123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <float.h>
- #include <math.h>
- #include <string.h>
- // This work is based on:
- // Graham Wihlidal. Optimizing the Graphics Pipeline with Compute. 2016
- // Matthaeus Chajdas. GeometryFX 1.2 - Cluster Culling. 2016
- // Jack Ritter. An Efficient Bounding Sphere. 1990
- namespace meshopt
- {
- // This must be <= 255 since index 0xff is used internally to indice a vertex that doesn't belong to a meshlet
- const size_t kMeshletMaxVertices = 255;
- // A reasonable limit is around 2*max_vertices or less
- const size_t kMeshletMaxTriangles = 512;
- struct TriangleAdjacency2
- {
- unsigned int* counts;
- unsigned int* offsets;
- unsigned int* data;
- };
- static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
- {
- size_t face_count = index_count / 3;
- // allocate arrays
- adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
- adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
- adjacency.data = allocator.allocate<unsigned int>(index_count);
- // fill triangle counts
- memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
- for (size_t i = 0; i < index_count; ++i)
- {
- assert(indices[i] < vertex_count);
- adjacency.counts[indices[i]]++;
- }
- // fill offset table
- unsigned int offset = 0;
- for (size_t i = 0; i < vertex_count; ++i)
- {
- adjacency.offsets[i] = offset;
- offset += adjacency.counts[i];
- }
- assert(offset == index_count);
- // fill triangle data
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- adjacency.data[adjacency.offsets[a]++] = unsigned(i);
- adjacency.data[adjacency.offsets[b]++] = unsigned(i);
- adjacency.data[adjacency.offsets[c]++] = unsigned(i);
- }
- // fix offsets that have been disturbed by the previous pass
- for (size_t i = 0; i < vertex_count; ++i)
- {
- assert(adjacency.offsets[i] >= adjacency.counts[i]);
- adjacency.offsets[i] -= adjacency.counts[i];
- }
- }
- static void computeBoundingSphere(float result[4], const float points[][3], size_t count)
- {
- assert(count > 0);
- // find extremum points along all 3 axes; for each axis we get a pair of points with min/max coordinates
- size_t pmin[3] = {0, 0, 0};
- size_t pmax[3] = {0, 0, 0};
- for (size_t i = 0; i < count; ++i)
- {
- const float* p = points[i];
- for (int axis = 0; axis < 3; ++axis)
- {
- pmin[axis] = (p[axis] < points[pmin[axis]][axis]) ? i : pmin[axis];
- pmax[axis] = (p[axis] > points[pmax[axis]][axis]) ? i : pmax[axis];
- }
- }
- // find the pair of points with largest distance
- float paxisd2 = 0;
- int paxis = 0;
- for (int axis = 0; axis < 3; ++axis)
- {
- const float* p1 = points[pmin[axis]];
- const float* p2 = points[pmax[axis]];
- float d2 = (p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2]);
- if (d2 > paxisd2)
- {
- paxisd2 = d2;
- paxis = axis;
- }
- }
- // use the longest segment as the initial sphere diameter
- const float* p1 = points[pmin[paxis]];
- const float* p2 = points[pmax[paxis]];
- float center[3] = {(p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2, (p1[2] + p2[2]) / 2};
- float radius = sqrtf(paxisd2) / 2;
- // iteratively adjust the sphere up until all points fit
- for (size_t i = 0; i < count; ++i)
- {
- const float* p = points[i];
- float d2 = (p[0] - center[0]) * (p[0] - center[0]) + (p[1] - center[1]) * (p[1] - center[1]) + (p[2] - center[2]) * (p[2] - center[2]);
- if (d2 > radius * radius)
- {
- float d = sqrtf(d2);
- assert(d > 0);
- float k = 0.5f + (radius / d) / 2;
- center[0] = center[0] * k + p[0] * (1 - k);
- center[1] = center[1] * k + p[1] * (1 - k);
- center[2] = center[2] * k + p[2] * (1 - k);
- radius = (radius + d) / 2;
- }
- }
- result[0] = center[0];
- result[1] = center[1];
- result[2] = center[2];
- result[3] = radius;
- }
- struct Cone
- {
- float px, py, pz;
- float nx, ny, nz;
- };
- static float getMeshletScore(float distance2, float spread, float cone_weight, float expected_radius)
- {
- float cone = 1.f - spread * cone_weight;
- float cone_clamped = cone < 1e-3f ? 1e-3f : cone;
- return (1 + sqrtf(distance2) / expected_radius * (1 - cone_weight)) * cone_clamped;
- }
- static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count)
- {
- Cone result = acc;
