123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473 |
- // SPDX-License-Identifier: Apache-2.0
- // ----------------------------------------------------------------------------
- // Copyright 2011-2022 Arm Limited
- //
- // Licensed under the Apache License, Version 2.0 (the "License"); you may not
- // use this file except in compliance with the License. You may obtain a copy
- // of the License at:
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
- // License for the specific language governing permissions and limitations
- // under the License.
- // ----------------------------------------------------------------------------
- #if !defined(ASTCENC_DECOMPRESS_ONLY)
- /**
- * @brief Functions to calculate variance per component in a NxN footprint.
- *
- * We need N to be parametric, so the routine below uses summed area tables in order to execute in
- * O(1) time independent of how big N is.
- *
- * The addition uses a Brent-Kung-based parallel prefix adder. This uses the prefix tree to first
- * perform a binary reduction, and then distributes the results. This method means that there is no
- * serial dependency between a given element and the next one, and also significantly improves
- * numerical stability allowing us to use floats rather than doubles.
- */
- #include "astcenc_internal.h"
- #include <cassert>
- /**
- * @brief Generate a prefix-sum array using the Brent-Kung algorithm.
- *
- * This will take an input array of the form:
- * v0, v1, v2, ...
- * ... and modify in-place to turn it into a prefix-sum array of the form:
- * v0, v0+v1, v0+v1+v2, ...
- *
- * @param d The array to prefix-sum.
- * @param items The number of items in the array.
- * @param stride The item spacing in the array; i.e. dense arrays should use 1.
- */
- static void brent_kung_prefix_sum(
- vfloat4* d,
- size_t items,
- int stride
- ) {
- if (items < 2)
- return;
- size_t lc_stride = 2;
- size_t log2_stride = 1;
- // The reduction-tree loop
- do {
- size_t step = lc_stride >> 1;
- size_t start = lc_stride - 1;
- size_t iters = items >> log2_stride;
- vfloat4 *da = d + (start * stride);
- ptrdiff_t ofs = -static_cast<ptrdiff_t>(step * stride);
- size_t ofs_stride = stride << log2_stride;
- while (iters)
- {
- *da = *da + da[ofs];
- da += ofs_stride;
- iters--;
- }
- log2_stride += 1;
- lc_stride <<= 1;
- } while (lc_stride <= items);
- // The expansion-tree loop
- do {
- log2_stride -= 1;
- lc_stride >>= 1;
- size_t step = lc_stride >> 1;
- size_t start = step + lc_stride - 1;
- size_t iters = (items - step) >> log2_stride;
- vfloat4 *da = d + (start * stride);
- ptrdiff_t ofs = -static_cast<ptrdiff_t>(step * stride);
- size_t ofs_stride = stride << log2_stride;
- while (iters)
- {
- *da = *da + da[ofs];
- da += ofs_stride;
- iters--;
- }
- } while (lc_stride > 2);
- }
- /* See header for documentation. */
- void compute_pixel_region_variance(
- astcenc_contexti& ctx,
- const pixel_region_args& arg
- ) {
- // Unpack the memory structure into local variables
- const astcenc_image* img = arg.img;
- astcenc_swizzle swz = arg.swz;
- bool have_z = arg.have_z;
- int size_x = arg.size_x;
- int size_y = arg.size_y;
- int size_z = arg.size_z;
