected.");
- CHECK_MESSAGE(
- vector1.distance_squared_to(vector2) == 500,
- "Vector2 distance_squared_to should work as expected and return exact result.");
- CHECK_MESSAGE(
- vector1.distance_to(vector2) == doctest::Approx((real_t)22.36067977499789696409),
- "Vector2 distance_to should work as expected.");
- }
- TEST_CASE("[Vector2] Limiting methods") {
- const Vector2 vector = Vector2(10, 10);
- CHECK_MESSAGE(
- vector.limit_length().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
- "Vector2 limit_length should work as expected.");
- CHECK_MESSAGE(
- vector.limit_length(5).is_equal_approx(5 * Vector2(Math_SQRT12, Math_SQRT12)),
- "Vector2 limit_length should work as expected.");
- CHECK_MESSAGE(
- Vector2(-5, 15).clamp(Vector2(), vector).is_equal_approx(Vector2(0, 10)),
- "Vector2 clamp should work as expected.");
- CHECK_MESSAGE(
- vector.clamp(Vector2(0, 15), Vector2(5, 20)).is_equal_approx(Vector2(5, 15)),
- "Vector2 clamp should work as expected.");
- }
- TEST_CASE("[Vector2] Normalization methods") {
- CHECK_MESSAGE(
- Vector2(1, 0).is_normalized() == true,
- "Vector2 is_normalized should return true for a normalized vector.");
- CHECK_MESSAGE(
- Vector2(1, 1).is_normalized() == false,
- "Vector2 is_normalized should return false for a non-normalized vector.");
- CHECK_MESSAGE(
- Vector2(1, 0).normalized() == Vector2(1, 0),
- "Vector2 normalized should return the same vector for a normalized vector.");
- CHECK_MESSAGE(
- Vector2(1, 1).normalized().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
- "Vector2 normalized should work as expected.");
- Vector2 vector = Vector2(3.2, -5.4);
- vector.normalize();
- CHECK_MESSAGE(
- vector == Vector2(3.2, -5.4).normalized(),
- "Vector2 normalize should convert same way as Vector2 normalized.");
- CHECK_MESSAGE(
- vector.is_equal_approx(Vector2(0.509802390301732898898, -0.860291533634174266891)),
- "Vector2 normalize should work as expected.");
- }
- TEST_CASE("[Vector2] Operators") {
- const Vector2 decimal1 = Vector2(2.3, 4.9);
- const Vector2 decimal2 = Vector2(1.2, 3.4);
- const Vector2 power1 = Vector2(0.75, 1.5);
- const Vector2 power2 = Vector2(0.5, 0.125);
- const Vector2 int1 = Vector2(4, 5);
- const Vector2 int2 = Vector2(1, 2);
- CHECK_MESSAGE(
- (decimal1 + decimal2).is_equal_approx(Vector2(3.5, 8.3)),
- "Vector2 addition should behave as expected.");
- CHECK_MESSAGE(
- (power1 + power2) == Vector2(1.25, 1.625),
- "Vector2 addition with powers of two should give exact results.");
- CHECK_MESSAGE(
- (int1 + int2) == Vector2(5, 7),
- "Vector2 addition with integers should give exact results.");
- CHECK_MESSAGE(
- (decimal1 - decimal2).is_equal_approx(Vector2(1.1, 1.5)),
- "Vector2 subtraction should behave as expected.");
- CHECK_MESSAGE(
- (power1 - power2) == Vector2(0.25, 1.375),
- "Vector2 subtraction with powers of two should give exact results.");
- CHECK_MESSAGE(
- (int1 - int2) == Vector2(3, 3),
- "Vector2 subtraction with integers should give exact results.");
- CHECK_MESSAGE(
- (decimal1 * decimal2).is_equal_approx(Vector2(2.76, 16.66)),
- "Vector2 multiplication should behave as expected.");
- CHECK_MESSAGE(
- (power1 * power2) == Vector2(0.375, 0.1875),
