1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213 |
- // SPDX-License-Identifier: Apache-2.0
- // ----------------------------------------------------------------------------
- // Copyright 2019-2024 Arm Limited
- //
- // Licensed under the Apache License, Version 2.0 (the "License"); you may not
- // use this file except in compliance with the License. You may obtain a copy
- // of the License at:
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
- // License for the specific language governing permissions and limitations
- // under the License.
- // ----------------------------------------------------------------------------
- /**
- * @brief 8x32-bit vectors, implemented using AVX2.
- *
- * This module implements 8-wide 32-bit float, int, and mask vectors for x86
- * AVX2.
- *
- * There is a baseline level of functionality provided by all vector widths and
- * implementations. This is implemented using identical function signatures,
- * modulo data type, so we can use them as substitutable implementations in VLA
- * code.
- */
- #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
- #define ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
- #ifndef ASTCENC_SIMD_INLINE
- #error "Include astcenc_vecmathlib.h, do not include directly"
- #endif
- #include <cstdio>
- // Define convenience intrinsics that are missing on older compilers
- #define astcenc_mm256_set_m128i(m, n) _mm256_insertf128_si256(_mm256_castsi128_si256((n)), (m), 1)
- // ============================================================================
- // vfloat8 data type
- // ============================================================================
- /**
- * @brief Data type for 8-wide floats.
- */
- struct vfloat8
- {
- /**
- * @brief Construct from zero-initialized value.
- */
- ASTCENC_SIMD_INLINE vfloat8() = default;
- /**
- * @brief Construct from 4 values loaded from an unaligned address.
- *
- * Consider using loada() which is better with vectors if data is aligned
- * to vector length.
- */
- ASTCENC_SIMD_INLINE explicit vfloat8(const float *p)
- {
- m = _mm256_loadu_ps(p);
- }
- /**
- * @brief Construct from 1 scalar value replicated across all lanes.
- *
- * Consider using zero() for constexpr zeros.
- */
- ASTCENC_SIMD_INLINE explicit vfloat8(float a)
- {
- m = _mm256_set1_ps(a);
- }
- /**
- * @brief Construct from 8 scalar values.
- *
- * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vfloat8(
- float a, float b, float c, float d,
- float e, float f, float g, float h)
- {
- m = _mm256_set_ps(h, g, f, e, d, c, b, a);
- }
- /**
- * @brief Construct from an existing SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vfloat8(__m256 a)
- {
- m = a;
- }
- /**
- * @brief Get the scalar value of a single lane.
- */
- template <int l> ASTCENC_SIMD_INLINE float lane() const
- {
- #if !defined(__clang__) && defined(_MSC_VER)
- return m.m256_f32[l];
- #else
- union { __m256 m; float f[8]; } cvt;
- cvt.m = m;
- return cvt.f[l];
- #endif
- }
- /**
- * @brief Factory that returns a vector of zeros.
- */
- static ASTCENC_SIMD_INLINE vfloat8 zero()
- {
- return vfloat8(_mm256_setzero_ps());
- }
- /**
- * @brief Factory that returns a replicated scalar loaded from memory.
- */
- static ASTCENC_SIMD_INLINE vfloat8 load1(const float* p)
- {
- return vfloat8(_mm256_broadcast_ss(p));
- }
- /**
- * @brief Factory that returns a vector loaded from 32B aligned memory.
- */
- static ASTCENC_SIMD_INLINE vfloat8 loada(const float* p)
- {
- return vfloat8(_mm256_load_ps(p));
- }
- /**
- * @brief Factory that returns a vector containing the lane IDs.
- */
- static ASTCENC_SIMD_INLINE vfloat8 lane_id()
- {
- return vfloat8(_mm256_set_ps(7, 6, 5, 4, 3, 2, 1, 0));
- }
- /**
- * @brief The vector ...
- */
- __m256 m;
- };
- // ============================================================================
- // vint8 data type
- // ============================================================================
- /**
- * @brief Data type for 8-wide ints.
- */
- struct vint8
- {
- /**
- * @brief Construct from zero-initialized value.
- */
- ASTCENC_SIMD_INLINE vint8() = default;
- /**
- * @brief Construct from 8 values loaded from an unaligned address.
- *
- * Consider using loada() which is better with vectors if data is aligned
- * to vector length.