- int offset_x = arg.offset_x;
- int offset_y = arg.offset_y;
- int offset_z = arg.offset_z;
- int alpha_kernel_radius = arg.alpha_kernel_radius;
- float* input_alpha_averages = ctx.input_alpha_averages;
- vfloat4* work_memory = arg.work_memory;
- // Compute memory sizes and dimensions that we need
- int kernel_radius = alpha_kernel_radius;
- int kerneldim = 2 * kernel_radius + 1;
- int kernel_radius_xy = kernel_radius;
- int kernel_radius_z = have_z ? kernel_radius : 0;
- int padsize_x = size_x + kerneldim;
- int padsize_y = size_y + kerneldim;
- int padsize_z = size_z + (have_z ? kerneldim : 0);
- int sizeprod = padsize_x * padsize_y * padsize_z;
- int zd_start = have_z ? 1 : 0;
- vfloat4 *varbuf1 = work_memory;
- vfloat4 *varbuf2 = work_memory + sizeprod;
- // Scaling factors to apply to Y and Z for accesses into the work buffers
- int yst = padsize_x;
- int zst = padsize_x * padsize_y;
- // Scaling factors to apply to Y and Z for accesses into result buffers
- int ydt = img->dim_x;
- int zdt = img->dim_x * img->dim_y;
- // Macros to act as accessor functions for the work-memory
- #define VARBUF1(z, y, x) varbuf1[z * zst + y * yst + x]
- #define VARBUF2(z, y, x) varbuf2[z * zst + y * yst + x]
- // Load N and N^2 values into the work buffers
- if (img->data_type == ASTCENC_TYPE_U8)
- {
- // Swizzle data structure 4 = ZERO, 5 = ONE
- uint8_t data[6];
- data[ASTCENC_SWZ_0] = 0;
- data[ASTCENC_SWZ_1] = 255;
- for (int z = zd_start; z < padsize_z; z++)
- {
- int z_src = (z - zd_start) + offset_z - kernel_radius_z;
- z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1));
- uint8_t* data8 = static_cast<uint8_t*>(img->data[z_src]);
- for (int y = 1; y < padsize_y; y++)
- {
- int y_src = (y - 1) + offset_y - kernel_radius_xy;
- y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1));
- for (int x = 1; x < padsize_x; x++)
- {
- int x_src = (x - 1) + offset_x - kernel_radius_xy;
- x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1));
- data[0] = data8[(4 * img->dim_x * y_src) + (4 * x_src )];
- data[1] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 1)];
- data[2] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 2)];
- data[3] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 3)];
- uint8_t r = data[swz.r];
- uint8_t g = data[swz.g];
- uint8_t b = data[swz.b];
- uint8_t a = data[swz.a];
- vfloat4 d = vfloat4 (r * (1.0f / 255.0f),
- g * (1.0f / 255.0f),
- b * (1.0f / 255.0f),
- a * (1.0f / 255.0f));
- VARBUF1(z, y, x) = d;
- VARBUF2(z, y, x) = d * d;
- }
- }
- }
- }
- else if (img->data_type == ASTCENC_TYPE_F16)
- {
- // Swizzle data structure 4 = ZERO, 5 = ONE (in FP16)
- uint16_t data[6];
- data[ASTCENC_SWZ_0] = 0;
- data[ASTCENC_SWZ_1] = 0x3C00;
- for (int z = zd_start; z < padsize_z; z++)
- {
- int z_src = (z - zd_start) + offset_z - kernel_radius_z;
- z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1));
- uint16_t* data16 = static_cast<uint16_t*>(img->data[z_src]);
- for (int y = 1; y < padsize_y; y++)
- {
- int y_src = (y - 1) + offset_y - kernel_radius_xy;
- y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1));
- for (int x = 1; x < padsize_x; x++)
- {
- int x_src = (x - 1) + offset_x - kernel_radius_xy;