- float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count);
- result.px *= center_scale;
- result.py *= center_scale;
- result.pz *= center_scale;
- float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz;
- float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length);
- result.nx *= axis_scale;
- result.ny *= axis_scale;
- result.nz *= axis_scale;
- return result;
- }
- static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- (void)vertex_count;
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- size_t face_count = index_count / 3;
- float mesh_area = 0;
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- const float* p0 = vertex_positions + vertex_stride_float * a;
- const float* p1 = vertex_positions + vertex_stride_float * b;
- const float* p2 = vertex_positions + vertex_stride_float * c;
- float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
- float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
- float normalx = p10[1] * p20[2] - p10[2] * p20[1];
- float normaly = p10[2] * p20[0] - p10[0] * p20[2];
- float normalz = p10[0] * p20[1] - p10[1] * p20[0];
- float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
- float invarea = (area == 0.f) ? 0.f : 1.f / area;
- triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f;
- triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f;
- triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f;
- triangles[i].nx = normalx * invarea;
- triangles[i].ny = normaly * invarea;
- triangles[i].nz = normalz * invarea;
- mesh_area += area;
- }
- return mesh_area;
- }
- static void finishMeshlet(meshopt_Meshlet& meshlet, unsigned char* meshlet_triangles)
- {
- size_t offset = meshlet.triangle_offset + meshlet.triangle_count * 3;
- // fill 4b padding with 0
- while (offset & 3)
- meshlet_triangles[offset++] = 0;
- }
- static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, unsigned char* used, meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t meshlet_offset, size_t max_vertices, size_t max_triangles)
- {
- unsigned char& av = used[a];
- unsigned char& bv = used[b];
- unsigned char& cv = used[c];
- bool result = false;
- int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
- if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
- {
- meshlets[meshlet_offset] = meshlet;
- for (size_t j = 0; j < meshlet.vertex_count; ++j)
- used[meshlet_vertices[meshlet.vertex_offset + j]] = 0xff;
- finishMeshlet(meshlet, meshlet_triangles);
- meshlet.vertex_offset += meshlet.vertex_count;
- meshlet.triangle_offset += (meshlet.triangle_count * 3 + 3) & ~3; // 4b padding
- meshlet.vertex_count = 0;
- meshlet.triangle_count = 0;
- result = true;
- }
- if (av == 0xff)
- {
- av = (unsigned char)meshlet.vertex_count;
- meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = a;
- }
- if (bv == 0xff)
- {
- bv = (unsigned char)meshlet.vertex_count;
- meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = b;
- }
- if (cv == 0xff)
- {
- cv = (unsigned char)meshlet.vertex_count;
- meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = c;
- }
- meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 0] = av;
- meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 1] = bv;
- meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 2] = cv;
- meshlet.triangle_count++;
- return result;
- }
- static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Cone* meshlet_cone, unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, const unsigned char* used, float meshlet_expected_radius, float cone_weight)
- {
- unsigned int best_triangle = ~0u;
- int best_priority = 5;
- float best_score = FLT_MAX;
- for (size_t i = 0; i < meshlet.vertex_count; ++i)
- {
- unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];
- unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
- size_t neighbors_size = adjacency.counts[index];
- for (size_t j = 0; j < neighbors_size; ++j)
- {
- unsigned int triangle = neighbors[j];
- unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
- int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
- assert(extra <= 2);
- int priority = -1;
- // triangles that don't add new vertices to meshlets are max. priority