- */
- ASTCENC_SIMD_INLINE explicit vint8(const int *p)
- {
- m = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(p));
- }
- /**
- * @brief Construct from 8 uint8_t loaded from an unaligned address.
- */
- ASTCENC_SIMD_INLINE explicit vint8(const uint8_t *p)
- {
- // _mm_loadu_si64 would be nicer syntax, but missing on older GCC
- m = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*reinterpret_cast<const long long*>(p)));
- }
- /**
- * @brief Construct from 1 scalar value replicated across all lanes.
- *
- * Consider using vfloat4::zero() for constexpr zeros.
- */
- ASTCENC_SIMD_INLINE explicit vint8(int a)
- {
- m = _mm256_set1_epi32(a);
- }
- /**
- * @brief Construct from 8 scalar values.
- *
- * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vint8(
- int a, int b, int c, int d,
- int e, int f, int g, int h)
- {
- m = _mm256_set_epi32(h, g, f, e, d, c, b, a);
- }
- /**
- * @brief Construct from an existing SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vint8(__m256i a)
- {
- m = a;
- }
- /**
- * @brief Get the scalar from a single lane.
- */
- template <int l> ASTCENC_SIMD_INLINE int lane() const
- {
- #if !defined(__clang__) && defined(_MSC_VER)
- return m.m256i_i32[l];
- #else
- union { __m256i m; int f[8]; } cvt;
- cvt.m = m;
- return cvt.f[l];
- #endif
- }
- /**
- * @brief Factory that returns a vector of zeros.
- */
- static ASTCENC_SIMD_INLINE vint8 zero()
- {
- return vint8(_mm256_setzero_si256());
- }
- /**
- * @brief Factory that returns a replicated scalar loaded from memory.
- */
- static ASTCENC_SIMD_INLINE vint8 load1(const int* p)
- {
- __m128i a = _mm_set1_epi32(*p);
- return vint8(_mm256_broadcastd_epi32(a));
- }
- /**
- * @brief Factory that returns a vector loaded from unaligned memory.
- */
- static ASTCENC_SIMD_INLINE vint8 load(const uint8_t* p)
- {
- return vint8(_mm256_lddqu_si256(reinterpret_cast<const __m256i*>(p)));
- }
- /**
- * @brief Factory that returns a vector loaded from 32B aligned memory.
- */
- static ASTCENC_SIMD_INLINE vint8 loada(const int* p)
- {
- return vint8(_mm256_load_si256(reinterpret_cast<const __m256i*>(p)));
- }
- /**
- * @brief Factory that returns a vector containing the lane IDs.
- */
- static ASTCENC_SIMD_INLINE vint8 lane_id()
- {
- return vint8(_mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0));
- }
- /**
- * @brief The vector ...
- */
- __m256i m;
- };
- // ============================================================================
- // vmask8 data type
- // ============================================================================
- /**
- * @brief Data type for 8-wide control plane masks.
- */
- struct vmask8
- {
- /**
- * @brief Construct from an existing SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vmask8(__m256 a)
- {
- m = a;
- }
- /**
- * @brief Construct from an existing SIMD register.
- */
- ASTCENC_SIMD_INLINE explicit vmask8(__m256i a)
- {
- m = _mm256_castsi256_ps(a);
- }
- /**
- * @brief Construct from 1 scalar value.
- */
- ASTCENC_SIMD_INLINE explicit vmask8(bool a)
- {
- vint8 mask(a == false ? 0 : -1);
- m = _mm256_castsi256_ps(mask.m);
- }
- /**
- * @brief The vector ...
- */
- __m256 m;
- };
- // ============================================================================
- // vmask8 operators and functions
- // ============================================================================
- /**
- * @brief Overload: mask union (or).
- */
- ASTCENC_SIMD_INLINE vmask8 operator|(vmask8 a, vmask8 b)
- {
- return vmask8(_mm256_or_ps(a.m, b.m));
- }
- /**
- * @brief Overload: mask intersect (and).
- */
- ASTCENC_SIMD_INLINE vmask8 operator&(vmask8 a, vmask8 b)
- {
- return vmask8(_mm256_and_ps(a.m, b.m));
- }
- /**
- * @brief Overload: mask difference (xor).