- x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1));
- data[0] = data16[(4 * img->dim_x * y_src) + (4 * x_src )];
- data[1] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 1)];
- data[2] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 2)];
- data[3] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 3)];
- vint4 di(data[swz.r], data[swz.g], data[swz.b], data[swz.a]);
- vfloat4 d = float16_to_float(di);
- VARBUF1(z, y, x) = d;
- VARBUF2(z, y, x) = d * d;
- }
- }
- }
- }
- else // if (img->data_type == ASTCENC_TYPE_F32)
- {
- assert(img->data_type == ASTCENC_TYPE_F32);
- // Swizzle data structure 4 = ZERO, 5 = ONE (in FP16)
- float data[6];
- data[ASTCENC_SWZ_0] = 0.0f;
- data[ASTCENC_SWZ_1] = 1.0f;
- for (int z = zd_start; z < padsize_z; z++)
- {
- int z_src = (z - zd_start) + offset_z - kernel_radius_z;
- z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1));
- float* data32 = static_cast<float*>(img->data[z_src]);
- for (int y = 1; y < padsize_y; y++)
- {
- int y_src = (y - 1) + offset_y - kernel_radius_xy;
- y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1));
- for (int x = 1; x < padsize_x; x++)
- {
- int x_src = (x - 1) + offset_x - kernel_radius_xy;
- x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1));
- data[0] = data32[(4 * img->dim_x * y_src) + (4 * x_src )];
- data[1] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 1)];
- data[2] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 2)];
- data[3] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 3)];
- float r = data[swz.r];
- float g = data[swz.g];
- float b = data[swz.b];
- float a = data[swz.a];
- vfloat4 d(r, g, b, a);
- VARBUF1(z, y, x) = d;
- VARBUF2(z, y, x) = d * d;
- }
- }
- }
- }
- // Pad with an extra layer of 0s; this forms the edge of the SAT tables
- vfloat4 vbz = vfloat4::zero();
- for (int z = 0; z < padsize_z; z++)
- {
- for (int y = 0; y < padsize_y; y++)
- {
- VARBUF1(z, y, 0) = vbz;
- VARBUF2(z, y, 0) = vbz;
- }
- for (int x = 0; x < padsize_x; x++)
- {
- VARBUF1(z, 0, x) = vbz;
- VARBUF2(z, 0, x) = vbz;
- }
- }
- if (have_z)
- {
- for (int y = 0; y < padsize_y; y++)
- {
- for (int x = 0; x < padsize_x; x++)
- {
- VARBUF1(0, y, x) = vbz;
- VARBUF2(0, y, x) = vbz;
- }
- }
- }
- // Generate summed-area tables for N and N^2; this is done in-place, using
- // a Brent-Kung parallel-prefix based algorithm to minimize precision loss
- for (int z = zd_start; z < padsize_z; z++)
- {
- for (int y = 1; y < padsize_y; y++)
- {
- brent_kung_prefix_sum(&(VARBUF1(z, y, 1)), padsize_x - 1, 1);
- brent_kung_prefix_sum(&(VARBUF2(z, y, 1)), padsize_x - 1, 1);
- }
- }
- for (int z = zd_start; z < padsize_z; z++)
- {
- for (int x = 1; x < padsize_x; x++)
- {
- brent_kung_prefix_sum(&(VARBUF1(z, 1, x)), padsize_y - 1, yst);
- brent_kung_prefix_sum(&(VARBUF2(z, 1, x)), padsize_y - 1, yst);
- }
- }
- if (have_z)
- {
- for (int y = 1; y < padsize_y; y++)
- {
- for (int x = 1; x < padsize_x; x++)
- {
- brent_kung_prefix_sum(&(VARBUF1(1, y, x)), padsize_z - 1, zst);
- brent_kung_prefix_sum(&(VARBUF2(1, y, x)), padsize_z - 1, zst);
- }
- }
- }
- // Compute a few constants used in the variance-calculation.
