shape_2d_sw.cpp 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006
  1. /*************************************************************************/
  2. /* shape_2d_sw.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "shape_2d_sw.h"
  31. #include "core/math/geometry.h"
  32. #include "core/sort_array.h"
  33. void Shape2DSW::configure(const Rect2 &p_aabb) {
  34. aabb = p_aabb;
  35. configured = true;
  36. for (Map<ShapeOwner2DSW *, int>::Element *E = owners.front(); E; E = E->next()) {
  37. ShapeOwner2DSW *co = (ShapeOwner2DSW *)E->key();
  38. co->_shape_changed();
  39. }
  40. }
  41. Vector2 Shape2DSW::get_support(const Vector2 &p_normal) const {
  42. Vector2 res[2];
  43. int amnt;
  44. get_supports(p_normal, res, amnt);
  45. return res[0];
  46. }
  47. void Shape2DSW::add_owner(ShapeOwner2DSW *p_owner) {
  48. Map<ShapeOwner2DSW *, int>::Element *E = owners.find(p_owner);
  49. if (E) {
  50. E->get()++;
  51. } else {
  52. owners[p_owner] = 1;
  53. }
  54. }
  55. void Shape2DSW::remove_owner(ShapeOwner2DSW *p_owner) {
  56. Map<ShapeOwner2DSW *, int>::Element *E = owners.find(p_owner);
  57. ERR_FAIL_COND(!E);
  58. E->get()--;
  59. if (E->get() == 0) {
  60. owners.erase(E);
  61. }
  62. }
  63. bool Shape2DSW::is_owner(ShapeOwner2DSW *p_owner) const {
  64. return owners.has(p_owner);
  65. }
  66. const Map<ShapeOwner2DSW *, int> &Shape2DSW::get_owners() const {
  67. return owners;
  68. }
  69. Shape2DSW::Shape2DSW() {
  70. custom_bias = 0;
  71. configured = false;
  72. }
  73. Shape2DSW::~Shape2DSW() {
  74. ERR_FAIL_COND(owners.size());
  75. }
  76. /*********************************************************/
  77. /*********************************************************/
  78. /*********************************************************/
  79. void LineShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  80. r_amount = 0;
  81. }
  82. bool LineShape2DSW::contains_point(const Vector2 &p_point) const {
  83. return normal.dot(p_point) < d;
  84. }
  85. bool LineShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  86. Vector2 segment = p_begin - p_end;
  87. real_t den = normal.dot(segment);
  88. //printf("den is %i\n",den);
  89. if (Math::abs(den) <= CMP_EPSILON) {
  90. return false;
  91. }
  92. real_t dist = (normal.dot(p_begin) - d) / den;
  93. //printf("dist is %i\n",dist);
  94. if (dist < -CMP_EPSILON || dist > (1.0 + CMP_EPSILON)) {
  95. return false;
  96. }
  97. r_point = p_begin + segment * -dist;
  98. r_normal = normal;
  99. return true;
  100. }
  101. real_t LineShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  102. return 0;
  103. }
  104. void LineShape2DSW::set_data(const Variant &p_data) {
  105. ERR_FAIL_COND(p_data.get_type() != Variant::ARRAY);
  106. Array arr = p_data;
  107. ERR_FAIL_COND(arr.size() != 2);
  108. normal = arr[0];
  109. d = arr[1];
  110. configure(Rect2(Vector2(-1e4, -1e4), Vector2(1e4 * 2, 1e4 * 2)));
  111. }
  112. Variant LineShape2DSW::get_data() const {
  113. Array arr;
  114. arr.resize(2);
  115. arr[0] = normal;
  116. arr[1] = d;
  117. return arr;
  118. }
  119. /*********************************************************/
  120. /*********************************************************/
  121. /*********************************************************/
  122. void RayShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  123. r_amount = 1;
  124. if (p_normal.y > 0) {
  125. *r_supports = Vector2(0, length);
  126. } else {
  127. *r_supports = Vector2();
  128. }
  129. }
  130. bool RayShape2DSW::contains_point(const Vector2 &p_point) const {
  131. return false;
  132. }