- */
- ASTCENC_SIMD_INLINE vmask8 operator^(vmask8 a, vmask8 b)
- {
- return vmask8(_mm256_xor_ps(a.m, b.m));
- }
- /**
- * @brief Overload: mask invert (not).
- */
- ASTCENC_SIMD_INLINE vmask8 operator~(vmask8 a)
- {
- return vmask8(_mm256_xor_si256(_mm256_castps_si256(a.m), _mm256_set1_epi32(-1)));
- }
- /**
- * @brief Return a 8-bit mask code indicating mask status.
- *
- * bit0 = lane 0
- */
- ASTCENC_SIMD_INLINE unsigned int mask(vmask8 a)
- {
- return static_cast<unsigned int>(_mm256_movemask_ps(a.m));
- }
- /**
- * @brief True if any lanes are enabled, false otherwise.
- */
- ASTCENC_SIMD_INLINE bool any(vmask8 a)
- {
- return mask(a) != 0;
- }
- /**
- * @brief True if all lanes are enabled, false otherwise.
- */
- ASTCENC_SIMD_INLINE bool all(vmask8 a)
- {
- return mask(a) == 0xFF;
- }
- // ============================================================================
- // vint8 operators and functions
- // ============================================================================
- /**
- * @brief Overload: vector by vector addition.
- */
- ASTCENC_SIMD_INLINE vint8 operator+(vint8 a, vint8 b)
- {
- return vint8(_mm256_add_epi32(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector incremental addition.
- */
- ASTCENC_SIMD_INLINE vint8& operator+=(vint8& a, const vint8& b)
- {
- a = a + b;
- return a;
- }
- /**
- * @brief Overload: vector by vector subtraction.
- */
- ASTCENC_SIMD_INLINE vint8 operator-(vint8 a, vint8 b)
- {
- return vint8(_mm256_sub_epi32(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector multiplication.
- */
- ASTCENC_SIMD_INLINE vint8 operator*(vint8 a, vint8 b)
- {
- return vint8(_mm256_mullo_epi32(a.m, b.m));
- }
- /**
- * @brief Overload: vector bit invert.
- */
- ASTCENC_SIMD_INLINE vint8 operator~(vint8 a)
- {
- return vint8(_mm256_xor_si256(a.m, _mm256_set1_epi32(-1)));
- }
- /**
- * @brief Overload: vector by vector bitwise or.
- */
- ASTCENC_SIMD_INLINE vint8 operator|(vint8 a, vint8 b)
- {
- return vint8(_mm256_or_si256(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector bitwise and.
- */
- ASTCENC_SIMD_INLINE vint8 operator&(vint8 a, vint8 b)
- {
- return vint8(_mm256_and_si256(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector bitwise xor.
- */
- ASTCENC_SIMD_INLINE vint8 operator^(vint8 a, vint8 b)
- {
- return vint8(_mm256_xor_si256(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector equality.
- */
- ASTCENC_SIMD_INLINE vmask8 operator==(vint8 a, vint8 b)
- {
- return vmask8(_mm256_cmpeq_epi32(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector inequality.
- */
- ASTCENC_SIMD_INLINE vmask8 operator!=(vint8 a, vint8 b)
- {
- return ~vmask8(_mm256_cmpeq_epi32(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector less than.
- */
- ASTCENC_SIMD_INLINE vmask8 operator<(vint8 a, vint8 b)
- {
- return vmask8(_mm256_cmpgt_epi32(b.m, a.m));
- }
- /**
- * @brief Overload: vector by vector greater than.
- */
- ASTCENC_SIMD_INLINE vmask8 operator>(vint8 a, vint8 b)
- {
- return vmask8(_mm256_cmpgt_epi32(a.m, b.m));
- }
- /**
- * @brief Logical shift left.
- */
- template <int s> ASTCENC_SIMD_INLINE vint8 lsl(vint8 a)
- {
- return vint8(_mm256_slli_epi32(a.m, s));
- }
- /**
- * @brief Arithmetic shift right.
- */
- template <int s> ASTCENC_SIMD_INLINE vint8 asr(vint8 a)
- {
- return vint8(_mm256_srai_epi32(a.m, s));
- }
- /**
- * @brief Logical shift right.