- if (extra == 0)
- priority = 0;
- // artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
- else if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
- priority = 1;
- // if two vertices have live count of 2, removing this triangle will make another triangle dangling which is good for overall flow
- else if ((live_triangles[a] == 2) + (live_triangles[b] == 2) + (live_triangles[c] == 2) >= 2)
- priority = 1 + extra;
- // otherwise adjust priority to be after the above cases, 3 or 4 based on used[] count
- else
- priority = 2 + extra;
- // since topology-based priority is always more important than the score, we can skip scoring in some cases
- if (priority > best_priority)
- continue;
- float score = 0;
- // caller selects one of two scoring functions: geometrical (based on meshlet cone) or topological (based on remaining triangles)
- if (meshlet_cone)
- {
- const Cone& tri_cone = triangles[triangle];
- float distance2 =
- (tri_cone.px - meshlet_cone->px) * (tri_cone.px - meshlet_cone->px) +
- (tri_cone.py - meshlet_cone->py) * (tri_cone.py - meshlet_cone->py) +
- (tri_cone.pz - meshlet_cone->pz) * (tri_cone.pz - meshlet_cone->pz);
- float spread = tri_cone.nx * meshlet_cone->nx + tri_cone.ny * meshlet_cone->ny + tri_cone.nz * meshlet_cone->nz;
- score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius);
- }
- else
- {
- // each live_triangles entry is >= 1 since it includes the current triangle we're processing
- score = float(live_triangles[a] + live_triangles[b] + live_triangles[c] - 3);
- }
- // note that topology-based priority is always more important than the score
- // this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
- if (priority < best_priority || score < best_score)
- {
- best_triangle = triangle;
- best_priority = priority;
- best_score = score;
- }
- }
- }
- return best_triangle;
- }
- struct KDNode
- {
- union
- {
- float split;
- unsigned int index;
- };
- // leaves: axis = 3, children = number of extra points after this one (0 if 'index' is the only point)
- // branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children
- unsigned int axis : 2;
- unsigned int children : 30;
- };
- static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, unsigned int axis, float pivot)
- {
- size_t m = 0;
- // invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot
- for (size_t i = 0; i < count; ++i)
- {
- float v = points[indices[i] * stride + axis];
- // swap(m, i) unconditionally
- unsigned int t = indices[m];
- indices[m] = indices[i];
- indices[i] = t;
- // when v >= pivot, we swap i with m without advancing it, preserving invariants
- m += v < pivot;
- }
- return m;
- }
- static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count)
- {
- assert(offset + count <= node_count);
- (void)node_count;
- KDNode& result = nodes[offset];
- result.index = indices[0];
- result.axis = 3;
- result.children = unsigned(count - 1);
- // all remaining points are stored in nodes immediately following the leaf
- for (size_t i = 1; i < count; ++i)
- {
- KDNode& tail = nodes[offset + i];
- tail.index = indices[i];
- tail.axis = 3;
- tail.children = ~0u >> 2; // bogus value to prevent misuse
- }
- return offset + count;
- }
- static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size)
- {
- assert(count > 0);
- assert(offset < node_count);
- if (count <= leaf_size)
- return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
- float mean[3] = {};
- float vars[3] = {};
- float runc = 1, runs = 1;
- // gather statistics on the points in the subtree using Welford's algorithm
- for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc)
- {
- const float* point = points + indices[i] * stride;
- for (int k = 0; k < 3; ++k)
- {
- float delta = point[k] - mean[k];
- mean[k] += delta * runs;
- vars[k] += delta * (point[k] - mean[k]);
- }
- }
- // split axis is one where the variance is largest
- unsigned int axis = (vars[0] >= vars[1] && vars[0] >= vars[2]) ? 0 : (vars[1] >= vars[2] ? 1 : 2);
- float split = mean[axis];
- size_t middle = kdtreePartition(indices, count, points, stride, axis, split);
- // when the partition is degenerate simply consolidate the points into a single node