  133. bool RayShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  134. return false; //rays can't be intersected
  135. }
  136. real_t RayShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  137. return 0; //rays are mass-less
  138. }
  139. void RayShape2DSW::set_data(const Variant &p_data) {
  140. Dictionary d = p_data;
  141. length = d["length"];
  142. slips_on_slope = d["slips_on_slope"];
  143. configure(Rect2(0, 0, 0.001, length));
  144. }
  145. Variant RayShape2DSW::get_data() const {
  146. Dictionary d;
  147. d["length"] = length;
  148. d["slips_on_slope"] = slips_on_slope;
  149. return d;
  150. }
  151. /*********************************************************/
  152. /*********************************************************/
  153. /*********************************************************/
  154. void SegmentShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  155. if (Math::abs(p_normal.dot(n)) > _SEGMENT_IS_VALID_SUPPORT_THRESHOLD) {
  156. r_supports[0] = a;
  157. r_supports[1] = b;
  158. r_amount = 2;
  159. return;
  160. }
  161. real_t dp = p_normal.dot(b - a);
  162. if (dp > 0) {
  163. *r_supports = b;
  164. } else {
  165. *r_supports = a;
  166. }
  167. r_amount = 1;
  168. }
  169. bool SegmentShape2DSW::contains_point(const Vector2 &p_point) const {
  170. return false;
  171. }
  172. bool SegmentShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  173. if (!Geometry::segment_intersects_segment_2d(p_begin, p_end, a, b, &r_point)) {
  174. return false;
  175. }
  176. if (n.dot(p_begin) > n.dot(a)) {
  177. r_normal = n;
  178. } else {
  179. r_normal = -n;
  180. }
  181. return true;
  182. }
  183. real_t SegmentShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  184. return p_mass * ((a * p_scale).distance_squared_to(b * p_scale)) / 12;
  185. }
  186. void SegmentShape2DSW::set_data(const Variant &p_data) {
  187. ERR_FAIL_COND(p_data.get_type() != Variant::RECT2);
  188. Rect2 r = p_data;
  189. a = r.position;
  190. b = r.size;
  191. n = (b - a).tangent();
  192. Rect2 aabb;
  193. aabb.position = a;
  194. aabb.expand_to(b);
  195. if (aabb.size.x == 0) {
  196. aabb.size.x = 0.001;
  197. }
  198. if (aabb.size.y == 0) {
  199. aabb.size.y = 0.001;
  200. }
  201. configure(aabb);
  202. }
  203. Variant SegmentShape2DSW::get_data() const {
  204. Rect2 r;
  205. r.position = a;
  206. r.size = b;
  207. return r;
  208. }
  209. /*********************************************************/
  210. /*********************************************************/
  211. /*********************************************************/
  212. void CircleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  213. r_amount = 1;
  214. *r_supports = p_normal * radius;
  215. }
  216. bool CircleShape2DSW::contains_point(const Vector2 &p_point) const {
  217. return p_point.length_squared() < radius * radius;
  218. }
  219. bool CircleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  220. Vector2 line_vec = p_end - p_begin;
  221. real_t a, b, c;
  222. a = line_vec.dot(line_vec);
  223. b = 2 * p_begin.dot(line_vec);
  224. c = p_begin.dot(p_begin) - radius * radius;
  225. real_t sqrtterm = b * b - 4 * a * c;
  226. if (sqrtterm < 0) {
  227. return false;
  228. }
  229. sqrtterm = Math::sqrt(sqrtterm);
  230. real_t res = (-b - sqrtterm) / (2 * a);
  231. if (res < 0 || res > 1 + CMP_EPSILON) {
  232. return false;
  233. }
  234. r_point = p_begin + line_vec * res;
  235. r_normal = r_point.normalized();
  236. return true;
  237. }
  238. real_t CircleShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  239. real_t a = radius * p_scale.x;
