123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545 |
- // SPDX-License-Identifier: Apache-2.0
- // ----------------------------------------------------------------------------
- // Copyright 2011-2023 Arm Limited
- //
- // Licensed under the Apache License, Version 2.0 (the "License"); you may not
- // use this file except in compliance with the License. You may obtain a copy
- // of the License at:
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
- // License for the specific language governing permissions and limitations
- // under the License.
- // ----------------------------------------------------------------------------
- /**
- * @brief Functions for converting between symbolic and physical encodings.
- */
- #include "astcenc_internal.h"
- #include <cassert>
- /**
- * @brief Reverse bits in a byte.
- *
- * @param p The value to reverse.
- *
- * @return The reversed result.
- */
- static inline int bitrev8(int p)
- {
- p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F);
- p = ((p & 0x33) << 2) | ((p >> 2) & 0x33);
- p = ((p & 0x55) << 1) | ((p >> 1) & 0x55);
- return p;
- }
- /**
- * @brief Read up to 8 bits at an arbitrary bit offset.
- *
- * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may
- * span two separate bytes in memory.
- *
- * @param bitcount The number of bits to read.
- * @param bitoffset The bit offset to read from, between 0 and 7.
- * @param[in,out] ptr The data pointer to read from.
- *
- * @return The read value.
- */
- static inline int read_bits(
- int bitcount,
- int bitoffset,
- const uint8_t* ptr
- ) {
- int mask = (1 << bitcount) - 1;
- ptr += bitoffset >> 3;
- bitoffset &= 7;
- int value = ptr[0] | (ptr[1] << 8);
- value >>= bitoffset;
- value &= mask;
- return value;
- }
- #if !defined(ASTCENC_DECOMPRESS_ONLY)
- /**
- * @brief Write up to 8 bits at an arbitrary bit offset.
- *
- * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so
- * may span two separate bytes in memory.
- *
- * @param value The value to write.
- * @param bitcount The number of bits to write, starting from LSB.
- * @param bitoffset The bit offset to store at, between 0 and 7.
- * @param[in,out] ptr The data pointer to write to.
- */
- static inline void write_bits(
- int value,
- int bitcount,
- int bitoffset,
- uint8_t* ptr
- ) {
- int mask = (1 << bitcount) - 1;
- value &= mask;
- ptr += bitoffset >> 3;
- bitoffset &= 7;
- value <<= bitoffset;
- mask <<= bitoffset;
- mask = ~mask;
- ptr[0] &= mask;
- ptr[0] |= value;
- ptr[1] &= mask >> 8;
- ptr[1] |= value >> 8;
- }
- /* See header for documentation. */
- void symbolic_to_physical(
- const block_size_descriptor& bsd,
- const symbolic_compressed_block& scb,
- uint8_t pcb[16]
- ) {
- assert(scb.block_type != SYM_BTYPE_ERROR);
- // Constant color block using UNORM16 colors
- if (scb.block_type == SYM_BTYPE_CONST_U16)
- {
- // There is currently no attempt to coalesce larger void-extents
- static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
- for (unsigned int i = 0; i < 8; i++)
- {
- pcb[i] = cbytes[i];
- }
- for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++)
- {
- pcb[2 * i + 8] = scb.constant_color[i] & 0xFF;
- pcb[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
- }
- return;
- }
- // Constant color block using FP16 colors
- if (scb.block_type == SYM_BTYPE_CONST_F16)
- {
- // There is currently no attempt to coalesce larger void-extents
- static const uint8_t cbytes[8] { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
- for (unsigned int i = 0; i < 8; i++)
- {
- pcb[i] = cbytes[i];
- }
- for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++)
- {
- pcb[2 * i + 8] = scb.constant_color[i] & 0xFF;
- pcb[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
- }
- return;
- }
- unsigned int partition_count = scb.partition_count;
- // Compress the weights.