- if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2)
- return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
- KDNode& result = nodes[offset];
- result.split = split;
- result.axis = axis;
- // left subtree is right after our node
- size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size);
- // distance to the right subtree is represented explicitly
- result.children = unsigned(next_offset - offset - 1);
- return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size);
- }
- static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, unsigned int& result, float& limit)
- {
- const KDNode& node = nodes[root];
- if (node.axis == 3)
- {
- // leaf
- for (unsigned int i = 0; i <= node.children; ++i)
- {
- unsigned int index = nodes[root + i].index;
- if (emitted_flags[index])
- continue;
- const float* point = points + index * stride;
- float distance2 =
- (point[0] - position[0]) * (point[0] - position[0]) +
- (point[1] - position[1]) * (point[1] - position[1]) +
- (point[2] - position[2]) * (point[2] - position[2]);
- float distance = sqrtf(distance2);
- if (distance < limit)
- {
- result = index;
- limit = distance;
- }
- }
- }
- else
- {
- // branch; we order recursion to process the node that search position is in first
- float delta = position[node.axis] - node.split;
- unsigned int first = (delta <= 0) ? 0 : node.children;
- unsigned int second = first ^ node.children;
- kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, result, limit);
- // only process the other node if it can have a match based on closest distance so far
- if (fabsf(delta) <= limit)
- kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, result, limit);
- }
- }
- } // namespace meshopt
- size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
- assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
- assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
- (void)kMeshletMaxVertices;
- (void)kMeshletMaxTriangles;
- // meshlet construction is limited by max vertices and max triangles per meshlet
- // the worst case is that the input is an unindexed stream since this equally stresses both limits
- // note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle
- size_t max_vertices_conservative = max_vertices - 2;
- size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative;
- size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles;
- return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
- }
- size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
- assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
- assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
- assert(cone_weight >= 0 && cone_weight <= 1);
- meshopt_Allocator allocator;
- TriangleAdjacency2 adjacency = {};
- buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
- unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
- memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));
- size_t face_count = index_count / 3;
- unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
- memset(emitted_flags, 0, face_count);
- // for each triangle, precompute centroid & normal to use for scoring
- Cone* triangles = allocator.allocate<Cone>(face_count);
- float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);
- // assuming each meshlet is a square patch, expected radius is sqrt(expected area)
- float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f;
- float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f;
- // build a kd-tree for nearest neighbor lookup
- unsigned int* kdindices = allocator.allocate<unsigned int>(face_count);
- for (size_t i = 0; i < face_count; ++i)
- kdindices[i] = unsigned(i);
- KDNode* nodes = allocator.allocate<KDNode>(face_count * 2);
- kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8);
- // index of the vertex in the meshlet, 0xff if the vertex isn't used
- unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
- memset(used, -1, vertex_count);
- meshopt_Meshlet meshlet = {};
- size_t meshlet_offset = 0;
- Cone meshlet_cone_acc = {};
- for (;;)
- {
- Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);
- unsigned int best_triangle = getNeighborTriangle(meshlet, &meshlet_cone, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, cone_weight);