  240. real_t b = radius * p_scale.y;
  241. return p_mass * (a * a + b * b) / 4;
  242. }
  243. void CircleShape2DSW::set_data(const Variant &p_data) {
  244. ERR_FAIL_COND(!p_data.is_num());
  245. radius = p_data;
  246. configure(Rect2(-radius, -radius, radius * 2, radius * 2));
  247. }
  248. Variant CircleShape2DSW::get_data() const {
  249. return radius;
  250. }
  251. /*********************************************************/
  252. /*********************************************************/
  253. /*********************************************************/
  254. void RectangleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  255. for (int i = 0; i < 2; i++) {
  256. Vector2 ag;
  257. ag[i] = 1.0;
  258. real_t dp = ag.dot(p_normal);
  259. if (Math::abs(dp) < _SEGMENT_IS_VALID_SUPPORT_THRESHOLD) {
  260. continue;
  261. }
  262. real_t sgn = dp > 0 ? 1.0 : -1.0;
  263. r_amount = 2;
  264. r_supports[0][i] = half_extents[i] * sgn;
  265. r_supports[0][i ^ 1] = half_extents[i ^ 1];
  266. r_supports[1][i] = half_extents[i] * sgn;
  267. r_supports[1][i ^ 1] = -half_extents[i ^ 1];
  268. return;
  269. }
  270. /* USE POINT */
  271. r_amount = 1;
  272. r_supports[0] = Vector2(
  273. (p_normal.x < 0) ? -half_extents.x : half_extents.x,
  274. (p_normal.y < 0) ? -half_extents.y : half_extents.y);
  275. }
  276. bool RectangleShape2DSW::contains_point(const Vector2 &p_point) const {
  277. float x = p_point.x;
  278. float y = p_point.y;
  279. float edge_x = half_extents.x;
  280. float edge_y = half_extents.y;
  281. return (x >= -edge_x) && (x < edge_x) && (y >= -edge_y) && (y < edge_y);
  282. }
  283. bool RectangleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  284. return get_aabb().intersects_segment(p_begin, p_end, &r_point, &r_normal);
  285. }
  286. real_t RectangleShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  287. Vector2 he2 = half_extents * 2 * p_scale;
  288. return p_mass * he2.dot(he2) / 12.0;
  289. }
  290. void RectangleShape2DSW::set_data(const Variant &p_data) {
  291. ERR_FAIL_COND(p_data.get_type() != Variant::VECTOR2);
  292. half_extents = p_data;
  293. configure(Rect2(-half_extents, half_extents * 2.0));
  294. }
  295. Variant RectangleShape2DSW::get_data() const {
  296. return half_extents;
  297. }
  298. /*********************************************************/
  299. /*********************************************************/
  300. /*********************************************************/
  301. void CapsuleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  302. Vector2 n = p_normal;
  303. real_t d = n.y;
  304. if (Math::abs(d) < (1.0 - _SEGMENT_IS_VALID_SUPPORT_THRESHOLD)) {
  305. // make it flat
  306. n.y = 0.0;
  307. n.normalize();
  308. n *= radius;
  309. r_amount = 2;
  310. r_supports[0] = n;
  311. r_supports[0].y += height * 0.5;
  312. r_supports[1] = n;
  313. r_supports[1].y -= height * 0.5;
  314. } else {
  315. real_t h = (d > 0) ? height : -height;
  316. n *= radius;
  317. n.y += h * 0.5;
  318. r_amount = 1;
  319. *r_supports = n;
  320. }
  321. }
  322. bool CapsuleShape2DSW::contains_point(const Vector2 &p_point) const {
  323. Vector2 p = p_point;
  324. p.y = Math::abs(p.y);
  325. p.y -= height * 0.5;
  326. if (p.y < 0) {
  327. p.y = 0;
  328. }
  329. return p.length_squared() < radius * radius;
  330. }
  331. bool CapsuleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  332. real_t d = 1e10;
  333. Vector2 n = (p_end - p_begin).normalized();
  334. bool collided = false;
  335. //try spheres
  336. for (int i = 0; i < 2; i++) {
  337. Vector2 begin = p_begin;
  338. Vector2 end = p_end;