- "Vector2 multiplication with powers of two should give exact results.");
- CHECK_MESSAGE(
- (int1 * int2) == Vector2(4, 10),
- "Vector2 multiplication with integers should give exact results.");
- CHECK_MESSAGE(
- (decimal1 / decimal2).is_equal_approx(Vector2(1.91666666666666666, 1.44117647058823529)),
- "Vector2 division should behave as expected.");
- CHECK_MESSAGE(
- (power1 / power2) == Vector2(1.5, 12.0),
- "Vector2 division with powers of two should give exact results.");
- CHECK_MESSAGE(
- (int1 / int2) == Vector2(4, 2.5),
- "Vector2 division with integers should give exact results.");
- CHECK_MESSAGE(
- (decimal1 * 2).is_equal_approx(Vector2(4.6, 9.8)),
- "Vector2 multiplication should behave as expected.");
- CHECK_MESSAGE(
- (power1 * 2) == Vector2(1.5, 3),
- "Vector2 multiplication with powers of two should give exact results.");
- CHECK_MESSAGE(
- (int1 * 2) == Vector2(8, 10),
- "Vector2 multiplication with integers should give exact results.");
- CHECK_MESSAGE(
- (decimal1 / 2).is_equal_approx(Vector2(1.15, 2.45)),
- "Vector2 division should behave as expected.");
- CHECK_MESSAGE(
- (power1 / 2) == Vector2(0.375, 0.75),
- "Vector2 division with powers of two should give exact results.");
- CHECK_MESSAGE(
- (int1 / 2) == Vector2(2, 2.5),
- "Vector2 division with integers should give exact results.");
- CHECK_MESSAGE(
- ((Vector2i)decimal1) == Vector2i(2, 4),
- "Vector2 cast to Vector2i should work as expected.");
- CHECK_MESSAGE(
- ((Vector2i)decimal2) == Vector2i(1, 3),
- "Vector2 cast to Vector2i should work as expected.");
- CHECK_MESSAGE(
- Vector2(Vector2i(1, 2)) == Vector2(1, 2),
- "Vector2 constructed from Vector2i should work as expected.");
- CHECK_MESSAGE(
- ((String)decimal1) == "(2.3, 4.9)",
- "Vector2 cast to String should work as expected.");
- CHECK_MESSAGE(
- ((String)decimal2) == "(1.2, 3.4)",
- "Vector2 cast to String should work as expected.");
- CHECK_MESSAGE(
- ((String)Vector2(9.8, 9.9)) == "(9.8, 9.9)",
- "Vector2 cast to String should work as expected.");
- #ifdef REAL_T_IS_DOUBLE
- CHECK_MESSAGE(
- ((String)Vector2(Math_PI, Math_TAU)) == "(3.14159265358979, 6.28318530717959)",
- "Vector2 cast to String should print the correct amount of digits for real_t = double.");
- #else
- CHECK_MESSAGE(
- ((String)Vector2(Math_PI, Math_TAU)) == "(3.141593, 6.283185)",
- "Vector2 cast to String should print the correct amount of digits for real_t = float.");
- #endif // REAL_T_IS_DOUBLE
- }
- TEST_CASE("[Vector2] Other methods") {
- const Vector2 vector = Vector2(1.2, 3.4);
- CHECK_MESSAGE(
- vector.aspect() == doctest::Approx((real_t)1.2 / (real_t)3.4),
- "Vector2 aspect should work as expected.");
- CHECK_MESSAGE(
- vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()),
- "Vector2 direction_to should work as expected.");
- CHECK_MESSAGE(
- Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
- "Vector2 direction_to should work as expected.");
- CHECK_MESSAGE(
- vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)),
- "Vector2 posmod should work as expected.");
- CHECK_MESSAGE(
- (-vector).posmod(2).is_equal_approx(Vector2(0.8, 0.6)),
- "Vector2 posmod should work as expected.");
- CHECK_MESSAGE(
- vector.posmodv(Vector2(1, 2)).is_equal_approx(Vector2(0.2, 1.4)),