- int best_extra = best_triangle == ~0u ? -1 : (used[indices[best_triangle * 3 + 0]] == 0xff) + (used[indices[best_triangle * 3 + 1]] == 0xff) + (used[indices[best_triangle * 3 + 2]] == 0xff);
- // if the best triangle doesn't fit into current meshlet, the spatial scoring we've used is not very meaningful, so we re-select using topological scoring
- if (best_triangle != ~0u && (meshlet.vertex_count + best_extra > max_vertices || meshlet.triangle_count >= max_triangles))
- {
- best_triangle = getNeighborTriangle(meshlet, NULL, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, 0.f);
- }
- // when we run out of neighboring triangles we need to switch to spatial search; we currently just pick the closest triangle irrespective of connectivity
- if (best_triangle == ~0u)
- {
- float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz};
- unsigned int index = ~0u;
- float limit = FLT_MAX;
- kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, index, limit);
- best_triangle = index;
- }
- if (best_triangle == ~0u)
- break;
- unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- // add meshlet to the output; when the current meshlet is full we reset the accumulated bounds
- if (appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles))
- {
- meshlet_offset++;
- memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc));
- }
- live_triangles[a]--;
- live_triangles[b]--;
- live_triangles[c]--;
- // remove emitted triangle from adjacency data
- // this makes sure that we spend less time traversing these lists on subsequent iterations
- for (size_t k = 0; k < 3; ++k)
- {
- unsigned int index = indices[best_triangle * 3 + k];
- unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
- size_t neighbors_size = adjacency.counts[index];
- for (size_t i = 0; i < neighbors_size; ++i)
- {
- unsigned int tri = neighbors[i];
- if (tri == best_triangle)
- {
- neighbors[i] = neighbors[neighbors_size - 1];
- adjacency.counts[index]--;
- break;
- }
- }
- }
- // update aggregated meshlet cone data for scoring subsequent triangles
- meshlet_cone_acc.px += triangles[best_triangle].px;
- meshlet_cone_acc.py += triangles[best_triangle].py;
- meshlet_cone_acc.pz += triangles[best_triangle].pz;
- meshlet_cone_acc.nx += triangles[best_triangle].nx;
- meshlet_cone_acc.ny += triangles[best_triangle].ny;
- meshlet_cone_acc.nz += triangles[best_triangle].nz;
- emitted_flags[best_triangle] = 1;
- }
- if (meshlet.triangle_count)
- {
- finishMeshlet(meshlet, meshlet_triangles);
- meshlets[meshlet_offset++] = meshlet;
- }
- assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
- return meshlet_offset;
- }
- size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
- assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
- assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
- meshopt_Allocator allocator;
- // index of the vertex in the meshlet, 0xff if the vertex isn't used
- unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
- memset(used, -1, vertex_count);
- meshopt_Meshlet meshlet = {};
- size_t meshlet_offset = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- // appends triangle to the meshlet and writes previous meshlet to the output if full
- meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles);
- }
- if (meshlet.triangle_count)
- {
- finishMeshlet(meshlet, meshlet_triangles);
- meshlets[meshlet_offset++] = meshlet;
- }
- assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
- return meshlet_offset;
- }
- meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(index_count / 3 <= kMeshletMaxTriangles);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- (void)vertex_count;
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- // compute triangle normals and gather triangle corners
- float normals[kMeshletMaxTriangles][3];
- float corners[kMeshletMaxTriangles][3][3];
- size_t triangles = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- const float* p0 = vertex_positions + vertex_stride_float * a;
- const float* p1 = vertex_positions + vertex_stride_float * b;
- const float* p2 = vertex_positions + vertex_stride_float * c;