  339. real_t ofs = (i == 0) ? -height * 0.5 : height * 0.5;
  340. begin.y += ofs;
  341. end.y += ofs;
  342. Vector2 line_vec = end - begin;
  343. real_t a, b, c;
  344. a = line_vec.dot(line_vec);
  345. b = 2 * begin.dot(line_vec);
  346. c = begin.dot(begin) - radius * radius;
  347. real_t sqrtterm = b * b - 4 * a * c;
  348. if (sqrtterm < 0) {
  349. continue;
  350. }
  351. sqrtterm = Math::sqrt(sqrtterm);
  352. real_t res = (-b - sqrtterm) / (2 * a);
  353. if (res < 0 || res > 1 + CMP_EPSILON) {
  354. continue;
  355. }
  356. Vector2 point = begin + line_vec * res;
  357. Vector2 pointf(point.x, point.y - ofs);
  358. real_t pd = n.dot(pointf);
  359. if (pd < d) {
  360. r_point = pointf;
  361. r_normal = point.normalized();
  362. d = pd;
  363. collided = true;
  364. }
  365. }
  366. Vector2 rpos, rnorm;
  367. if (Rect2(Point2(-radius, -height * 0.5), Size2(radius * 2.0, height)).intersects_segment(p_begin, p_end, &rpos, &rnorm)) {
  368. real_t pd = n.dot(rpos);
  369. if (pd < d) {
  370. r_point = rpos;
  371. r_normal = rnorm;
  372. d = pd;
  373. collided = true;
  374. }
  375. }
  376. //return get_aabb().intersects_segment(p_begin,p_end,&r_point,&r_normal);
  377. return collided; //todo
  378. }
  379. real_t CapsuleShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  380. Vector2 he2 = Vector2(radius * 2, height + radius * 2) * p_scale;
  381. return p_mass * he2.dot(he2) / 12.0;
  382. }
  383. void CapsuleShape2DSW::set_data(const Variant &p_data) {
  384. ERR_FAIL_COND(p_data.get_type() != Variant::ARRAY && p_data.get_type() != Variant::VECTOR2);
  385. if (p_data.get_type() == Variant::ARRAY) {
  386. Array arr = p_data;
  387. ERR_FAIL_COND(arr.size() != 2);
  388. height = arr[0];
  389. radius = arr[1];
  390. } else {
  391. Point2 p = p_data;
  392. radius = p.x;
  393. height = p.y;
  394. }
  395. Point2 he(radius, height * 0.5 + radius);
  396. configure(Rect2(-he, he * 2));
  397. }
  398. Variant CapsuleShape2DSW::get_data() const {
  399. return Point2(height, radius);
  400. }
  401. /*********************************************************/
  402. /*********************************************************/
  403. /*********************************************************/
  404. void ConvexPolygonShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  405. int support_idx = -1;
  406. real_t d = -1e10;
  407. r_amount = 0;
  408. for (int i = 0; i < point_count; i++) {
  409. //test point
  410. real_t ld = p_normal.dot(points[i].pos);
  411. if (ld > d) {
  412. support_idx = i;
  413. d = ld;
  414. }
  415. //test segment
  416. if (points[i].normal.dot(p_normal) > _SEGMENT_IS_VALID_SUPPORT_THRESHOLD) {
  417. r_amount = 2;
  418. r_supports[0] = points[i].pos;
  419. r_supports[1] = points[(i + 1) % point_count].pos;
  420. return;
  421. }
  422. }
  423. ERR_FAIL_COND_MSG(support_idx == -1, "Convex polygon shape support not found.");
  424. r_amount = 1;
  425. r_supports[0] = points[support_idx].pos;
  426. }
  427. bool ConvexPolygonShape2DSW::contains_point(const Vector2 &p_point) const {
  428. bool out = false;
  429. bool in = false;
  430. for (int i = 0; i < point_count; i++) {
  431. real_t d = points[i].normal.dot(p_point) - points[i].normal.dot(points[i].pos);
  432. if (d > 0) {
  433. out = true;
  434. } else {
  435. in = true;
  436. }
  437. }
  438. return in != out;
  439. }
  440. bool ConvexPolygonShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  441. Vector2 n = (p_end - p_begin).normalized();
  442. real_t d = 1e10;
  443. bool inters = false;
  444. for (int i = 0; i < point_count; i++) {
  445. //hmm.. no can do..