- */
- template <int s> ASTCENC_SIMD_INLINE vint8 lsr(vint8 a)
- {
- return vint8(_mm256_srli_epi32(a.m, s));
- }
- /**
- * @brief Return the min vector of two vectors.
- */
- ASTCENC_SIMD_INLINE vint8 min(vint8 a, vint8 b)
- {
- return vint8(_mm256_min_epi32(a.m, b.m));
- }
- /**
- * @brief Return the max vector of two vectors.
- */
- ASTCENC_SIMD_INLINE vint8 max(vint8 a, vint8 b)
- {
- return vint8(_mm256_max_epi32(a.m, b.m));
- }
- /**
- * @brief Return the horizontal minimum of a vector.
- */
- ASTCENC_SIMD_INLINE vint8 hmin(vint8 a)
- {
- __m128i m = _mm_min_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1));
- m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2)));
- m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1)));
- m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0));
- __m256i r = astcenc_mm256_set_m128i(m, m);
- vint8 vmin(r);
- return vmin;
- }
- /**
- * @brief Return the horizontal maximum of a vector.
- */
- ASTCENC_SIMD_INLINE vint8 hmax(vint8 a)
- {
- __m128i m = _mm_max_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1));
- m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2)));
- m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1)));
- m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0));
- __m256i r = astcenc_mm256_set_m128i(m, m);
- vint8 vmax(r);
- return vmax;
- }
- /**
- * @brief Store a vector to a 16B aligned memory address.
- */
- ASTCENC_SIMD_INLINE void storea(vint8 a, int* p)
- {
- _mm256_store_si256(reinterpret_cast<__m256i*>(p), a.m);
- }
- /**
- * @brief Store a vector to an unaligned memory address.
- */
- ASTCENC_SIMD_INLINE void store(vint8 a, int* p)
- {
- _mm256_storeu_si256(reinterpret_cast<__m256i*>(p), a.m);
- }
- /**
- * @brief Store lowest N (vector width) bytes into an unaligned address.
- */
- ASTCENC_SIMD_INLINE void store_nbytes(vint8 a, uint8_t* p)
- {
- // This is the most logical implementation, but the convenience intrinsic
- // is missing on older compilers (supported in g++ 9 and clang++ 9).
- // _mm_storeu_si64(ptr, _mm256_extracti128_si256(v.m, 0))
- _mm_storel_epi64(reinterpret_cast<__m128i*>(p), _mm256_extracti128_si256(a.m, 0));
- }
- /**
- * @brief Gather N (vector width) indices from the array.
- */
- ASTCENC_SIMD_INLINE vint8 gatheri(const int* base, vint8 indices)
- {
- return vint8(_mm256_i32gather_epi32(base, indices.m, 4));
- }
- /**
- * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
- */
- ASTCENC_SIMD_INLINE vint8 pack_low_bytes(vint8 v)
- {
- __m256i shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 28, 24, 20, 16,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 12, 8, 4, 0);
- __m256i a = _mm256_shuffle_epi8(v.m, shuf);
- __m128i a0 = _mm256_extracti128_si256(a, 0);
- __m128i a1 = _mm256_extracti128_si256(a, 1);
- __m128i b = _mm_unpacklo_epi32(a0, a1);
- __m256i r = astcenc_mm256_set_m128i(b, b);
- return vint8(r);
- }
- /**
- * @brief Return lanes from @c b if @c cond is set, else @c a.
- */
- ASTCENC_SIMD_INLINE vint8 select(vint8 a, vint8 b, vmask8 cond)
- {
- __m256i condi = _mm256_castps_si256(cond.m);
- return vint8(_mm256_blendv_epi8(a.m, b.m, condi));
- }
- // ============================================================================
- // vfloat4 operators and functions
- // ============================================================================
- /**
- * @brief Overload: vector by vector addition.
- */
- ASTCENC_SIMD_INLINE vfloat8 operator+(vfloat8 a, vfloat8 b)
- {
- return vfloat8(_mm256_add_ps(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector incremental addition.
- */
- ASTCENC_SIMD_INLINE vfloat8& operator+=(vfloat8& a, const vfloat8& b)
- {
- a = a + b;
- return a;
- }
- /**
- * @brief Overload: vector by vector subtraction.