- float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
- float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
- float normalx = p10[1] * p20[2] - p10[2] * p20[1];
- float normaly = p10[2] * p20[0] - p10[0] * p20[2];
- float normalz = p10[0] * p20[1] - p10[1] * p20[0];
- float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
- // no need to include degenerate triangles - they will be invisible anyway
- if (area == 0.f)
- continue;
- // record triangle normals & corners for future use; normal and corner 0 define a plane equation
- normals[triangles][0] = normalx / area;
- normals[triangles][1] = normaly / area;
- normals[triangles][2] = normalz / area;
- memcpy(corners[triangles][0], p0, 3 * sizeof(float));
- memcpy(corners[triangles][1], p1, 3 * sizeof(float));
- memcpy(corners[triangles][2], p2, 3 * sizeof(float));
- triangles++;
- }
- meshopt_Bounds bounds = {};
- // degenerate cluster, no valid triangles => trivial reject (cone data is 0)
- if (triangles == 0)
- return bounds;
- // compute cluster bounding sphere; we'll use the center to determine normal cone apex as well
- float psphere[4] = {};
- computeBoundingSphere(psphere, corners[0], triangles * 3);
- float center[3] = {psphere[0], psphere[1], psphere[2]};
- // treating triangle normals as points, find the bounding sphere - the sphere center determines the optimal cone axis
- float nsphere[4] = {};
- computeBoundingSphere(nsphere, normals, triangles);
- float axis[3] = {nsphere[0], nsphere[1], nsphere[2]};
- float axislength = sqrtf(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
- float invaxislength = axislength == 0.f ? 0.f : 1.f / axislength;
- axis[0] *= invaxislength;
- axis[1] *= invaxislength;
- axis[2] *= invaxislength;
- // compute a tight cone around all normals, mindp = cos(angle/2)
- float mindp = 1.f;
- for (size_t i = 0; i < triangles; ++i)
- {
- float dp = normals[i][0] * axis[0] + normals[i][1] * axis[1] + normals[i][2] * axis[2];
- mindp = (dp < mindp) ? dp : mindp;
- }
- // fill bounding sphere info; note that below we can return bounds without cone information for degenerate cones
- bounds.center[0] = center[0];
- bounds.center[1] = center[1];
- bounds.center[2] = center[2];
- bounds.radius = psphere[3];
- // degenerate cluster, normal cone is larger than a hemisphere => trivial accept
- // note that if mindp is positive but close to 0, the triangle intersection code below gets less stable
- // we arbitrarily decide that if a normal cone is ~168 degrees wide or more, the cone isn't useful
- if (mindp <= 0.1f)
- {
- bounds.cone_cutoff = 1;
- bounds.cone_cutoff_s8 = 127;
- return bounds;
- }
- float maxt = 0;
- // we need to find the point on center-t*axis ray that lies in negative half-space of all triangles
- for (size_t i = 0; i < triangles; ++i)
- {
- // dot(center-t*axis-corner, trinormal) = 0
- // dot(center-corner, trinormal) - t * dot(axis, trinormal) = 0
- float cx = center[0] - corners[i][0][0];
- float cy = center[1] - corners[i][0][1];
- float cz = center[2] - corners[i][0][2];
- float dc = cx * normals[i][0] + cy * normals[i][1] + cz * normals[i][2];
- float dn = axis[0] * normals[i][0] + axis[1] * normals[i][1] + axis[2] * normals[i][2];
- // dn should be larger than mindp cutoff above
- assert(dn > 0.f);
- float t = dc / dn;
- maxt = (t > maxt) ? t : maxt;
- }
- // cone apex should be in the negative half-space of all cluster triangles by construction
- bounds.cone_apex[0] = center[0] - axis[0] * maxt;
- bounds.cone_apex[1] = center[1] - axis[1] * maxt;
- bounds.cone_apex[2] = center[2] - axis[2] * maxt;
- // note: this axis is the axis of the normal cone, but our test for perspective camera effectively negates the axis
- bounds.cone_axis[0] = axis[0];
- bounds.cone_axis[1] = axis[1];
- bounds.cone_axis[2] = axis[2];
- // cos(a) for normal cone is mindp; we need to add 90 degrees on both sides and invert the cone
- // which gives us -cos(a+90) = -(-sin(a)) = sin(a) = sqrt(1 - cos^2(a))
- bounds.cone_cutoff = sqrtf(1 - mindp * mindp);
- // quantize axis & cutoff to 8-bit SNORM format
- bounds.cone_axis_s8[0] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[0], 8));