- // They are encoded as an ordinary integer-sequence, then bit-reversed
- uint8_t weightbuf[16] { 0 };
- const auto& bm = bsd.get_block_mode(scb.block_mode);
- const auto& di = bsd.get_decimation_info(bm.decimation_mode);
- int weight_count = di.weight_count;
- quant_method weight_quant_method = bm.get_weight_quant_mode();
- float weight_quant_levels = static_cast<float>(get_quant_level(weight_quant_method));
- int is_dual_plane = bm.is_dual_plane;
- const auto& qat = quant_and_xfer_tables[weight_quant_method];
- int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
- int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method);
- uint8_t weights[64];
- if (is_dual_plane)
- {
- for (int i = 0; i < weight_count; i++)
- {
- float uqw = static_cast<float>(scb.weights[i]);
- float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
- int qwi = static_cast<int>(qw + 0.5f);
- weights[2 * i] = qat.scramble_map[qwi];
- uqw = static_cast<float>(scb.weights[i + WEIGHTS_PLANE2_OFFSET]);
- qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
- qwi = static_cast<int>(qw + 0.5f);
- weights[2 * i + 1] = qat.scramble_map[qwi];
- }
- }
- else
- {
- for (int i = 0; i < weight_count; i++)
- {
- float uqw = static_cast<float>(scb.weights[i]);
- float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
- int qwi = static_cast<int>(qw + 0.5f);
- weights[i] = qat.scramble_map[qwi];
- }
- }
- encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0);
- for (int i = 0; i < 16; i++)
- {
- pcb[i] = static_cast<uint8_t>(bitrev8(weightbuf[15 - i]));
- }
- write_bits(scb.block_mode, 11, 0, pcb);
- write_bits(partition_count - 1, 2, 11, pcb);
- int below_weights_pos = 128 - bits_for_weights;
- // Encode partition index and color endpoint types for blocks with 2+ partitions
- if (partition_count > 1)
- {
- write_bits(scb.partition_index, 6, 13, pcb);
- write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb);
- if (scb.color_formats_matched)
- {
- write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb);
- }
- else
- {
- // Check endpoint types for each partition to determine the lowest class present
- int low_class = 4;
- for (unsigned int i = 0; i < partition_count; i++)
- {
- int class_of_format = scb.color_formats[i] >> 2;
- low_class = astc::min(class_of_format, low_class);
- }
- if (low_class == 3)
- {
- low_class = 2;
- }
- int encoded_type = low_class + 1;
- int bitpos = 2;
- for (unsigned int i = 0; i < partition_count; i++)
- {
- int classbit_of_format = (scb.color_formats[i] >> 2) - low_class;
- encoded_type |= classbit_of_format << bitpos;
- bitpos++;
- }
- for (unsigned int i = 0; i < partition_count; i++)
- {
- int lowbits_of_format = scb.color_formats[i] & 3;
- encoded_type |= lowbits_of_format << bitpos;
- bitpos += 2;
- }
- int encoded_type_lowpart = encoded_type & 0x3F;
- int encoded_type_highpart = encoded_type >> 6;
- int encoded_type_highpart_size = (3 * partition_count) - 4;
- int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size;
- write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb);
- write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb);
- below_weights_pos -= encoded_type_highpart_size;
- }
- }
- else
- {
- write_bits(scb.color_formats[0], 4, 13, pcb);
- }
- // In dual-plane mode, encode the color component of the second plane of weights
- if (is_dual_plane)
- {
- write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb);
- }
- // Encode the color components
- uint8_t values_to_encode[32];
- int valuecount_to_encode = 0;
- const uint8_t* pack_table = color_uquant_to_scrambled_pquant_tables[scb.quant_mode - QUANT_6];
- for (unsigned int i = 0; i < scb.partition_count; i++)
- {
- int vals = 2 * (scb.color_formats[i] >> 2) + 2;
- assert(vals <= 8);
- for (int j = 0; j < vals; j++)
- {
- values_to_encode[j + valuecount_to_encode] = pack_table[scb.color_values[i][j]];
- }
- valuecount_to_encode += vals;
- }
- encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb,
- scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS);
- }
- #endif
- /* See header for documentation. */
- void physical_to_symbolic(
- const block_size_descriptor& bsd,
- const uint8_t pcb[16],
- symbolic_compressed_block& scb
- ) {
- uint8_t bswapped[16];
- scb.block_type = SYM_BTYPE_NONCONST;
- // Extract header fields
- int block_mode = read_bits(11, 0, pcb);
- if ((block_mode & 0x1FF) == 0x1FC)
- {
- // Constant color block
- // Check what format the data has
- if (block_mode & 0x200)
- {
- scb.block_type = SYM_BTYPE_CONST_F16;
- }
- else
- {
- scb.block_type = SYM_BTYPE_CONST_U16;
- }
- scb.partition_count = 0;
- for (int i = 0; i < 4; i++)
- {
- scb.constant_color[i] = pcb[2 * i + 8] | (pcb[2 * i + 9] << 8);
- }
- // Additionally, check that the void-extent
- if (bsd.zdim == 1)
- {
- // 2D void-extent
- int rsvbits = read_bits(2, 10, pcb);
- if (rsvbits != 3)
- {
- scb.block_type = SYM_BTYPE_ERROR;
- return;
- }
- // Low values span 3 bytes so need two read_bits calls
- int vx_low_s = read_bits(8, 12, pcb) | (read_bits(5, 12 + 8, pcb) << 8);
- int vx_high_s = read_bits(13, 25, pcb);
- int vx_low_t = read_bits(8, 38, pcb) | (read_bits(5, 38 + 8, pcb) << 8);
- int vx_high_t = read_bits(13, 51, pcb);
- int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF &&