- */
- ASTCENC_SIMD_INLINE vfloat8 operator-(vfloat8 a, vfloat8 b)
- {
- return vfloat8(_mm256_sub_ps(a.m, b.m));
- }
- /**
- * @brief Overload: vector by vector multiplication.
- */
- ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, vfloat8 b)
- {
- return vfloat8(_mm256_mul_ps(a.m, b.m));
- }
- /**
- * @brief Overload: vector by scalar multiplication.
- */
- ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, float b)
- {
- return vfloat8(_mm256_mul_ps(a.m, _mm256_set1_ps(b)));
- }
- /**
- * @brief Overload: scalar by vector multiplication.
- */
- ASTCENC_SIMD_INLINE vfloat8 operator*(float a, vfloat8 b)
- {
- return vfloat8(_mm256_mul_ps(_mm256_set1_ps(a), b.m));
- }
- /**
- * @brief Overload: vector by vector division.
- */
- ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, vfloat8 b)
- {
- return vfloat8(_mm256_div_ps(a.m, b.m));
- }
- /**
- * @brief Overload: vector by scalar division.
- */
- ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, float b)
- {
- return vfloat8(_mm256_div_ps(a.m, _mm256_set1_ps(b)));
- }
- /**
- * @brief Overload: scalar by vector division.
- */
- ASTCENC_SIMD_INLINE vfloat8 operator/(float a, vfloat8 b)
- {
- return vfloat8(_mm256_div_ps(_mm256_set1_ps(a), b.m));
- }
- /**
- * @brief Overload: vector by vector equality.
- */
- ASTCENC_SIMD_INLINE vmask8 operator==(vfloat8 a, vfloat8 b)
- {
- return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_EQ_OQ));
- }
- /**
- * @brief Overload: vector by vector inequality.
- */
- ASTCENC_SIMD_INLINE vmask8 operator!=(vfloat8 a, vfloat8 b)
- {
- return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_NEQ_OQ));
- }
- /**
- * @brief Overload: vector by vector less than.
- */
- ASTCENC_SIMD_INLINE vmask8 operator<(vfloat8 a, vfloat8 b)
- {
- return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LT_OQ));
- }
- /**
- * @brief Overload: vector by vector greater than.
- */
- ASTCENC_SIMD_INLINE vmask8 operator>(vfloat8 a, vfloat8 b)
- {
- return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GT_OQ));
- }
- /**
- * @brief Overload: vector by vector less than or equal.
- */
- ASTCENC_SIMD_INLINE vmask8 operator<=(vfloat8 a, vfloat8 b)
- {
- return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LE_OQ));
- }
- /**
- * @brief Overload: vector by vector greater than or equal.
- */
- ASTCENC_SIMD_INLINE vmask8 operator>=(vfloat8 a, vfloat8 b)
- {
- return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GE_OQ));
- }
- /**
- * @brief Return the min vector of two vectors.
- *
- * If either lane value is NaN, @c b will be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, vfloat8 b)
- {
- return vfloat8(_mm256_min_ps(a.m, b.m));
- }
- /**
- * @brief Return the min vector of a vector and a scalar.
- *
- * If either lane value is NaN, @c b will be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, float b)
- {
- return min(a, vfloat8(b));
- }
- /**
- * @brief Return the max vector of two vectors.
- *
- * If either lane value is NaN, @c b will be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, vfloat8 b)
- {
- return vfloat8(_mm256_max_ps(a.m, b.m));
- }
- /**
- * @brief Return the max vector of a vector and a scalar.
- *
- * If either lane value is NaN, @c b will be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, float b)
- {
- return max(a, vfloat8(b));
- }
- /**
- * @brief Return the clamped value between min and max.
- *
- * It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN
- * then @c min will be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat8 clamp(float min, float max, vfloat8 a)
- {
- // Do not reorder - second operand will return if either is NaN
- a.m = _mm256_max_ps(a.m, _mm256_set1_ps(min));
- a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max));
- return a;
- }
- /**
- * @brief Return a clamped value between 0.0f and max.
- *
- * It is assumed that @c max is not a NaN value. If @c a is NaN then zero will
- * be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat8 clampz(float max, vfloat8 a)
- {
- a.m = _mm256_max_ps(a.m, _mm256_setzero_ps());
- a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max));
- return a;
- }
- /**
- * @brief Return a clamped value between 0.0f and 1.0f.