- bounds.cone_axis_s8[1] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[1], 8));
- bounds.cone_axis_s8[2] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[2], 8));
- // for the 8-bit test to be conservative, we need to adjust the cutoff by measuring the max. error
- float cone_axis_s8_e0 = fabsf(bounds.cone_axis_s8[0] / 127.f - bounds.cone_axis[0]);
- float cone_axis_s8_e1 = fabsf(bounds.cone_axis_s8[1] / 127.f - bounds.cone_axis[1]);
- float cone_axis_s8_e2 = fabsf(bounds.cone_axis_s8[2] / 127.f - bounds.cone_axis[2]);
- // note that we need to round this up instead of rounding to nearest, hence +1
- int cone_cutoff_s8 = int(127 * (bounds.cone_cutoff + cone_axis_s8_e0 + cone_axis_s8_e1 + cone_axis_s8_e2) + 1);
- bounds.cone_cutoff_s8 = (cone_cutoff_s8 > 127) ? 127 : (signed char)(cone_cutoff_s8);
- return bounds;
- }
- meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(triangle_count <= kMeshletMaxTriangles);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- unsigned int indices[kMeshletMaxTriangles * 3];
- for (size_t i = 0; i < triangle_count * 3; ++i)
- {
- unsigned int index = meshlet_vertices[meshlet_triangles[i]];
- assert(index < vertex_count);
- indices[i] = index;
- }
- return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
- }
- void meshopt_optimizeMeshlet(unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t triangle_count, size_t vertex_count)
- {
- using namespace meshopt;
- assert(triangle_count <= kMeshletMaxTriangles);
- assert(vertex_count <= kMeshletMaxVertices);
- unsigned char* indices = meshlet_triangles;
- unsigned int* vertices = meshlet_vertices;
- // cache tracks vertex timestamps (corresponding to triangle index! all 3 vertices are added at the same time and never removed)
- unsigned char cache[kMeshletMaxVertices];
- memset(cache, 0, vertex_count);
- // note that we start from a value that means all vertices aren't in cache
- unsigned char cache_last = 128;
- const unsigned char cache_cutoff = 3; // 3 triangles = ~5..9 vertices depending on reuse
- for (size_t i = 0; i < triangle_count; ++i)
- {
- int next = -1;
- int next_match = -1;
- for (size_t j = i; j < triangle_count; ++j)
- {
- unsigned char a = indices[j * 3 + 0], b = indices[j * 3 + 1], c = indices[j * 3 + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- // score each triangle by how many vertices are in cache
- // note: the distance is computed using unsigned 8-bit values, so cache timestamp overflow is handled gracefully
- int aok = (unsigned char)(cache_last - cache[a]) < cache_cutoff;
- int bok = (unsigned char)(cache_last - cache[b]) < cache_cutoff;
- int cok = (unsigned char)(cache_last - cache[c]) < cache_cutoff;
- if (aok + bok + cok > next_match)
- {
- next = (int)j;
- next_match = aok + bok + cok;
- // note that we could end up with all 3 vertices in the cache, but 2 is enough for ~strip traversal
- if (next_match >= 2)
- break;
- }
- }
- assert(next >= 0);
- unsigned char a = indices[next * 3 + 0], b = indices[next * 3 + 1], c = indices[next * 3 + 2];
- // shift triangles before the next one forward so that we always keep an ordered partition
- // note: this could have swapped triangles [i] and [next] but that distorts the order and may skew the output sequence
- memmove(indices + (i + 1) * 3, indices + i * 3, (next - i) * 3 * sizeof(unsigned char));
- indices[i * 3 + 0] = a;
- indices[i * 3 + 1] = b;
- indices[i * 3 + 2] = c;
- // cache timestamp is the same between all vertices of each triangle to reduce overflow
- cache_last++;
- cache[a] = cache_last;
- cache[b] = cache_last;
- cache[c] = cache_last;
- }
- // reorder meshlet vertices for access locality assuming index buffer is scanned sequentially
- unsigned int order[kMeshletMaxVertices];
- unsigned char remap[kMeshletMaxVertices];
- memset(remap, -1, vertex_count);
- size_t vertex_offset = 0;
- for (size_t i = 0; i < triangle_count * 3; ++i)
- {
- unsigned char& r = remap[indices[i]];
- if (r == 0xff)
- {
- r = (unsigned char)(vertex_offset);
- order[vertex_offset] = vertices[indices[i]];
- vertex_offset++;
- }
- indices[i] = r;
- }
- assert(vertex_offset <= vertex_count);
- memcpy(vertices, order, vertex_offset * sizeof(unsigned int));
- }
|