123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <string.h>
- // This work is based on:
- // John McDonald, Mark Kilgard. Crack-Free Point-Normal Triangles using Adjacent Edge Normals. 2010
- // John Hable. Variable Rate Shading with Visibility Buffer Rendering. 2024
- namespace meshopt
- {
- static unsigned int hashUpdate4(unsigned int h, const unsigned char* key, size_t len)
- {
- // MurmurHash2
- const unsigned int m = 0x5bd1e995;
- const int r = 24;
- while (len >= 4)
- {
- unsigned int k = *reinterpret_cast<const unsigned int*>(key);
- k *= m;
- k ^= k >> r;
- k *= m;
- h *= m;
- h ^= k;
- key += 4;
- len -= 4;
- }
- return h;
- }
- struct VertexHasher
- {
- const unsigned char* vertices;
- size_t vertex_size;
- size_t vertex_stride;
- size_t hash(unsigned int index) const
- {
- return hashUpdate4(0, vertices + index * vertex_stride, vertex_size);
- }
- bool equal(unsigned int lhs, unsigned int rhs) const
- {
- return memcmp(vertices + lhs * vertex_stride, vertices + rhs * vertex_stride, vertex_size) == 0;
- }
- };
- struct VertexStreamHasher
- {
- const meshopt_Stream* streams;
- size_t stream_count;
- size_t hash(unsigned int index) const
- {
- unsigned int h = 0;
- for (size_t i = 0; i < stream_count; ++i)
- {
- const meshopt_Stream& s = streams[i];
- const unsigned char* data = static_cast<const unsigned char*>(s.data);
- h = hashUpdate4(h, data + index * s.stride, s.size);
- }
- return h;
- }
- bool equal(unsigned int lhs, unsigned int rhs) const
- {
- for (size_t i = 0; i < stream_count; ++i)
- {
- const meshopt_Stream& s = streams[i];
- const unsigned char* data = static_cast<const unsigned char*>(s.data);
- if (memcmp(data + lhs * s.stride, data + rhs * s.stride, s.size) != 0)
- return false;
- }
- return true;
- }
- };
- struct EdgeHasher
- {
- const unsigned int* remap;
- size_t hash(unsigned long long edge) const
- {
- unsigned int e0 = unsigned(edge >> 32);
- unsigned int e1 = unsigned(edge);
- unsigned int h1 = remap[e0];
- unsigned int h2 = remap[e1];
- const unsigned int m = 0x5bd1e995;
- // MurmurHash64B finalizer
- h1 ^= h2 >> 18;
- h1 *= m;
- h2 ^= h1 >> 22;
- h2 *= m;
- h1 ^= h2 >> 17;
- h1 *= m;
- h2 ^= h1 >> 19;
- h2 *= m;
- return h2;
- }
- bool equal(unsigned long long lhs, unsigned long long rhs) const
- {
- unsigned int l0 = unsigned(lhs >> 32);
- unsigned int l1 = unsigned(lhs);
- unsigned int r0 = unsigned(rhs >> 32);
- unsigned int r1 = unsigned(rhs);
- return remap[l0] == remap[r0] && remap[l1] == remap[r1];
- }
- };
- static size_t hashBuckets(size_t count)
- {
- size_t buckets = 1;
- while (buckets < count + count / 4)
- buckets *= 2;
- return buckets;
- }
- template <typename T, typename Hash>
- static T* hashLookup(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty)
- {
- assert(buckets > 0);
- assert((buckets & (buckets - 1)) == 0);
- size_t hashmod = buckets - 1;
- size_t bucket = hash.hash(key) & hashmod;
- for (size_t probe = 0; probe <= hashmod; ++probe)
- {
- T& item = table[bucket];
- if (item == empty)
- return &item;
- if (hash.equal(item, key))
- return &item;
- // hash collision, quadratic probing
- bucket = (bucket + probe + 1) & hashmod;
- }
- assert(false && "Hash table is full"); // unreachable
- return NULL;
- }
- static void buildPositionRemap(unsigned int* remap, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
- {
- VertexHasher vertex_hasher = {reinterpret_cast<const unsigned char*>(vertex_positions), 3 * sizeof(float), vertex_positions_stride};
- size_t vertex_table_size = hashBuckets(vertex_count);
- unsigned int* vertex_table = allocator.allocate<unsigned int>(vertex_table_size);
- memset(vertex_table, -1, vertex_table_size * sizeof(unsigned int));
- for (size_t i = 0; i < vertex_count; ++i)
- {
- unsigned int index = unsigned(i);
- unsigned int* entry = hashLookup(vertex_table, vertex_table_size, vertex_hasher, index, ~0u);
- if (*entry == ~0u)
- *entry = index;
- remap[index] = *entry;
- }
- allocator.deallocate(vertex_table);
- }
- template <size_t BlockSize>
- static void remapVertices(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap)
- {
- size_t block_size = BlockSize == 0 ? vertex_size : BlockSize;
- assert(block_size == vertex_size);