- *
- * If @c a is NaN then zero will be returned for that lane.
- */
- ASTCENC_SIMD_INLINE vfloat8 clampzo(vfloat8 a)
- {
- a.m = _mm256_max_ps(a.m, _mm256_setzero_ps());
- a.m = _mm256_min_ps(a.m, _mm256_set1_ps(1.0f));
- return a;
- }
- /**
- * @brief Return the absolute value of the float vector.
- */
- ASTCENC_SIMD_INLINE vfloat8 abs(vfloat8 a)
- {
- __m256 msk = _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffffff));
- return vfloat8(_mm256_and_ps(a.m, msk));
- }
- /**
- * @brief Return a float rounded to the nearest integer value.
- */
- ASTCENC_SIMD_INLINE vfloat8 round(vfloat8 a)
- {
- constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
- return vfloat8(_mm256_round_ps(a.m, flags));
- }
- /**
- * @brief Return the horizontal minimum of a vector.
- */
- ASTCENC_SIMD_INLINE vfloat8 hmin(vfloat8 a)
- {
- __m128 vlow = _mm256_castps256_ps128(a.m);
- __m128 vhigh = _mm256_extractf128_ps(a.m, 1);
- vlow = _mm_min_ps(vlow, vhigh);
- // First do an horizontal reduction.
- __m128 shuf = _mm_shuffle_ps(vlow, vlow, _MM_SHUFFLE(2, 3, 0, 1));
- __m128 mins = _mm_min_ps(vlow, shuf);
- shuf = _mm_movehl_ps(shuf, mins);
- mins = _mm_min_ss(mins, shuf);
- // This is the most logical implementation, but the convenience intrinsic
- // is missing on older compilers (supported in g++ 9 and clang++ 9).
- //__m256i r = _mm256_set_m128(m, m)
- __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(mins), mins, 1);
- return vfloat8(_mm256_permute_ps(r, 0));
- }
- /**
- * @brief Return the horizontal minimum of a vector.
- */
- ASTCENC_SIMD_INLINE float hmin_s(vfloat8 a)
- {
- return hmin(a).lane<0>();
- }
- /**
- * @brief Return the horizontal maximum of a vector.
- */
- ASTCENC_SIMD_INLINE vfloat8 hmax(vfloat8 a)
- {
- __m128 vlow = _mm256_castps256_ps128(a.m);
- __m128 vhigh = _mm256_extractf128_ps(a.m, 1);
- vhigh = _mm_max_ps(vlow, vhigh);
- // First do an horizontal reduction.
- __m128 shuf = _mm_shuffle_ps(vhigh, vhigh, _MM_SHUFFLE(2, 3, 0, 1));
- __m128 maxs = _mm_max_ps(vhigh, shuf);
- shuf = _mm_movehl_ps(shuf,maxs);
- maxs = _mm_max_ss(maxs, shuf);
- // This is the most logical implementation, but the convenience intrinsic
- // is missing on older compilers (supported in g++ 9 and clang++ 9).
- //__m256i r = _mm256_set_m128(m, m)
- __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(maxs), maxs, 1);
- return vfloat8(_mm256_permute_ps(r, 0));
- }
- /**
- * @brief Return the horizontal maximum of a vector.
- */
- ASTCENC_SIMD_INLINE float hmax_s(vfloat8 a)
- {
- return hmax(a).lane<0>();
- }
- /**
- * @brief Return the horizontal sum of a vector.
- */
- ASTCENC_SIMD_INLINE float hadd_s(vfloat8 a)
- {
- // Two sequential 4-wide adds gives invariance with 4-wide code
- vfloat4 lo(_mm256_extractf128_ps(a.m, 0));
- vfloat4 hi(_mm256_extractf128_ps(a.m, 1));
- return hadd_s(lo) + hadd_s(hi);
- }
- /**
- * @brief Return lanes from @c b if @c cond is set, else @c a.
- */
- ASTCENC_SIMD_INLINE vfloat8 select(vfloat8 a, vfloat8 b, vmask8 cond)
- {
- return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m));
- }
- /**
- * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
- */
- ASTCENC_SIMD_INLINE vfloat8 select_msb(vfloat8 a, vfloat8 b, vmask8 cond)
- {
- return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m));
- }
- /**
- * @brief Accumulate lane-wise sums for a vector, folded 4-wide.