- float alpha_kdim = static_cast<float>(2 * alpha_kernel_radius + 1);
- float alpha_rsamples;
- if (have_z)
- {
- alpha_rsamples = 1.0f / (alpha_kdim * alpha_kdim * alpha_kdim);
- }
- else
- {
- alpha_rsamples = 1.0f / (alpha_kdim * alpha_kdim);
- }
- // Use the summed-area tables to compute variance for each neighborhood
- if (have_z)
- {
- for (int z = 0; z < size_z; z++)
- {
- int z_src = z + kernel_radius_z;
- int z_dst = z + offset_z;
- int z_low = z_src - alpha_kernel_radius;
- int z_high = z_src + alpha_kernel_radius + 1;
- for (int y = 0; y < size_y; y++)
- {
- int y_src = y + kernel_radius_xy;
- int y_dst = y + offset_y;
- int y_low = y_src - alpha_kernel_radius;
- int y_high = y_src + alpha_kernel_radius + 1;
- for (int x = 0; x < size_x; x++)
- {
- int x_src = x + kernel_radius_xy;
- int x_dst = x + offset_x;
- int x_low = x_src - alpha_kernel_radius;
- int x_high = x_src + alpha_kernel_radius + 1;
- // Summed-area table lookups for alpha average
- float vasum = ( VARBUF1(z_high, y_low, x_low).lane<3>()
- - VARBUF1(z_high, y_low, x_high).lane<3>()
- - VARBUF1(z_high, y_high, x_low).lane<3>()
- + VARBUF1(z_high, y_high, x_high).lane<3>()) -
- ( VARBUF1(z_low, y_low, x_low).lane<3>()
- - VARBUF1(z_low, y_low, x_high).lane<3>()
- - VARBUF1(z_low, y_high, x_low).lane<3>()
- + VARBUF1(z_low, y_high, x_high).lane<3>());
- int out_index = z_dst * zdt + y_dst * ydt + x_dst;
- input_alpha_averages[out_index] = (vasum * alpha_rsamples);
- }
- }
- }
- }
- else
- {
- for (int y = 0; y < size_y; y++)
- {
- int y_src = y + kernel_radius_xy;
- int y_dst = y + offset_y;
- int y_low = y_src - alpha_kernel_radius;
- int y_high = y_src + alpha_kernel_radius + 1;
- for (int x = 0; x < size_x; x++)
- {
- int x_src = x + kernel_radius_xy;
- int x_dst = x + offset_x;
- int x_low = x_src - alpha_kernel_radius;
- int x_high = x_src + alpha_kernel_radius + 1;
- // Summed-area table lookups for alpha average
- float vasum = VARBUF1(0, y_low, x_low).lane<3>()
- - VARBUF1(0, y_low, x_high).lane<3>()
- - VARBUF1(0, y_high, x_low).lane<3>()
- + VARBUF1(0, y_high, x_high).lane<3>();
- int out_index = y_dst * ydt + x_dst;
- input_alpha_averages[out_index] = (vasum * alpha_rsamples);
- }
- }
- }
- }
- /* See header for documentation. */
- unsigned int init_compute_averages(
- const astcenc_image& img,
- unsigned int alpha_kernel_radius,
- const astcenc_swizzle& swz,
- avg_args& ag
- ) {
- unsigned int size_x = img.dim_x;
- unsigned int size_y = img.dim_y;
- unsigned int size_z = img.dim_z;
- // Compute maximum block size and from that the working memory buffer size
- unsigned int kernel_radius = alpha_kernel_radius;
- unsigned int kerneldim = 2 * kernel_radius + 1;
- bool have_z = (size_z > 1);
- unsigned int max_blk_size_xy = have_z ? 16 : 32;
- unsigned int max_blk_size_z = astc::min(size_z, have_z ? 16u : 1u);
- unsigned int max_padsize_xy = max_blk_size_xy + kerneldim;
- unsigned int max_padsize_z = max_blk_size_z + (have_z ? kerneldim : 0);
- // Perform block-wise averages calculations across the image
- // Initialize fields which are not populated until later
- ag.arg.size_x = 0;
- ag.arg.size_y = 0;
- ag.arg.size_z = 0;
- ag.arg.offset_x = 0;
- ag.arg.offset_y = 0;
- ag.arg.offset_z = 0;
- ag.arg.work_memory = nullptr;
- ag.arg.img = &img;
- ag.arg.swz = swz;
- ag.arg.have_z = have_z;
- ag.arg.alpha_kernel_radius = alpha_kernel_radius;
- ag.img_size_x = size_x;
- ag.img_size_y = size_y;
- ag.img_size_z = size_z;
- ag.blk_size_xy = max_blk_size_xy;
- ag.blk_size_z = max_blk_size_z;
- ag.work_memory_size = 2 * max_padsize_xy * max_padsize_xy * max_padsize_z;
- // The parallel task count
- unsigned int z_tasks = (size_z + max_blk_size_z - 1) / max_blk_size_z;
- unsigned int y_tasks = (size_y + max_blk_size_xy - 1) / max_blk_size_xy;
- return z_tasks * y_tasks;
- }
- #endif
|