- vx_low_t == 0x1FFF && vx_high_t == 0x1FFF;
- if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones)
- {
- scb.block_type = SYM_BTYPE_ERROR;
- return;
- }
- }
- else
- {
- // 3D void-extent
- int vx_low_s = read_bits(9, 10, pcb);
- int vx_high_s = read_bits(9, 19, pcb);
- int vx_low_t = read_bits(9, 28, pcb);
- int vx_high_t = read_bits(9, 37, pcb);
- int vx_low_r = read_bits(9, 46, pcb);
- int vx_high_r = read_bits(9, 55, pcb);
- int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF &&
- vx_low_t == 0x1FF && vx_high_t == 0x1FF &&
- vx_low_r == 0x1FF && vx_high_r == 0x1FF;
- if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_r >= vx_high_r) && !all_ones)
- {
- scb.block_type = SYM_BTYPE_ERROR;
- return;
- }
- }
- return;
- }
- unsigned int packed_index = bsd.block_mode_packed_index[block_mode];
- if (packed_index == BLOCK_BAD_BLOCK_MODE)
- {
- scb.block_type = SYM_BTYPE_ERROR;
- return;
- }
- const auto& bm = bsd.get_block_mode(block_mode);
- const auto& di = bsd.get_decimation_info(bm.decimation_mode);
- int weight_count = di.weight_count;
- promise(weight_count > 0);
- quant_method weight_quant_method = static_cast<quant_method>(bm.quant_mode);
- int is_dual_plane = bm.is_dual_plane;
- int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
- int partition_count = read_bits(2, 11, pcb) + 1;
- promise(partition_count > 0);
- scb.block_mode = static_cast<uint16_t>(block_mode);
- scb.partition_count = static_cast<uint8_t>(partition_count);
- for (int i = 0; i < 16; i++)
- {
- bswapped[i] = static_cast<uint8_t>(bitrev8(pcb[15 - i]));
- }
- int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method);
- int below_weights_pos = 128 - bits_for_weights;
- uint8_t indices[64];
- const auto& qat = quant_and_xfer_tables[weight_quant_method];
- decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0);
- if (is_dual_plane)
- {
- for (int i = 0; i < weight_count; i++)
- {
- scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]];
- scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]];
- }
- }
- else
- {
- for (int i = 0; i < weight_count; i++)
- {
- scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]];
- }
- }
- if (is_dual_plane && partition_count == 4)
- {
- scb.block_type = SYM_BTYPE_ERROR;
- return;
- }
- scb.color_formats_matched = 0;
- // Determine the format of each endpoint pair
- int color_formats[BLOCK_MAX_PARTITIONS];
- int encoded_type_highpart_size = 0;
- if (partition_count == 1)
- {
- color_formats[0] = read_bits(4, 13, pcb);
- scb.partition_index = 0;
- }
- else
- {
- encoded_type_highpart_size = (3 * partition_count) - 4;
- below_weights_pos -= encoded_type_highpart_size;
- int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb) |
- (read_bits(encoded_type_highpart_size, below_weights_pos, pcb) << 6);
- int baseclass = encoded_type & 0x3;
- if (baseclass == 0)
- {
- for (int i = 0; i < partition_count; i++)
- {
- color_formats[i] = (encoded_type >> 2) & 0xF;
- }
- below_weights_pos += encoded_type_highpart_size;
- scb.color_formats_matched = 1;
- encoded_type_highpart_size = 0;
- }
- else
- {
- int bitpos = 2;
- baseclass--;
- for (int i = 0; i < partition_count; i++)
- {
- color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2;
- bitpos++;
- }
- for (int i = 0; i < partition_count; i++)
- {
- color_formats[i] |= (encoded_type >> bitpos) & 3;
- bitpos += 2;
- }
- }
- scb.partition_index = static_cast<uint16_t>(read_bits(10, 13, pcb));
- }
- for (int i = 0; i < partition_count; i++)
- {
- scb.color_formats[i] = static_cast<uint8_t>(color_formats[i]);
- }
- // Determine number of color endpoint integers
- int color_integer_count = 0;
- for (int i = 0; i < partition_count; i++)
- {
- int endpoint_class = color_formats[i] >> 2;
- color_integer_count += (endpoint_class + 1) * 2;
- }
- if (color_integer_count > 18)
- {
- scb.block_type = SYM_BTYPE_ERROR;
- return;
- }
- // Determine the color endpoint format to use
- static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS };
- int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size;
- if (is_dual_plane)
- {
- color_bits -= 2;
- }
- if (color_bits < 0)
- {
- color_bits = 0;
- }
- int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits];
- if (color_quant_level < QUANT_6)
- {
- scb.block_type = SYM_BTYPE_ERROR;
- return;
- }
- // Unpack the integer color values and assign to endpoints
- scb.quant_mode = static_cast<quant_method>(color_quant_level);
- uint8_t values_to_decode[32];
- decode_ise(static_cast<quant_method>(color_quant_level), color_integer_count, pcb,
- values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS));
- int valuecount_to_decode = 0;
- const uint8_t* unpack_table = color_scrambled_pquant_to_uquant_tables[scb.quant_mode - QUANT_6];
- for (int i = 0; i < partition_count; i++)
- {
- int vals = 2 * (color_formats[i] >> 2) + 2;
- for (int j = 0; j < vals; j++)
- {
- scb.color_values[i][j] = unpack_table[values_to_decode[j + valuecount_to_decode]];
- }
- valuecount_to_decode += vals;
- }
- // Fetch component for second-plane in the case of dual plane of weights.
- scb.plane2_component = -1;
- if (is_dual_plane)
- {
- scb.plane2_component = static_cast<int8_t>(read_bits(2, below_weights_pos - 2, pcb));
- }
- }
|