- "Vector2 posmodv should work as expected.");
- CHECK_MESSAGE(
- (-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)),
- "Vector2 posmodv should work as expected.");
- CHECK_MESSAGE(
- vector.rotated(Math_TAU).is_equal_approx(Vector2(1.2, 3.4)),
- "Vector2 rotated should work as expected.");
- CHECK_MESSAGE(
- vector.rotated(Math_TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)),
- "Vector2 rotated should work as expected.");
- CHECK_MESSAGE(
- vector.rotated(Math_TAU / 3).is_equal_approx(Vector2(-3.544486372867091398996, -0.660769515458673623883)),
- "Vector2 rotated should work as expected.");
- CHECK_MESSAGE(
- vector.rotated(Math_TAU / 2).is_equal_approx(vector.rotated(Math_TAU / -2)),
- "Vector2 rotated should work as expected.");
- CHECK_MESSAGE(
- vector.snapped(Vector2(1, 1)) == Vector2(1, 3),
- "Vector2 snapped to integers should be the same as rounding.");
- CHECK_MESSAGE(
- Vector2(3.4, 5.6).snapped(Vector2(1, 1)) == Vector2(3, 6),
- "Vector2 snapped to integers should be the same as rounding.");
- CHECK_MESSAGE(
- vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5),
- "Vector2 snapped to 0.25 should give exact results.");
- CHECK_MESSAGE(
- Vector2(1.2, 2.5).is_equal_approx(vector.min(Vector2(3.0, 2.5))),
- "Vector2 min should return expected value.");
- CHECK_MESSAGE(
- Vector2(5.3, 3.4).is_equal_approx(vector.max(Vector2(5.3, 2.0))),
- "Vector2 max should return expected value.");
- }
- TEST_CASE("[Vector2] Plane methods") {
- const Vector2 vector = Vector2(1.2, 3.4);
- const Vector2 vector_y = Vector2(0, 1);
- const Vector2 vector_normal = Vector2(0.95879811270838721622267, 0.2840883296913739899919);
- const real_t p_d = 99.1;
- CHECK_MESSAGE(
- vector.bounce(vector_y) == Vector2(1.2, -3.4),
- "Vector2 bounce on a plane with normal of the Y axis should.");
- CHECK_MESSAGE(
- vector.bounce(vector_normal).is_equal_approx(Vector2(-2.85851197982345523329, 2.197477931904161412358)),
- "Vector2 bounce with normal should return expected value.");
- CHECK_MESSAGE(
- vector.reflect(vector_y) == Vector2(-1.2, 3.4),
- "Vector2 reflect on a plane with normal of the Y axis should.");
- CHECK_MESSAGE(
- vector.reflect(vector_normal).is_equal_approx(Vector2(2.85851197982345523329, -2.197477931904161412358)),
- "Vector2 reflect with normal should return expected value.");
- CHECK_MESSAGE(
- vector.project(vector_y) == Vector2(0, 3.4),
- "Vector2 projected on the Y axis should only give the Y component.");
- CHECK_MESSAGE(
- vector.project(vector_normal).is_equal_approx(Vector2(2.0292559899117276166, 0.60126103404791929382)),
- "Vector2 projected on a normal should return expected value.");
- CHECK_MESSAGE(
- vector_normal.plane_project(p_d, vector).is_equal_approx(Vector2(94.187635516479631, 30.951892004882851)),
- "Vector2 plane_project should return expected value.");
- CHECK_MESSAGE(
- vector.slide(vector_y) == Vector2(1.2, 0),
- "Vector2 slide on a plane with normal of the Y axis should set the Y to zero.");
- CHECK_MESSAGE(
- vector.slide(vector_normal).is_equal_approx(Vector2(-0.8292559899117276166456, 2.798738965952080706179)),
- "Vector2 slide with normal should return expected value.");
- // There's probably a better way to test these ones?