  446. /*
  447. if (d.dot(points[i].normal)>=0)
  448. continue;
  449. */
  450. Vector2 res;
  451. if (!Geometry::segment_intersects_segment_2d(p_begin, p_end, points[i].pos, points[(i + 1) % point_count].pos, &res)) {
  452. continue;
  453. }
  454. real_t nd = n.dot(res);
  455. if (nd < d) {
  456. d = nd;
  457. r_point = res;
  458. r_normal = points[i].normal;
  459. inters = true;
  460. }
  461. }
  462. if (inters) {
  463. if (n.dot(r_normal) > 0) {
  464. r_normal = -r_normal;
  465. }
  466. }
  467. //return get_aabb().intersects_segment(p_begin,p_end,&r_point,&r_normal);
  468. return inters; //todo
  469. }
  470. real_t ConvexPolygonShape2DSW::get_moment_of_inertia(real_t p_mass, const Size2 &p_scale) const {
  471. ERR_FAIL_COND_V_MSG(point_count == 0, 0, "Convex polygon shape has no points.");
  472. Rect2 aabb;
  473. aabb.position = points[0].pos * p_scale;
  474. for (int i = 0; i < point_count; i++) {
  475. aabb.expand_to(points[i].pos * p_scale);
  476. }
  477. return p_mass * aabb.size.dot(aabb.size) / 12.0;
  478. }
  479. void ConvexPolygonShape2DSW::set_data(const Variant &p_data) {
  480. ERR_FAIL_COND(p_data.get_type() != Variant::POOL_VECTOR2_ARRAY && p_data.get_type() != Variant::POOL_REAL_ARRAY);
  481. if (points) {
  482. memdelete_arr(points);
  483. }
  484. points = nullptr;
  485. point_count = 0;
  486. if (p_data.get_type() == Variant::POOL_VECTOR2_ARRAY) {
  487. PoolVector<Vector2> arr = p_data;
  488. ERR_FAIL_COND(arr.size() == 0);
  489. point_count = arr.size();
  490. points = memnew_arr(Point, point_count);
  491. PoolVector<Vector2>::Read r = arr.read();
  492. for (int i = 0; i < point_count; i++) {
  493. points[i].pos = r[i];
  494. }
  495. for (int i = 0; i < point_count; i++) {
  496. Vector2 p = points[i].pos;
  497. Vector2 pn = points[(i + 1) % point_count].pos;
  498. points[i].normal = (pn - p).tangent().normalized();
  499. }
  500. } else {
  501. PoolVector<real_t> dvr = p_data;
  502. point_count = dvr.size() / 4;
  503. ERR_FAIL_COND(point_count == 0);
  504. points = memnew_arr(Point, point_count);
  505. PoolVector<real_t>::Read r = dvr.read();
  506. for (int i = 0; i < point_count; i++) {
  507. int idx = i << 2;
  508. points[i].pos.x = r[idx + 0];
  509. points[i].pos.y = r[idx + 1];
  510. points[i].normal.x = r[idx + 2];
  511. points[i].normal.y = r[idx + 3];
  512. }
  513. }
  514. ERR_FAIL_COND(point_count == 0);
  515. Rect2 aabb;
  516. aabb.position = points[0].pos;
  517. for (int i = 1; i < point_count; i++) {
  518. aabb.expand_to(points[i].pos);
  519. }
  520. configure(aabb);
  521. }
  522. Variant ConvexPolygonShape2DSW::get_data() const {
  523. PoolVector<Vector2> dvr;
  524. dvr.resize(point_count);
  525. for (int i = 0; i < point_count; i++) {
  526. dvr.set(i, points[i].pos);
  527. }
  528. return dvr;
  529. }
  530. ConvexPolygonShape2DSW::ConvexPolygonShape2DSW() {
  531. points = nullptr;
  532. point_count = 0;
  533. }
  534. ConvexPolygonShape2DSW::~ConvexPolygonShape2DSW() {
  535. if (points) {
  536. memdelete_arr(points);
  537. }
  538. }
  539. //////////////////////////////////////////////////
  540. void ConcavePolygonShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  541. real_t d = -1e10;
  542. int idx = -1;
  543. for (int i = 0; i < points.size(); i++) {
  544. real_t ld = p_normal.dot(points[i]);
  545. if (ld > d) {
  546. d = ld;
  547. idx = i;
  548. }
  549. }
  550. r_amount = 1;
  551. ERR_FAIL_COND(idx == -1);
  552. *r_supports = points[idx];
  553. }
  554. bool ConcavePolygonShape2DSW::contains_point(const Vector2 &p_point) const {
  555. return false; //sorry
  556. }
  557. bool ConcavePolygonShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  558. if (segments.size() == 0 || points.size() == 0) {
  559. return false;
  560. }
  561. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * bvh_depth);
  562. enum {