- *
- * This is invariant with 4-wide implementations.
- */
- ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a)
- {
- vfloat4 lo(_mm256_extractf128_ps(a.m, 0));
- haccumulate(accum, lo);
- vfloat4 hi(_mm256_extractf128_ps(a.m, 1));
- haccumulate(accum, hi);
- }
- /**
- * @brief Accumulate lane-wise sums for a vector.
- *
- * This is NOT invariant with 4-wide implementations.
- */
- ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a)
- {
- accum += a;
- }
- /**
- * @brief Accumulate masked lane-wise sums for a vector, folded 4-wide.
- *
- * This is invariant with 4-wide implementations.
- */
- ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a, vmask8 m)
- {
- a = select(vfloat8::zero(), a, m);
- haccumulate(accum, a);
- }
- /**
- * @brief Accumulate masked lane-wise sums for a vector.
- *
- * This is NOT invariant with 4-wide implementations.
- */
- ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a, vmask8 m)
- {
- a = select(vfloat8::zero(), a, m);
- haccumulate(accum, a);
- }
- /**
- * @brief Return the sqrt of the lanes in the vector.
- */
- ASTCENC_SIMD_INLINE vfloat8 sqrt(vfloat8 a)
- {
- return vfloat8(_mm256_sqrt_ps(a.m));
- }
- /**
- * @brief Load a vector of gathered results from an array;
- */
- ASTCENC_SIMD_INLINE vfloat8 gatherf(const float* base, vint8 indices)
- {
- return vfloat8(_mm256_i32gather_ps(base, indices.m, 4));
- }
- /**
- * @brief Store a vector to an unaligned memory address.
- */
- ASTCENC_SIMD_INLINE void store(vfloat8 a, float* p)
- {
- _mm256_storeu_ps(p, a.m);
- }
- /**
- * @brief Store a vector to a 32B aligned memory address.
- */
- ASTCENC_SIMD_INLINE void storea(vfloat8 a, float* p)
- {
- _mm256_store_ps(p, a.m);
- }
- /**
- * @brief Return a integer value for a float vector, using truncation.
- */
- ASTCENC_SIMD_INLINE vint8 float_to_int(vfloat8 a)
- {
- return vint8(_mm256_cvttps_epi32(a.m));
- }
- /**
- * @brief Return a integer value for a float vector, using round-to-nearest.
- */
- ASTCENC_SIMD_INLINE vint8 float_to_int_rtn(vfloat8 a)
- {
- a = a + vfloat8(0.5f);
- return vint8(_mm256_cvttps_epi32(a.m));
- }
- /**
- * @brief Return a float value for an integer vector.
- */
- ASTCENC_SIMD_INLINE vfloat8 int_to_float(vint8 a)
- {
- return vfloat8(_mm256_cvtepi32_ps(a.m));
- }
- /**
- * @brief Return a float value as an integer bit pattern (i.e. no conversion).
- *
- * It is a common trick to convert floats into integer bit patterns, perform
- * some bit hackery based on knowledge they are IEEE 754 layout, and then
- * convert them back again. This is the first half of that flip.
- */
- ASTCENC_SIMD_INLINE vint8 float_as_int(vfloat8 a)
- {
- return vint8(_mm256_castps_si256(a.m));
- }
- /**
- * @brief Return a integer value as a float bit pattern (i.e. no conversion).
- *
- * It is a common trick to convert floats into integer bit patterns, perform
- * some bit hackery based on knowledge they are IEEE 754 layout, and then
- * convert them back again. This is the second half of that flip.
- */
- ASTCENC_SIMD_INLINE vfloat8 int_as_float(vint8 a)
- {
- return vfloat8(_mm256_castsi256_ps(a.m));
- }
- /**
- * @brief Prepare a vtable lookup table for use with the native SIMD size.
- */
- ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint8& t0p)
- {
- // AVX2 duplicates the table within each 128-bit lane
- __m128i t0n = t0.m;
- t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
- }
- /**
- * @brief Prepare a vtable lookup table for use with the native SIMD size.
- */
- ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint8& t0p, vint8& t1p)
- {
- // AVX2 duplicates the table within each 128-bit lane
- __m128i t0n = t0.m;
- t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
- __m128i t1n = _mm_xor_si128(t0.m, t1.m);
- t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n));
- }
- /**
- * @brief Prepare a vtable lookup table for use with the native SIMD size.