- for (size_t i = 0; i < vertex_count; ++i)
- if (remap[i] != ~0u)
- {
- assert(remap[i] < vertex_count);
- memcpy(static_cast<unsigned char*>(destination) + remap[i] * block_size, static_cast<const unsigned char*>(vertices) + i * block_size, block_size);
- }
- }
- } // namespace meshopt
- size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
- {
- using namespace meshopt;
- assert(indices || index_count == vertex_count);
- assert(!indices || index_count % 3 == 0);
- assert(vertex_size > 0 && vertex_size <= 256);
- meshopt_Allocator allocator;
- memset(destination, -1, vertex_count * sizeof(unsigned int));
- VertexHasher hasher = {static_cast<const unsigned char*>(vertices), vertex_size, vertex_size};
- size_t table_size = hashBuckets(vertex_count);
- unsigned int* table = allocator.allocate<unsigned int>(table_size);
- memset(table, -1, table_size * sizeof(unsigned int));
- unsigned int next_vertex = 0;
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int index = indices ? indices[i] : unsigned(i);
- assert(index < vertex_count);
- if (destination[index] == ~0u)
- {
- unsigned int* entry = hashLookup(table, table_size, hasher, index, ~0u);
- if (*entry == ~0u)
- {
- *entry = index;
- destination[index] = next_vertex++;
- }
- else
- {
- assert(destination[*entry] != ~0u);
- destination[index] = destination[*entry];
- }
- }
- }
- assert(next_vertex <= vertex_count);
- return next_vertex;
- }
- size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count)
- {
- using namespace meshopt;
- assert(indices || index_count == vertex_count);
- assert(index_count % 3 == 0);
- assert(stream_count > 0 && stream_count <= 16);
- for (size_t i = 0; i < stream_count; ++i)
- {
- assert(streams[i].size > 0 && streams[i].size <= 256);
- assert(streams[i].size <= streams[i].stride);
- }
- meshopt_Allocator allocator;
- memset(destination, -1, vertex_count * sizeof(unsigned int));
- VertexStreamHasher hasher = {streams, stream_count};
- size_t table_size = hashBuckets(vertex_count);
- unsigned int* table = allocator.allocate<unsigned int>(table_size);
- memset(table, -1, table_size * sizeof(unsigned int));
- unsigned int next_vertex = 0;
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int index = indices ? indices[i] : unsigned(i);
- assert(index < vertex_count);
- if (destination[index] == ~0u)
- {
- unsigned int* entry = hashLookup(table, table_size, hasher, index, ~0u);
- if (*entry == ~0u)
- {
- *entry = index;
- destination[index] = next_vertex++;
- }
- else
- {
- assert(destination[*entry] != ~0u);
- destination[index] = destination[*entry];
- }
- }
- }
- assert(next_vertex <= vertex_count);
- return next_vertex;
- }
- void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap)
- {
- using namespace meshopt;
- assert(vertex_size > 0 && vertex_size <= 256);
- meshopt_Allocator allocator;
- // support in-place remap
- if (destination == vertices)
- {
- unsigned char* vertices_copy = allocator.allocate<unsigned char>(vertex_count * vertex_size);
- memcpy(vertices_copy, vertices, vertex_count * vertex_size);
- vertices = vertices_copy;
- }
- // specialize the loop for common vertex sizes to ensure memcpy is compiled as an inlined intrinsic
- switch (vertex_size)
- {
- case 4:
- return remapVertices<4>(destination, vertices, vertex_count, vertex_size, remap);
- case 8:
- return remapVertices<8>(destination, vertices, vertex_count, vertex_size, remap);
- case 12:
- return remapVertices<12>(destination, vertices, vertex_count, vertex_size, remap);
- case 16:
- return remapVertices<16>(destination, vertices, vertex_count, vertex_size, remap);
- default:
- return remapVertices<0>(destination, vertices, vertex_count, vertex_size, remap);
- }
- }
- void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap)
- {
- assert(index_count % 3 == 0);
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int index = indices ? indices[i] : unsigned(i);
- assert(remap[index] != ~0u);
- destination[i] = remap[index];
- }
- }
- void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride)
- {
- using namespace meshopt;
- assert(indices);
- assert(index_count % 3 == 0);
- assert(vertex_size > 0 && vertex_size <= 256);