  563. TEST_AABB_BIT = 0,
  564. VISIT_LEFT_BIT = 1,
  565. VISIT_RIGHT_BIT = 2,
  566. VISIT_DONE_BIT = 3,
  567. VISITED_BIT_SHIFT = 29,
  568. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  569. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  570. };
  571. Vector2 n = (p_end - p_begin).normalized();
  572. real_t d = 1e10;
  573. bool inters = false;
  574. /*
  575. for(int i=0;i<bvh_depth;i++)
  576. stack[i]=0;
  577. */
  578. int level = 0;
  579. const Segment *segmentptr = &segments[0];
  580. const Vector2 *pointptr = &points[0];
  581. const BVH *bvhptr = &bvh[0];
  582. stack[0] = 0;
  583. while (true) {
  584. uint32_t node = stack[level] & NODE_IDX_MASK;
  585. const BVH &bvh = bvhptr[node];
  586. bool done = false;
  587. switch (stack[level] >> VISITED_BIT_SHIFT) {
  588. case TEST_AABB_BIT: {
  589. bool valid = bvh.aabb.intersects_segment(p_begin, p_end);
  590. if (!valid) {
  591. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  592. } else {
  593. if (bvh.left < 0) {
  594. const Segment &s = segmentptr[bvh.right];
  595. Vector2 a = pointptr[s.points[0]];
  596. Vector2 b = pointptr[s.points[1]];
  597. Vector2 res;
  598. if (Geometry::segment_intersects_segment_2d(p_begin, p_end, a, b, &res)) {
  599. real_t nd = n.dot(res);
  600. if (nd < d) {
  601. d = nd;
  602. r_point = res;
  603. r_normal = (b - a).tangent().normalized();
  604. inters = true;
  605. }
  606. }
  607. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  608. } else {
  609. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  610. }
  611. }
  612. }
  613. continue;
  614. case VISIT_LEFT_BIT: {
  615. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  616. stack[level + 1] = bvh.left | TEST_AABB_BIT;
  617. level++;
  618. }
  619. continue;
  620. case VISIT_RIGHT_BIT: {
  621. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  622. stack[level + 1] = bvh.right | TEST_AABB_BIT;
  623. level++;
  624. }
  625. continue;
  626. case VISIT_DONE_BIT: {
  627. if (level == 0) {
  628. done = true;
  629. break;
  630. } else {
  631. level--;
  632. }
  633. }
  634. continue;
  635. }
  636. if (done) {
  637. break;
  638. }
  639. }
  640. if (inters) {
  641. if (n.dot(r_normal) > 0) {
  642. r_normal = -r_normal;
  643. }
  644. }
  645. return inters;
  646. }
  647. int ConcavePolygonShape2DSW::_generate_bvh(BVH *p_bvh, int p_len, int p_depth) {
  648. if (p_len == 1) {
  649. bvh_depth = MAX(p_depth, bvh_depth);
  650. bvh.push_back(*p_bvh);
  651. return bvh.size() - 1;
  652. }
  653. //else sort best
  654. Rect2 global_aabb = p_bvh[0].aabb;
  655. for (int i = 1; i < p_len; i++) {
  656. global_aabb = global_aabb.merge(p_bvh[i].aabb);
  657. }
  658. if (global_aabb.size.x > global_aabb.size.y) {
  659. SortArray<BVH, BVH_CompareX> sort;
  660. sort.sort(p_bvh, p_len);
  661. } else {
  662. SortArray<BVH, BVH_CompareY> sort;
  663. sort.sort(p_bvh, p_len);
  664. }
  665. int median = p_len / 2;
  666. BVH node;
  667. node.aabb = global_aabb;
  668. int node_idx = bvh.size();
  669. bvh.push_back(node);
  670. int l = _generate_bvh(p_bvh, median, p_depth + 1);
  671. int r = _generate_bvh(&p_bvh[median], p_len - median, p_depth + 1);
  672. bvh.write[node_idx].left = l;
  673. bvh.write[node_idx].right = r;
  674. return node_idx;
  675. }
  676. void ConcavePolygonShape2DSW::set_data(const Variant &p_data) {
  677. ERR_FAIL_COND(p_data.get_type() != Variant::POOL_VECTOR2_ARRAY && p_data.get_type() != Variant::POOL_REAL_ARRAY);
  678. Rect2 aabb;
  679. if (p_data.get_type() == Variant::POOL_VECTOR2_ARRAY) {
  680. PoolVector<Vector2> p2arr = p_data;
  681. int len = p2arr.size();
  682. ERR_FAIL_COND(len % 2);
  683. segments.clear();
  684. points.clear();
  685. bvh.clear();
  686. bvh_depth = 1;
  687. if (len == 0) {
  688. configure(aabb);
  689. return;
  690. }
  691. PoolVector<Vector2>::Read arr = p2arr.read();