- */
- ASTCENC_SIMD_INLINE void vtable_prepare(
- vint4 t0, vint4 t1, vint4 t2, vint4 t3,
- vint8& t0p, vint8& t1p, vint8& t2p, vint8& t3p)
- {
- // AVX2 duplicates the table within each 128-bit lane
- __m128i t0n = t0.m;
- t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
- __m128i t1n = _mm_xor_si128(t0.m, t1.m);
- t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n));
- __m128i t2n = _mm_xor_si128(t1.m, t2.m);
- t2p = vint8(astcenc_mm256_set_m128i(t2n, t2n));
- __m128i t3n = _mm_xor_si128(t2.m, t3.m);
- t3p = vint8(astcenc_mm256_set_m128i(t3n, t3n));
- }
- /**
- * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
- */
- ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 idx)
- {
- // Set index byte MSB to 1 for unused bytes so shuffle returns zero
- __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
- __m256i result = _mm256_shuffle_epi8(t0.m, idxx);
- return vint8(result);
- }
- /**
- * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
- */
- ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 idx)
- {
- // Set index byte MSB to 1 for unused bytes so shuffle returns zero
- __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
- __m256i result = _mm256_shuffle_epi8(t0.m, idxx);
- idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
- __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx);
- result = _mm256_xor_si256(result, result2);
- return vint8(result);
- }
- /**
- * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
- */
- ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 t2, vint8 t3, vint8 idx)
- {
- // Set index byte MSB to 1 for unused bytes so shuffle returns zero
- __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
- __m256i result = _mm256_shuffle_epi8(t0.m, idxx);
- idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
- __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx);
- result = _mm256_xor_si256(result, result2);
- idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
- result2 = _mm256_shuffle_epi8(t2.m, idxx);
- result = _mm256_xor_si256(result, result2);
- idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
- result2 = _mm256_shuffle_epi8(t3.m, idxx);
- result = _mm256_xor_si256(result, result2);
- return vint8(result);
- }
- /**
- * @brief Return a vector of interleaved RGBA data.
- *
- * Input vectors have the value stored in the bottom 8 bits of each lane,
- * with high bits set to zero.
- *
- * Output vector stores a single RGBA texel packed in each lane.
- */
- ASTCENC_SIMD_INLINE vint8 interleave_rgba8(vint8 r, vint8 g, vint8 b, vint8 a)
- {
- return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
- }
- /**
- * @brief Store a vector, skipping masked lanes.
- *
- * All masked lanes must be at the end of vector, after all non-masked lanes.
- */
- ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint8 data, vmask8 mask)
- {
- _mm256_maskstore_epi32(reinterpret_cast<int*>(base), _mm256_castps_si256(mask.m), data.m);
- }
- /**
- * @brief Debug function to print a vector of ints.
- */
- ASTCENC_SIMD_INLINE void print(vint8 a)
- {
- alignas(32) int v[8];
- storea(a, v);
- printf("v8_i32:\n %8d %8d %8d %8d %8d %8d %8d %8d\n",
- v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
- }
- /**
- * @brief Debug function to print a vector of ints.
- */
- ASTCENC_SIMD_INLINE void printx(vint8 a)
- {
- alignas(32) int v[8];
- storea(a, v);
- printf("v8_i32:\n %08x %08x %08x %08x %08x %08x %08x %08x\n",
- v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
- }
- /**
- * @brief Debug function to print a vector of floats.
- */
- ASTCENC_SIMD_INLINE void print(vfloat8 a)
- {
- alignas(32) float v[8];
- storea(a, v);
- printf("v8_f32:\n %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f\n",
- static_cast<double>(v[0]), static_cast<double>(v[1]),
- static_cast<double>(v[2]), static_cast<double>(v[3]),
- static_cast<double>(v[4]), static_cast<double>(v[5]),
- static_cast<double>(v[6]), static_cast<double>(v[7]));
- }
- /**
- * @brief Debug function to print a vector of masks.
- */
- ASTCENC_SIMD_INLINE void print(vmask8 a)
- {
- print(select(vint8(0), vint8(1), a));
- }
- #endif // #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
|