- #ifdef MATH_CHECKS
- const Vector2 vector_non_normal = Vector2(5.4, 1.6);
- ERR_PRINT_OFF;
- CHECK_MESSAGE(
- vector.bounce(vector_non_normal).is_equal_approx(Vector2()),
- "Vector2 bounce should return empty Vector2 with non-normalized input.");
- CHECK_MESSAGE(
- vector.reflect(vector_non_normal).is_equal_approx(Vector2()),
- "Vector2 reflect should return empty Vector2 with non-normalized input.");
- CHECK_MESSAGE(
- vector.slide(vector_non_normal).is_equal_approx(Vector2()),
- "Vector2 slide should return empty Vector2 with non-normalized input.");
- ERR_PRINT_ON;
- #endif // MATH_CHECKS
- }
- TEST_CASE("[Vector2] Rounding methods") {
- const Vector2 vector1 = Vector2(1.2, 5.6);
- const Vector2 vector2 = Vector2(1.2, -5.6);
- CHECK_MESSAGE(
- vector1.abs() == vector1,
- "Vector2 abs should work as expected.");
- CHECK_MESSAGE(
- vector2.abs() == vector1,
- "Vector2 abs should work as expected.");
- CHECK_MESSAGE(
- vector1.ceil() == Vector2(2, 6),
- "Vector2 ceil should work as expected.");
- CHECK_MESSAGE(
- vector2.ceil() == Vector2(2, -5),
- "Vector2 ceil should work as expected.");
- CHECK_MESSAGE(
- vector1.floor() == Vector2(1, 5),
- "Vector2 floor should work as expected.");
- CHECK_MESSAGE(
- vector2.floor() == Vector2(1, -6),
- "Vector2 floor should work as expected.");
- CHECK_MESSAGE(
- vector1.round() == Vector2(1, 6),
- "Vector2 round should work as expected.");
- CHECK_MESSAGE(
- vector2.round() == Vector2(1, -6),
- "Vector2 round should work as expected.");
- CHECK_MESSAGE(
- vector1.sign() == Vector2(1, 1),
- "Vector2 sign should work as expected.");
- CHECK_MESSAGE(
- vector2.sign() == Vector2(1, -1),
- "Vector2 sign should work as expected.");
- }
- TEST_CASE("[Vector2] Linear algebra methods") {
- const Vector2 vector_x = Vector2(1, 0);
- const Vector2 vector_y = Vector2(0, 1);
- const Vector2 a = Vector2(3.5, 8.5);
- const Vector2 b = Vector2(5.2, 4.6);
- CHECK_MESSAGE(
- vector_x.cross(vector_y) == 1,
- "Vector2 cross product of X and Y should give 1.");
- CHECK_MESSAGE(
- vector_y.cross(vector_x) == -1,
- "Vector2 cross product of Y and X should give negative 1.");
- CHECK_MESSAGE(
- a.cross(b) == doctest::Approx((real_t)-28.1),
- "Vector2 cross should return expected value.");
- CHECK_MESSAGE(
- Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-28.1),
- "Vector2 cross should return expected value.");
- CHECK_MESSAGE(
- vector_x.dot(vector_y) == 0.0,
- "Vector2 dot product of perpendicular vectors should be zero.");
- CHECK_MESSAGE(
- vector_x.dot(vector_x) == 1.0,
- "Vector2 dot product of identical unit vectors should be one.");
- CHECK_MESSAGE(
- (vector_x * 10).dot(vector_x * 10) == 100.0,
- "Vector2 dot product of same direction vectors should behave as expected.");
- CHECK_MESSAGE(
- a.dot(b) == doctest::Approx((real_t)57.3),
- "Vector2 dot should return expected value.");
- CHECK_MESSAGE(
- Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-57.3),
- "Vector2 dot should return expected value.");
- }
- TEST_CASE("[Vector2] Finite number checks") {
- const double infinite[] = { NAN, INFINITY, -INFINITY };
- CHECK_MESSAGE(
- Vector2(0, 1).is_finite(),
- "Vector2(0, 1) should be finite");
- for (double x : infinite) {
- CHECK_FALSE_MESSAGE(
- Vector2(x, 1).is_finite(),
- "Vector2 with one component infinite should not be finite.");
- CHECK_FALSE_MESSAGE(
- Vector2(0, x).is_finite(),
- "Vector2 with one component infinite should not be finite.");
- }
- for (double x : infinite) {
- for (double y : infinite) {
- CHECK_FALSE_MESSAGE(
- Vector2(x, y).is_finite(),
- "Vector2 with two components infinite should not be finite.");
- }
- }
- }
- } // namespace TestVector2
- #endif // TEST_VECTOR2_H
|