  692. Map<Point2, int> pointmap;
  693. for (int i = 0; i < len; i += 2) {
  694. Point2 p1 = arr[i];
  695. Point2 p2 = arr[i + 1];
  696. int idx_p1, idx_p2;
  697. if (pointmap.has(p1)) {
  698. idx_p1 = pointmap[p1];
  699. } else {
  700. idx_p1 = pointmap.size();
  701. pointmap[p1] = idx_p1;
  702. }
  703. if (pointmap.has(p2)) {
  704. idx_p2 = pointmap[p2];
  705. } else {
  706. idx_p2 = pointmap.size();
  707. pointmap[p2] = idx_p2;
  708. }
  709. Segment s;
  710. s.points[0] = idx_p1;
  711. s.points[1] = idx_p2;
  712. segments.push_back(s);
  713. }
  714. points.resize(pointmap.size());
  715. aabb.position = pointmap.front()->key();
  716. for (Map<Point2, int>::Element *E = pointmap.front(); E; E = E->next()) {
  717. aabb.expand_to(E->key());
  718. points.write[E->get()] = E->key();
  719. }
  720. Vector<BVH> main_vbh;
  721. main_vbh.resize(segments.size());
  722. for (int i = 0; i < main_vbh.size(); i++) {
  723. main_vbh.write[i].aabb.position = points[segments[i].points[0]];
  724. main_vbh.write[i].aabb.expand_to(points[segments[i].points[1]]);
  725. main_vbh.write[i].left = -1;
  726. main_vbh.write[i].right = i;
  727. }
  728. _generate_bvh(main_vbh.ptrw(), main_vbh.size(), 1);
  729. } else {
  730. //dictionary with arrays
  731. }
  732. configure(aabb);
  733. }
  734. Variant ConcavePolygonShape2DSW::get_data() const {
  735. PoolVector<Vector2> rsegments;
  736. int len = segments.size();
  737. rsegments.resize(len * 2);
  738. PoolVector<Vector2>::Write w = rsegments.write();
  739. for (int i = 0; i < len; i++) {
  740. w[(i << 1) + 0] = points[segments[i].points[0]];
  741. w[(i << 1) + 1] = points[segments[i].points[1]];
  742. }
  743. w.release();
  744. return rsegments;
  745. }
  746. void ConcavePolygonShape2DSW::cull(const Rect2 &p_local_aabb, QueryCallback p_callback, void *p_userdata) const {
  747. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * bvh_depth);
  748. enum {
  749. TEST_AABB_BIT = 0,
  750. VISIT_LEFT_BIT = 1,
  751. VISIT_RIGHT_BIT = 2,
  752. VISIT_DONE_BIT = 3,
  753. VISITED_BIT_SHIFT = 29,
  754. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  755. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  756. };
  757. /*
  758. for(int i=0;i<bvh_depth;i++)
  759. stack[i]=0;
  760. */
  761. if (segments.size() == 0 || points.size() == 0 || bvh.size() == 0) {
  762. return;
  763. }
  764. int level = 0;
  765. const Segment *segmentptr = &segments[0];
  766. const Vector2 *pointptr = &points[0];
  767. const BVH *bvhptr = &bvh[0];
  768. stack[0] = 0;
  769. while (true) {
  770. uint32_t node = stack[level] & NODE_IDX_MASK;
  771. const BVH &bvh = bvhptr[node];
  772. switch (stack[level] >> VISITED_BIT_SHIFT) {
  773. case TEST_AABB_BIT: {
  774. bool valid = p_local_aabb.intersects(bvh.aabb);
  775. if (!valid) {
  776. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  777. } else {
  778. if (bvh.left < 0) {
  779. const Segment &s = segmentptr[bvh.right];
  780. Vector2 a = pointptr[s.points[0]];
  781. Vector2 b = pointptr[s.points[1]];
  782. SegmentShape2DSW ss(a, b, (b - a).tangent().normalized());
  783. if (p_callback(p_userdata, &ss)) {
  784. return;
  785. }
  786. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  787. } else {
  788. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  789. }
  790. }
  791. }
  792. continue;
  793. case VISIT_LEFT_BIT: {
  794. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  795. stack[level + 1] = bvh.left | TEST_AABB_BIT;
  796. level++;
  797. }
  798. continue;
  799. case VISIT_RIGHT_BIT: {
  800. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  801. stack[level + 1] = bvh.right | TEST_AABB_BIT;
  802. level++;
  803. }
  804. continue;
  805. case VISIT_DONE_BIT: {
  806. if (level == 0) {
  807. return;
  808. } else {
  809. level--;
  810. }
  811. }
  812. continue;
  813. }
  814. }
  815. }