- assert(vertex_size <= vertex_stride);
- meshopt_Allocator allocator;
- unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
- memset(remap, -1, vertex_count * sizeof(unsigned int));
- VertexHasher hasher = {static_cast<const unsigned char*>(vertices), vertex_size, vertex_stride};
- size_t table_size = hashBuckets(vertex_count);
- unsigned int* table = allocator.allocate<unsigned int>(table_size);
- memset(table, -1, table_size * sizeof(unsigned int));
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int index = indices[i];
- assert(index < vertex_count);
- if (remap[index] == ~0u)
- {
- unsigned int* entry = hashLookup(table, table_size, hasher, index, ~0u);
- if (*entry == ~0u)
- *entry = index;
- remap[index] = *entry;
- }
- destination[i] = remap[index];
- }
- }
- void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count)
- {
- using namespace meshopt;
- assert(indices);
- assert(index_count % 3 == 0);
- assert(stream_count > 0 && stream_count <= 16);
- for (size_t i = 0; i < stream_count; ++i)
- {
- assert(streams[i].size > 0 && streams[i].size <= 256);
- assert(streams[i].size <= streams[i].stride);
- }
- meshopt_Allocator allocator;
- unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
- memset(remap, -1, vertex_count * sizeof(unsigned int));
- VertexStreamHasher hasher = {streams, stream_count};
- size_t table_size = hashBuckets(vertex_count);
- unsigned int* table = allocator.allocate<unsigned int>(table_size);
- memset(table, -1, table_size * sizeof(unsigned int));
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int index = indices[i];
- assert(index < vertex_count);
- if (remap[index] == ~0u)
- {
- unsigned int* entry = hashLookup(table, table_size, hasher, index, ~0u);
- if (*entry == ~0u)
- *entry = index;
- remap[index] = *entry;
- }
- destination[i] = remap[index];
- }
- }
- void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- meshopt_Allocator allocator;
- static const int next[4] = {1, 2, 0, 1};
- // build position remap: for each vertex, which other (canonical) vertex does it map to?
- unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
- buildPositionRemap(remap, vertex_positions, vertex_count, vertex_positions_stride, allocator);
- // build edge set; this stores all triangle edges but we can look these up by any other wedge
- EdgeHasher edge_hasher = {remap};
- size_t edge_table_size = hashBuckets(index_count);
- unsigned long long* edge_table = allocator.allocate<unsigned long long>(edge_table_size);
- unsigned int* edge_vertex_table = allocator.allocate<unsigned int>(edge_table_size);
- memset(edge_table, -1, edge_table_size * sizeof(unsigned long long));
- memset(edge_vertex_table, -1, edge_table_size * sizeof(unsigned int));
- for (size_t i = 0; i < index_count; i += 3)
- {
- for (int e = 0; e < 3; ++e)
- {
- unsigned int i0 = indices[i + e];
- unsigned int i1 = indices[i + next[e]];
- unsigned int i2 = indices[i + next[e + 1]];
- assert(i0 < vertex_count && i1 < vertex_count && i2 < vertex_count);
- unsigned long long edge = ((unsigned long long)i0 << 32) | i1;
- unsigned long long* entry = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
- if (*entry == ~0ull)
- {
- *entry = edge;
- // store vertex opposite to the edge
- edge_vertex_table[entry - edge_table] = i2;
- }
- }
- }
- // build resulting index buffer: 6 indices for each input triangle
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int patch[6];
- for (int e = 0; e < 3; ++e)
- {
- unsigned int i0 = indices[i + e];
- unsigned int i1 = indices[i + next[e]];
- assert(i0 < vertex_count && i1 < vertex_count);
- // note: this refers to the opposite edge!
- unsigned long long edge = ((unsigned long long)i1 << 32) | i0;
- unsigned long long* oppe = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
- patch[e * 2 + 0] = i0;
- patch[e * 2 + 1] = (*oppe == ~0ull) ? i0 : edge_vertex_table[oppe - edge_table];
- }
- memcpy(destination + i * 2, patch, sizeof(patch));
- }
- }
- void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- meshopt_Allocator allocator;
- static const int next[3] = {1, 2, 0};
- // build position remap: for each vertex, which other (canonical) vertex does it map to?
- unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
- buildPositionRemap(remap, vertex_positions, vertex_count, vertex_positions_stride, allocator);
- // build edge set; this stores all triangle edges but we can look these up by any other wedge
- EdgeHasher edge_hasher = {remap};
- size_t edge_table_size = hashBuckets(index_count);
- unsigned long long* edge_table = allocator.allocate<unsigned long long>(edge_table_size);
- memset(edge_table, -1, edge_table_size * sizeof(unsigned long long));
- for (size_t i = 0; i < index_count; i += 3)
- {
- for (int e = 0; e < 3; ++e)
- {
- unsigned int i0 = indices[i + e];
- unsigned int i1 = indices[i + next[e]];
- assert(i0 < vertex_count && i1 < vertex_count);
- unsigned long long edge = ((unsigned long long)i0 << 32) | i1;
- unsigned long long* entry = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
- if (*entry == ~0ull)
- *entry = edge;
- }
- }
- // build resulting index buffer: 12 indices for each input triangle
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int patch[12];
- for (int e = 0; e < 3; ++e)
- {
- unsigned int i0 = indices[i + e];
- unsigned int i1 = indices[i + next[e]];
- assert(i0 < vertex_count && i1 < vertex_count);
- // note: this refers to the opposite edge!
- unsigned long long edge = ((unsigned long long)i1 << 32) | i0;
- unsigned long long oppe = *hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
- // use the same edge if opposite edge doesn't exist (border)
- oppe = (oppe == ~0ull) ? edge : oppe;
- // triangle index (0, 1, 2)
- patch[e] = i0;
- // opposite edge (3, 4; 5, 6; 7, 8)
- patch[3 + e * 2 + 0] = unsigned(oppe);
- patch[3 + e * 2 + 1] = unsigned(oppe >> 32);
- // dominant vertex (9, 10, 11)
- patch[9 + e] = remap[i0];
- }
- memcpy(destination + i * 4, patch, sizeof(patch));
- }
- }
- size_t meshopt_generateProvokingIndexBuffer(unsigned int* destination, unsigned int* reorder, const unsigned int* indices, size_t index_count, size_t vertex_count)
- {
- assert(index_count % 3 == 0);
- meshopt_Allocator allocator;
- unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
- memset(remap, -1, vertex_count * sizeof(unsigned int));
- // compute vertex valence; this is used to prioritize least used corner
- // note: we use 8-bit counters for performance; for outlier vertices the valence is incorrect but that just affects the heuristic
- unsigned char* valence = allocator.allocate<unsigned char>(vertex_count);
- memset(valence, 0, vertex_count);
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int index = indices[i];
- assert(index < vertex_count);
- valence[index]++;
- }
- unsigned int reorder_offset = 0;
- // assign provoking vertices; leave the rest for the next pass
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- // try to rotate triangle such that provoking vertex hasn't been seen before
- // if multiple vertices are new, prioritize the one with least valence
- // this reduces the risk that a future triangle will have all three vertices seen
- unsigned int va = remap[a] == ~0u ? valence[a] : ~0u;
- unsigned int vb = remap[b] == ~0u ? valence[b] : ~0u;
- unsigned int vc = remap[c] == ~0u ? valence[c] : ~0u;
- if (vb != ~0u && vb <= va && vb <= vc)
- {
- // abc -> bca
- unsigned int t = a;
- a = b, b = c, c = t;
- }
- else if (vc != ~0u && vc <= va && vc <= vb)
- {
- // abc -> cab
- unsigned int t = c;
- c = b, b = a, a = t;
- }
- unsigned int newidx = reorder_offset;
- // now remap[a] = ~0u or all three vertices are old
- // recording remap[a] makes it possible to remap future references to the same index, conserving space
- if (remap[a] == ~0u)
- remap[a] = newidx;
- // we need to clone the provoking vertex to get a unique index
- // if all three are used the choice is arbitrary since no future triangle will be able to reuse any of these
- reorder[reorder_offset++] = a;
- // note: first vertex is final, the other two will be fixed up in next pass
- destination[i + 0] = newidx;
- destination[i + 1] = b;
- destination[i + 2] = c;
- // update vertex valences for corner heuristic
- valence[a]--;
- valence[b]--;
- valence[c]--;
- }
- // remap or clone non-provoking vertices (iterating to skip provoking vertices)
- int step = 1;
- for (size_t i = 1; i < index_count; i += step, step ^= 3)
- {
- unsigned int index = destination[i];
- if (remap[index] == ~0u)
- {
- // we haven't seen the vertex before as a provoking vertex
- // to maintain the reference to the original vertex we need to clone it
- unsigned int newidx = reorder_offset;
- remap[index] = newidx;
- reorder[reorder_offset++] = index;
- }
- destination[i] = remap[index];
- }
- assert(reorder_offset <= vertex_count + index_count / 3);
- return reorder_offset;
- }
|